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Abstract

Background: Alternative splicing allows the pre-mRNAs of a gene to be spliced into various mRNAs, which greatly
increases the diversity of proteins. High-throughput sequencing of mRNAs has revolutionized our ability for transcripts
reconstruction. However, the massive size of short reads makes de novo transcripts assembly an algorithmic challenge.

Results: We develop a novel radical framework, called DTA-SiST, for de novo transcriptome assembly based on suffix
trees. DTA-SiST first extends contigs by reads that have the longest overlaps with the contigs’ terminuses. These reads
can be found in linear time of the lengths of the reads through a well-designed suffix tree structure. Then, DTA-SiST
constructs splicing graphs based on contigs for each gene locus. Finally, DTA-SiST proposes two strategies to extract
transcript-representing paths: a depth-first enumeration strategy and a hybrid strategy based on length and coverage.
We implemented the above two strategies and compared them with the state-of-the-art de novo assemblers on both
simulated and real datasets. Experimental results showed that the depth-first enumeration strategy performs always
better with recall and also better with precision for smaller datasets while the hybrid strategy leads with precision for
big datasets.

Conclusions: DTA-SiST performs more competitive than the other compared de novo assemblers especially with
precision measure, due to the read-based contig extension strategy and the elegant transcripts extraction rules.
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Background
Alternative splicing plays an important role in regulat-
ing gene expression and producing diversity of proteins.
Through alternative splicing, the pre-mRNAs of a gene
can be spliced into various mRNAs, which results in the
large difference between the number of genes and that of
proteins [1, 2]. A transcript is defined as a mature mRNA
that encodes protein. We call the set of all the transcripts
the transcriptome. The transcriptome can be seen as a
precursor of the proteome, i.e., the entire set of proteins
expressed by a genome. Transcriptome reconstruction is
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an important mean for studying cell phenotype and func-
tion [3]. However, this task is quite nontrivial. For the
time being, we only know a small part of the landscape of
alternative splicing of some species.

The high-throughput sequencing has revolutionized
our ability to study many challenging issues such as motif
finding, DNA/RNA-protein interaction, ribosome profil-
ing, small RNA expression profiling, transcripts assembly,
and disease diagnosis [4–9]. The RNA sequencing (RNA-
seq) offers a great opportunity to identify the expressed
transcripts.

There are generally two alternative computational
strategies for transcriptome assembly problems: genome-
guided approaches such as Scallop [10], Cufflinks [11],
StringTie [12], CIDANE [13], Scripture [14], IsoLasso [15],
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and TransComb [16], and de novo transcripts assembly
approaches such as Trinity [17], Oases [18], SOAPdenovo-
Trans [19], IDBA-Tran [20], BinPacker [21], Bridger [22],
ABySS [23], and IsoTree [24]. Genome-guided assem-
blers are generally more accurate than de novo assem-
blers when the high-quality reference genome is available.
However, the high-quality reference genome is not always
available. In this situation, de novo transcriptome assem-
bly is required. In this paper, we mainly consider de novo
transcriptome assembly methods.

Existing strategies for transcriptome assembly usually
adopt the following scheme: first constructing graphs
based on the RNA-seq reads, and then extracting paths
from the graphs to represent plausible transcripts. Var-
ious algorithms are employed to recover transcript-
representing paths. For example, Cufflinks [11] and
Bridger [22] employ the minimum path cover algorithm
to extract the minimum number of paths that cover
all the vertices. StringTie [12] applies the network flow
algorithm on the splicing graphs to recover all the pos-
sible transcripts. Trinity [17] extracts the sufficiently
covered paths from the compact graphs based on a
brute-force enumeration strategy. BinPacker [21] models
the paths in the splicing graphs as a set of trajectories
of items by solving a series of bin-packing problems.
Note that Cufflinks and StringTie belong to genome-
guided approaches. They usually start by aligning reads
to a reference genome, and then construct graphs accord-
ing to alignment results. Trinity, Bridger, and BinPacker
are de novo transcriptome assembly approaches, and
they build graphs solely based on the overlaps of k-
mers (k-character substrings of read sequences). To
investigate the influence of path extracting strategies
on the assemblers’ performances, DTA-SiST developed
two strategies: a depth-first enumeration strategy and
a hybrid strategy based on length and coverage. The
first strategy aims to distinguish as many as possi-
ble transcripts while the second tries to target candi-
dates more accurately. DTA-SiST implemented these two
strategies and compared them with the state-of-the-art
assemblers.

Historically, the de novo assembly approaches mostly
rely on the pioneering works on de Bruijn graphs [25],
including Trinity [17], SOAPdenovo-Trans [19], Oases
[18], IDBA-Tran [20], and Trans-AByss [23]. Recently,
Bridger [22], BinPacker [21], and IsoTree [24] applied
splicing graphs [26] to represent alternative splicing. Both
de Bruijn graphs and splicing graphs are usually con-
structed by extending contigs with k-mers. Each node in a
de Bruijn graph represents a k-mer while a node in a splic-
ing graph usualls to an exon. Hence, the number of nodes
in a splicing graph is far less than that of the nodes in a de
Bruijn graph, which makes the models based on splicing
graphs more tractable.

The k-mer-based extension strategies extend a contig
through a k-mer whose first (or last) k − 1-character
substring is exactly the same as the last (or first) k − 1-
character substring of the contig. For convenience, we
say that the k-mer has a k − 1-character overlap with
the contig’s ternimus. For example, suppose the contig
sequence is ACATCG, and the k-mer set contains the k-
mers of TACA, ACAT, CATC, ATCG, and TCGG. Since
the last 3-character substring of TACA is exactly the same
as the first 3-character substring of the contig, i.e., the
k-mer of TACA has a 3-character overlap with the con-
tig’s terminus, the contig can be extended by TACA to
TACATCG. Similarly, the first 3-character substring of
TCGG is exactly the same as the last 3-character substring
of the contig. Through TCGG, the contig of TACATCG
can be extended to TACATCGG. By applying a hash table
to hold the k-mers with their original reads’ IDs as their
corresponding values, the k-mer-based strategies can find
the candidate k-mers quickly. However, since a k-mer may
originate from quite a few different reads which may easily
lead to a wrong extension, these strategies deny mak-
ing full use of the information of the whole nucleotides
arrangement in each read. Although the k-mer-based con-
tig extension strategy has been widely used in de novo
assemblers, both the accuracy and sensitivity are still far
from meeting the requirement.

Some multiple-k strategies have been developed such as
Oases-M [18], IDBA-Tran [20], and Bridger-M [22], but
the problem is not solved basically since these works just
intuitively tried several k values one after another with-
out fully considering the variances of the lengths of the
actual overlaps between reads. In our last work IsoTree
[24, 27], we proposed a method to find the candidate
reads that have the longest overlap to the contig’s ter-
minus. But the method needs to try all the candidate
reads that may have overlaps of lengths between L − 1
and x with the contig’s terminus, which is time consum-
ing and a little tedious. Here, L is the length of reads,
and x is the length of the longest overlap between the
contig’s terminus and the available reads. In this work,
we introduce a more straightforward contig extension
strategy that extends a contig by the read that has the
longest overlap with the contig’s terminus. Through the
suffix trees of reads, we can find the candidate reads
that have the longest overlap with a contig’s terminus in
O(L) time by just scanning the first (for left extension)
or the last (for right extension) L − 1 characters of the
contig once.

In the rest of this work, the methods of constructing
suffix trees and splicing graphs as well as the algorithms
of extracting transcript-representing paths from splicing
graphs are first introduced. Then, the experimental results
and discussions are presented. The final conclusions are
given in the end.
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Methods
Suffix tree construction
Traditional k-mer-based extension strategies build over-
lapping k-mers from reads and extend contigs by k-
mers, which can only guarantee k − 1-character over-
laps between contigs and k-mers. The whole nucleotides
arrangements of reads are usually ignored in k-mer-
based extension strategies. Obviously, extending contigs
by reads is more credible than extending contigs by k-
mers, especially for long reads. However, it is much more
complicated to find a read that holds the longest over-
lap to the current contig’s terminus than to find a k-mer
that overlaps the current contig’s terminus by exactly k −
1 characters. The latter can be conveniently realized by
using hash tables. Some multiple-k strategies have been
developed to overcome the shortage of single-k strategies
by trying several k values. But these intuitive designs were
far from the real sense that reads may overlap with each
other by different numbers of characters. In order to make
full use of nucleotide arrangements of reads , DTA-SiST
presents a read-based contig extension strategy. The main
point is that DTA-SiST applies a suffix tree structure to
quickly find the candidate reads.

To facilitate the contig extension from 5’ to 3’, DTA-
SiST builds a suffix tree, called right extension suffix tree
(REST). Although the beginning of the maximum overlap
between the current contig’s 3’ terminus and the candidate
reads is unknown, the ending of the maximum overlap
is known. The maximum overlap is actually a prefix of
the candidate reads. Consequently, DTA-SiST reverses all
the read sequences and constructs a suffix tree for the
l ∼ L − 1 character suffixes of all the reverse reads, where
l denotes the predefined minimum overlap length and L
represents the read length. In the right extension suffix

tree, the path from the root node to each node repre-
sents a substring of some reverse reads. If the x-length
(l ≤ x ≤ L − 1) path from the root node to the node v rep-
resents a suffix of the reverse read of r, DTA-SiST stores
the read id r in the node v (as shown in Fig. 1).

Similarly, DTA-SiST constructs a left extension suffix
tree (LEST) to facilitate the contig extension from 3’ to
5’. In this case, the maximum overlap is actually a suf-
fix of candidate reads and the start point of the overlap
is known. Hence, the left extension suffix tree consists
exactly of the l ∼ L − 1 character suffixes of all the reads.
An example for adding a read to the left extension suffix
tree is shown in Fig. 2.

Through the suffix trees constructed with the above
method, DTA-SiST gets the candidate reads that hold the
longest overlap with current contig’s terminus in O(L)

time by scanning prefix of the contig (for left extension,
right extension is processed similarly) along the edges in
the left extension tree as far as possible and then mov-
ing back to find the reads’ IDs stored in the nearest node.
Suppose there are totally N reads. In theory, the suffix
trees will take up O(M + N(L − l)) space, where M is
the size of all the suffixes. Notice that M can be up to
O(N(L + l)(L − l)) supposing that all the suffixes are dif-
ferent. The space of the suffix trees can be divided into
two parts, one is to store the reads’ IDs, and the other is to
store the tree structure. In order to reduce the space con-
sumed in storing reads’ IDs, we compress the reads with
the same sequence into one read and assign them the same
ID. After numerous experiments, we found that many ver-
tices and reads’ IDs stored in the suffix trees are useless.
The reason is that not all the suffixes (or prefixes) of reads
can match contigs’ 5’ (or 3’) terminuses, and thus they will
never be used in the left (or right) extension. If the suffix

Fig. 1 Right extension suffix tree. An example for adding the suffixes of a reverse read to the right extension suffix tree
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Fig. 2 Left extension suffix tree. An example for adding the suffixes of a read to the left extension suffix tree

(or prefix) of a read can be used in the left (or right) exten-
sion, this suffix (or prefix) must be a prefix (or suffix) of
another read. Based on this observation, we construct the
simplified suffix trees with the following steps. The idea
is that we first extract all the L − 1-character prefixes of
all the reads. Then we check and store the suffixes with
lengths of l, l + 1, ..., L − 1 that overlap with these prefixes
and thus get the left extension suffix tree LEST. Finally, we
check and store the prefixes with lengths of l, l+1, ..., L−1
that overlap with the suffixes in the LEST and thus get the
right extension suffix tree REST. As defined before, the
prefixes stored in the REST are actually their reversals.

step 1: Initialize the left extension suffix tree LEST
structure by the L − 1-character prefixes of all the reads.
If a suffix is usable in the left extension, it must overlap
with a L−1-character prefix of reads. Hence, the tree con-
structed with the L − 1-character prefixes covers all the
usable suffixes.

Figure 3 gives an example to construct the simplified
suffix trees. As shown in this figure, there are total of
four reads, i.e., Read1 as sequence CATTC, Read2 as
sequence ATTCT, Read3 as sequence AGCTC, and Read4
as sequence TCCAT. The length of these reads is 5bp (L =
5), and the minimum overlap length is 2bp (l = 2). The 4-
character prefixes of these reads are used to construct the
tree structure.

step 2: Add reads’ IDs to the left extension suffix tree. If
one suffix (whose length is between l and L − 1) of read r
follows a path from the root node to node v in the LEST,
DTA-SiST stores the read id r in the node v.

In the above example (Fig. 3), the suffixes with lengths
4, 3, 2 of Read1 are ATTC, TTC, and TC, respectively.
DTA-SiST first scans the 4-character suffix (ATTC) in the
left extension suffix tree. DTA-SiST finds that there is a

path from the root node in the tree that exactly corre-
sponds to ATTC, and DTA-SiST adds the ID of Read1 into
the left extension suffix tree. Then, DTA-SiST scans the 3-
character suffix (TTC) and the 2-character suffix (TC) in
the left extension suffix tree successively. Since there is no
path from the root node in the left extension suffix tree
marked as TTC while there is one marked as TC, DTA-
SiST adds the ID of Read1 only in the node corresponding
to path TC. Similarly, DTA-SiST adds the IDs of the other
reads into the left extension suffix tree.

step 3: Trim the left extension suffix tree. DTA-SiST
iteratively deletes the leaf nodes without reads’ IDs.

As shown in Fig. 3, the leaf nodes without reads’ IDs are
iteratively removed. Through the trimming operations,
the number of nodes in the left extension suffix tree is
reduced from 16 to 10.

step 4: Construct the right extension suffix tree REST
based on the left extension suffix tree. DTA-SiST scans
each x-character (l ≤ x ≤ L − 1) prefix of all the
reads to check whether it matches a path from the root
to a node with some stored read IDs in the left exten-
sion suffix tree. If yes, DTA-SiST will reverse the prefix,
add the reversal sequence into the right extension suf-
fix tree, and store the corresponding read’s ID in the
corresponding node.

In the above example (Fig. 3), the 2, 3, 4-character pre-
fixes of Read1 are CA, CAT, and CATT, respectively.
DTA-SiST first scans the 2-character prefix (CA) in the
left extension suffix tree. Although there is a path from
the root node marked CA, but the ending node of the path
contains no IDs which means that CA is only part of a
usable suffix. In this case, DTA-SiST will not add the ID of
Read1 but continue to scan the 3-character prefix (CAT).
Since CAT matches a path from the root node in the left
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Fig. 3 Simplified suffix tree. An example for constructing the simplified suffix trees. In this example, there are total of four reads. The read length is
5bp, and the minimum overlap length is 2bp

extension suffix tree and the ending node of the path con-
tains reads’ IDs, DTA-SiST reverses CAT to TAC and adds
TAC as well as the ID of Read1 to the right extension
suffix tree. Then, DTA-SiST scans the 4-character pre-
fix (CATT) in the left extension suffix tree similarly. The
prefixes of the other reads are processed in the same way.

step 5: Compress the left extension suffix tree and the
right extension suffix tree. In order to save the space and
improve the speed, each l-character path from the root
node is compressed into one node and stored as a 64-bit
unsigned integer each.

As shown in Fig. 3, through the compressing operation,
the number of nodes in the left extension suffix tree is
reduced from 10 to 7.

With these improvements on the suffix trees, the mem-
ory cost by DTA-SiST is comparable to that cost by the

hash table data structure as shown in Table 1. Note that
in theory, the hash table for single k-mer representation
takes up a memory of O(N(L − k + 1)) , and the simpli-
fied suffix tree takes up a memory of O(N ′(L − l)), where
N ′(N ′ ≤ N) is the number of reads with usable suffixes or
prefixes. As mentioned above, the memory of the trees is
spent in storing the tree structures and reads’ IDs. Since
the initial left extension suffix tree structure is constructed
from the L − 1-character prefixes of all the reads and that
the l-character paths from the root node are compressed
into one node each, there are at most O(N ′(L − l)) nodes
in the tree. The memory that is used to store the reads’
IDs can be up to O(N ′(L − l)) supposing that all the suf-
fixes of these N ′ reads are usable. The same results can
be drawn for the right extension suffix tree. Note that the
hash table for multiple k-mer representation takes up a
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Table 1 Comparison of memory occupied by different strategies

Reads
50bp 75bp 100bp 50bp 50bp

0.1million 0.1million 0.1million 0.5million 1million

Suffix tree 68.3M 143.5M 220.5M 85.1M 94.3M

Single-k 20.8M 34.7M 49.2M 78.5M 149.3M

Multiple-k 286.0M 572.9M 899.5M 445.9M 640.6M

memory of O(M′ + N(L − l)2), where M′ is the size of all
the l + 1, l + 2, ..., L-mers if we use hash table of all these
substrings to find the k-mers that have the longest over-
laps with the contigs’ terminuses. Notice that M′ is quite
larger than M, the size of all the l, l+1, ..., L−1-suffixes. We
compared the memories occupied by the suffix trees, the
hash table of k-mers with single length of l + 1, and hash
table of k-mers with multiple lengths of l + 1, l + 2, ..., L.

Table 1 shows that the simplified suffix tree strategy
occupies comparable memory as that used by the single-
k strategy while the multiple-k strategy costs much more.
Notice that multiple-k strategy is impractical in find-
ing the best candidate that has the longest overlap with
the contig’s terminus due to its memory usage for real
data (notice that multiple-k strategies such as Oases-M
[18], IDBA-Tran [20], and Bridger-M [22] basically just
repeated the single-k strategy for several different k val-
ues, which are excluded from discussion here). As shown
in Table 1, the memory occupied by these three strate-
gies is significantly correlated with the read length and the
data size. These three strategies cost the most memory on
the sample that contains 0.1 million reads with length of
100bp, which indicates that the read length greatly affects
the memory usage. Table 1 also shows an interesting phe-
nomenon that the simplified suffix tree strategy occupies
less memory than the single-k strategy and the multiple-
k strategy on the sample that contains 1 million reads
with length of 50bp. We attribute the surprising perfor-
mance of the simplified suffix tree strategy on this sample
to the operation of compressing the reads with the same
sequence into one read. With the increase of data size, the
number of reads with the same sequence increases. The
read compression step significantly reduced the data size
of this sample.

Splicing graph construction
The splicing graph used by DTA-SiST is similar to that
defined in Bridger [22], BinPacker [21], and IsoTree [24]. A
splicing graph is a directed acyclic graph, in which the ver-
tex represents a part of an exon or an exon. An edge exists
between two vertices only if these two vertices come from
a same transcript. Simple paths in such graphs usually
represent plausible transcripts or parts of them.

Briefly, DTA-SiST constructs splicing graphs as follows:
DTA-SiST first sets the reads whose coverage exceeds

the average as seeds, and then selects an unused seed
as the main contig and extends the contig with help of
the suffix trees. DTA-SiST explores the suffix trees along
the edges marked with the characters scanned from the
endpoints of the contig successively to get the candidate
read that holds the longest overlap with the current con-
tig’s terminus. When there are multiple candidate reads,
DTA-SiST selects the candidate read whose coverage is
closest to that of the contig. DTA-SiST repeats the above
candidates selection and extension steps until there are
no candidate reads that hold at least l-character over-
laps with the contig’s terminus. When the contig cannot
be extended in either direction, DTA-SiST makes the
branch extensions to construct splicing variants. DTA-
SiST applies a similar strategy described in our previ-
ous work [24] to construct splicing variants and trim
the splicing graph.

Figure 4 gives an example for extending contigs by
reads under the help of right extension suffix tree and
left extension suffix tree. For the left extension (from 3’
to 5’): DTA-SiST searches the left extension suffix tree
with characters from 5’ to 3’ successively, i.e., 8 (simpli-
fied code for GA), G, T, T, C, G, · · · . There is a path of
8(GA)GTTC in the left extension suffix tree but no path
of 8(GA)GTTCG. Hence, 8(GA)GTTC is the maximum
overlap of reads with the contig’s 5’ terminus. DTA-SiST
takes out the read id (a) stored in the last node in the path
of 8(GA)GTTC and extends the contig by the read a. Sim-
ilarly, DTA-SiST can find the candidate reads that hold the
maximum overlap with the contig’s 3’ terminus through
the right extension suffix tree. The contig is then extended
in right direction.

The main difference between DTA-SiST and IsoTree
for contig extension is the method of finding the candi-
date reads that hold the longest overlaps with the contig’s
terminus. IsoTree extracts the candidates by trying the
overlap lengths from L − 1 to l. To get the reads that hold
x-character overlaps with contig’s terminus, IsoTree first
sets the first and the last k-mers of the x-character ter-
minus as tags. Then, IsoTree searches the hash table to
find the reads that contain these two tags in O(ax + bx)
time, where ax and bx are the numbers of reads that con-
tain the two tags, respectively. If an obtained read exactly
has a x-character overlap with the contig’ terminus, it is
identified as a candidate read. Once a candidate read is
obtained, no smaller overlap length will be further tried.
Thus, if the maximum overlap length is x, IsoTree will

cost O(N
x∑

i=L−1
(ai + bi)i) time to find the candidate reads.

Notice that DTA-SiST can find the candidate that has the
longest overlap with the contig’s terminus in O(L) time
for each extension and thus O(NL) in total. The suffix
tree strategy is more time-saving considering that the time
for building the suffix trees is O(N(L + l − 1)(L − l)),
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Fig. 4 Contig extension. An example for extending contigs by reads under the help of right extension suffix tree and left extension suffix tree

which is usually far smaller than O(N
x∑

i=L−1
(ai + bi)i).

Besides, although DTA-SiST needs more memory to hold
the suffix trees, its memory consumption is endurable as
described in “Results” section.

Transcripts assembly
In the transcript-representing path detection step, most
of researchers formulated it as an optimization problem
with objective of either extracting the minimum number
of paths to cover the whole graph or ensuring the mini-
mum gaps between the coverage of the edges entering and
leaving the nodes. Wondering whether the real world fol-
lows these optimization principles, we developed two new
strategies for transcript-representing path extraction.

In order to detect as many transcripts as possible,
DTA-SiST develops a depth-first enumeration strategy to
recover all the possible transcripts that can be represented
by the splicing graph. Besides, DTA-SiST develops a strict
criterion to exclude the fake transcripts (these rules are
generally adopted in most transcript-assembly methods):
(i) the transcript sequence should be longer than 200bp
(by default); (ii) the coverage of each transcript must
be larger than 2 (by default); (iii) at least 20 reads (by
default) can be mapped to the transcript; (iv) the whole
transcript sequence must be covered by paired-end reads
when paired-end reads are available.

Additionally, considering that thicker paths (paths with
higher coverage) are more likely to be transcripts, DTA-
SiST proposes a hybrid strategy to extract the longest

path among the thickest paths. The hybrid strategy iter-
atively extracts paths with the compromise of length and
thickness by a dynamic programming method until all the
edges are covered by these paths or a predefined condition
is met. The hybrid strategy based on length and cover-
age is also a good juxtapose to evaluate the depth-first
enumeration strategy.

In the following discussion, let G(V , E) denote the splic-
ing graph. DTA-SiST adds a source vertex s and a sink ver-
tex t into the graph, and connects s (or t) with the vertices
without incoming edges (or outgoing edges). DTA-SiST
applies the function w(node) (or w(edge)) to weigh the ver-
tex sequences (or the edge sequences) by the number of
reads per base. Specifically, DTA-SiST assigns the weight
of edge (s, v) as the weight of node v, assigns the weight of
edge (u, t) as the weight of node u, assigns the weight of
node s as the sum of the weights of edges leaving node s,
and assigns the weight of node t as the sum of the weights
of edges entering node t.

Depth-first enumeration strategy. DTA-SiST enumer-
ates the paths from the source vertex s to the sink vertex
t by a depth-first search strategy (Algorithm 1). The algo-
rithm starts from the source vertex s, and iteratively tra-
verses an unexplored edge leading from a vertex already
reached. Once it encounters the sink vertex t, the algo-
rithm will output the path. The algorithm uses a stack to
store the nodes on the current depth-first search path, so
that the path can be extracted by scanning the stack. The
algorithm has a time bound of O((V +E)p), where p is the
number of paths starting from s.
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Algorithm 1 Enumerating paths by the depth-first search
scheme

1: procedure DFS-VISIT(S, s, t, u)
2: place u on the stack S
3: for each vertex v ∈ Adj[ u] do
4: if v == t then
5: output path from vertex s to t given by the

stack S
6: else
7: DFS-VISIT(S, s, t, v)
8: delete u from the stack S
9:

10: procedure PATH-ENUMERATE(G, s, t)
11: S ← ∅
12: DFS-VISIT(S, s, t, s)

The hybrid strategy based on length and coverage.
DTA-SiST iteratively calls Algorithm 2 to find the longest
path from the paths that are extracted with the maximum
coverage strategy until the path meets a pre-given empir-
ical condition. Once a path is derived, it will be deleted
from the splicing graph, i.e., the coverage of all the edges
and vertices along the path will be reduced by the mini-
mum coverage of the edges and vertices along the path.
The time consumed by this strategy is O((V + E)E).

Algorithm 2 Extracting paths by the hybrid strategy based
on length and coverage

1: for each vertex v ∈ V [ G] do
2: π [ v] ← u, where w[ u] == min{w(x)|(x, v) ∈ E[ G] }
3: capacity(v) ← w(v)
4: l[ v] ← 0
5: for each vertex v(v �= s, t), taken in topologically sorted order do
6: capacity(v) ← max

(u,v)∈E
{min{capacity(u), w(u, v), capacity(v)}}

7: if capacity(v) is updated then
8: π [ v] ← u
9: l[ v] ← l[ u] +1

10: π [ t] ← u, when (u, t) ∈ E and l[ u] = max
(ui ,t)∈E

{l[ ui] }

As shown in Algorithm 2, it introduces π [ v] to denote
the predecessor of vertex v. By using backtracking, a
path with the compromise of length and thickness can
be extracted in one iteration according to π [ v]. For each
node v in topological order, capacity(v) denotes the maxi-
mum coverage among all the paths that start from vertex s
and end at vertex v, where the coverage of a path is defined
as the minimum weight among all the vertices and edges
in the path. Algorithm 2 computes the capacity(v) for each
vertex v in topological order in a dynamic way until it has
computed capacity(t). Besides, the variable l[ v] denotes
the length of the path from vertex s to vertex v.

Results
We realized DTA-SiST in two versions: DTA-SiST-E and
DTA-SiST-H corresponding to the depth-first enumera-
tion strategy and the hybrid strategy based on length and
coverage, respectively. We compared them with six state-
of-the-art de novo assemblers including IsoTree (ver-
sion 1.0), Trinity (version 2.3.2), BinPacker (version 1.0),
SOAPdenovo-Trans (version 1.03), IDBA-Tran (version
1.1.1), and Oases (version 0.2.8) on both simulated and
real datasets. We carried out the experiments on a server
with 256GB of RAM and E5-2620V3*2 CPU processor.

Datasets
In order to explore the sensitivity of assemblers on the
length of reads, we used FluxSimulator [28] to simulate
11 samples with read lengths of 50bp, 60bp, 70bp, 80bp,
90bp, 100bp, 110bp, 120bp, 130bp, 140bp, and 150bp,
respectively. The only difference between these simulated
samples is the length of reads. Each sample contains 0.1
million paired-end reads that are generated from 100 iso-
form transcripts originated from 41 different genes in
chromosome 1 (CRCh38.83, NCBI).

We retrieved a dog dataset and a human dataset from
NCBI SRA database, with Accession Code SRX295047
and SRR3692633, respectively. In the dog dataset, there
are totally 30968059 paired-end reads with length of 50bp.
The human dataset contains total of 43675886 paired-
end reads with length of 75bp. The reads both in the dog
dataset and the human dataset are single strand-specific.
Besides, we obtained total of 62516 and 46993 annotated
transcripts from UCSC for dogs and humans, respectively.

Evaluation criteria
In this paper, we aligned transcripts predicted by assem-
blers to annotated transcripts by blast+ [29]. We define
the full-length reconstructed transcript as an assembled
transcript that holds at least 95% sequence identity to
an annotated transcript. The full-length identified tran-
script represents an annotated transcript with at least 95%
sequence covered by an assembled transcript.

On the simulated datasets, we applied recall and pre-
cision to measure the performances of the de novo
assemblers. The recall is defined as the ratio between
the number of full-length identified transcripts and the
number of annotated transcripts, while the precision is
defined as the ratio between the number of full-length
reconstructed transcripts and the number of assembled
transcripts.

As the annotated transcripts of the real datasets are usu-
ally not the ground truth expressed transcripts, the recall
and precision defined above are not suitable to the real
datasets [10, 24]. For the real datasets, we use the number
of full-length identified transcripts to represent the recall,
and we measure the precision by comparing the number
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of full-length reconstructed transcripts and the number of
assembled transcripts (i.e., candidate transcripts) [21, 22].

Simulated data
On the simulated datasets, besides the recall and preci-
sion, we also evaluated the sensitivity on read length of
our method and the other leading approaches. We imple-
mented all assemblers on the simulated datasets whose
read lengths fall in the scope of 50bp ∼ 150bp (Fig. 5). We
ran all the compared assemblers with the k-mer length of
25bp and other parameters as default.

Figure 5 shows that DTA-SiST-E performed more com-
petitive than the other compared de novo assemblers
especially with precision measure. The average precision
obtained by DTA-SiST-E on these 11 simulated sam-
ples was 0.68, which had 36.0, 25.9, 11.5, 74.4, 106.1,
78.9, and 4.6% increase over that achieved by Trinity
(0.50), BinPacker (0.54), IsoTree (0.61), SOAPdenovo-
Trans (0.39), Oases (0.33), IDBA-Tran (0.38), and DTA-
SiST-H (0.65), respectively. DTA-SiST-E’s outstanding
performance with precision benefits from the transcript
filtering criterion. For the recall measure, DTA-SiST-
E performed better than the other de novo assemblers
except that IsoTree led a little with read lengths of 120bp,
130bp, and 150bp. We attribute the outstanding perfor-
mances of DTA-SiST and IsoTree to their read-based
contig extension strategies. They extend contigs by reads
while most other de novo assemblers extend contigs
by k-mers.

From Fig. 5, we observed that the performances of
the depth-first enumeration strategy DTA-SiST-E are
better than those of the hybrid strategy DTA-SiST-H
with both recall and precision measures, which is inter-
esting since there is usually a tradeoff between these
two measures.

Real data
On the real datasets, we evaluated the de novo assemblers
by counting the number of full-length identified tran-
scripts and the number of full-length reconstructed tran-
scripts. In terms of resource requirements, we assessed
the de novo assemblers with regard to the running times
and memory usages.

The numbers of full-length identified transcripts, full-
length reconstructed transcripts, and candidate tran-
scripts collected by the de novo assemblers are shown in
Table 2.

From Table 2, we observed that DTA-SiST always
performed more competitive than the other de novo
assemblers on recovering the full-length identified tran-
scripts (estimate of recall). On the dog dataset, DTA-
SiST-E recovered total of 1504 full-length identified
transcripts and improved IsoTree (1354), Trinity (1017),
BinPacker (1149), SOAPdenovo-Trans (1005), IDBA-Tran
(598), and Oases (530) with 11.1, 47.9, 30.9, 49.7, 151.5,
and 183.8%, respectively. Except DTA-SiST-E, DTA-SiST-
H and IsoTree outperformed all the other de novo
assemblers in terms of recovering full-length identified
transcripts. The outstanding performances of DTA-SiST
and IsoTree with recall measurement benefit from their
read-based extension strategies. They extend the contig by
reads while the other de novo assemblers extend the con-
tig by k-mers. The k-mer-based extension strategies can
only guarantee k − 1-length overlaps while the read-based
extension strategies ensure at least l-length overlaps. Both
the theoretical conclusion and the experimental results
show that the read-based extension strategies perform
better than the k-mer-based extension strategies.

On the dog dataset, DTA-SiST-E, DTA-SiST-H, IsoTree,
Trinity, BinPacker, SOAPdenovo-Trans, IDBA-Tran, and
Oases obtained total of 3916, 2514, 2974, 1663, 2601, 1006,

Fig. 5 Impact of the length of read on the performances of assemblers
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Table 2 Number of full-length transcripts recovered by the de novo assemblers

Assembler
Dog dataset Human dataset

Identified Reconstructed Candidates Identified Reconstructed Candidates

Trinity 1017 1663 96018 1913 3039 437730

BinPacker 1149 2601 73419 1491 3449 192674

IDBA-Tran 598 1011 69757 1376 2196 182651

SOAPdenovo-Trans 1005 1006 85028 / / /

Oases 530 957 113361 1762 3126 439865

IsoTree 1354 2974 81597 2015 3821 218269

DTA-SiST-E 1504 3916 103461 2175 4930 278255

DTA-SiST-H 1370 2514 71356 1950 3959 199642

1011, and 957 full-length reconstructed transcripts out of
103461, 71356, 81597, 96018, 73419, 85028, 69757, and
113361 candidates, respectively, which suggests that DTA-
SiST-E also outperformed its competitors with precision.

On the human dataset, DTA-SiST maintained its supe-
rior performance on recovering the full-length identi-
fied transcripts. DTA-SiST-E obtained the most number
of full-length identified transcripts (2175), followed by
IsoTree (2015), DTA-SiST-H (1950), Trinity (1913), Oases
(1762), BinPacker (1491), and IDBA-Tran (1376). How-
ever, DTA-SiST-E guessed more candidates than IsoTree
and DTA-SiST-H. We attribute the large number of can-
didates collected by DTA-SiST-E to its enumeration strat-
egy. Although DTA-SiST-H, IsoTree, and Trinity recov-
ered almost the same number of full-length identified
transcripts (1950, 2015, and 1913, respectively), DTA-
SiST-H guessed the least number of candidate transcripts
(199642 vs 218269 and 437730, respectively). Besides,
Trinity collected more full-length identified transcripts
than BinPacker on the human dataset while BinPacker
detected a larger number of full-length identified tran-
scripts than Trinity on the dog dataset.

Additionally, DTA-SiST-E, DTA-SiST-H, IsoTree, Trin-
ity, BinPacker, IDBA-Tran, and Oases collected total of
4930, 3959, 3821, 3039, 3449, 2196, and 3126 full-length
reconstructed transcripts out of 278255, 199642, 218269,
437730, 192674, 182651, and 439865 candidates on the
human dataset. From these numbers we can figure out
that DTA-SiST-E not only holds a superior performance
with recall measurement, its precision is also higher
than the other assemblers except DTA-SiST-H. We con-
clude that DTA-SiST-H is applicable to the high preci-
sion demand while DTA-SiST-E is suitable to the general
demand.

Throughout the experiments on both simulated and real
datasets, we found that most assemblers’ performances
decreased as the magnitude of the data increased. The
magnitudes of the simulated samples are far less than

those of the real datasets, and all the assemblers per-
formed better on the simulated datasets than on the real
datasets. In addition, the human dataset is larger than the
dog dataset, and almost all the assemblers performed bet-
ter on the dog dataset than on the human dataset. The
outstanding performance of DTA-SiST-H with precision
becomes obvious when the data size increased. When the
data size is big and the users focus more on precision,
DTA-SiST-H is the best choice. Otherwise, DTA-SiST-E is
applicable to most cases.

We examined the assemblers’ computational demands
of running time and peak memory. From Fig. 6, we can
see that DTA-SiST (notice that since each splicing graph
has only very limited number of s − t paths, the difference
between the time cost by DTA-SiST-E and DTA-SiST-H
can be ignored) cost much less time (about half on the dog
dataset and 0.11 on the human dataset) than IsoTree while
DTA-SiST performed more competitive than IsoTree in
most cases. Although DTA-SiST (the difference between
the memory cost by DTA-SiST-E and that by DTA-SiST-
H can be ignored) consumed more memory than IsoTree,
its memory consumption is endurable on both dog dataset
(peak memory: 80G) and human dataset (peak memory:
160G which is even smaller than that 164.7G of the k-mer-
based strategy Oases).

Discussion
Experimental results showed that DTA-SiST performs
more competitive than the other compared de novo
assemblers especially with precision measure. We owe this
improvement to the read-based contig extension strategy
and the transcript extraction methods. However, there are
still quite a few issues need to be studied further. First,
despite the outstanding performance of read-based contig
extension strategy on precision and speed, it needs more
memory to keep the suffix trees. More elegant imple-
mentations of the suffix trees or new data structures
for assisting realizing read-based extension strategy are
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Fig. 6 The running time and peak memory for each de novo assembler on the real dataset

expected. Second, due to sequencing error and the giant
gap in isoform expression level of the same gene, the num-
ber of erroneous reads originating from high-expressed
transcripts may be larger than that of the correct reads
originating from low-expressed transcripts [30]. These
erroneous reads may introduce artificial branches in splic-
ing graphs and thus introduce chimeric transcripts while
low-expressed transcripts may have little support from
reads and thus are missed from the splicing graphs. High
quality sequencing data and more exquisite algorithms are
needed. Third, some transcripts that originate from differ-
ent genes may share a long subsequence, which results in
a large mixed graph (a mixture of splicing graphs that rep-
resent different genes). Once the common subsequence is
longer than a read, it is hard to split the mixed graph into
splicing graphs for different gene loci. In this case, a mix-
ture graph will be seen as a splicing graph, and it will lead
to a higher possibility to obtain pseudo transcripts and
a lower opportunity to extract all truth expressed tran-
scripts. To overcome this problem we need longer high
quality reads and fine tuned transcript extraction rules. In
short, there are still a lot of works need to do on de novo
transcriptome assembly.

Conclusion
De novo transcriptome assembly is a challenging prob-
lem that arises with the development of RNA-seq. In this
article, we proposed a new approach for contig exten-
sion. We applied suffix trees of reads to quickly find
the candidate reads that have the longest overlaps with
contigs’ terminuses, and extended the contigs by these

reads directly. We also developed two strategies to extract
the transcript-representing paths in the splicing graphs:
a depth-first enumeration strategy and a hybrid strategy
based on length and coverage. We ran and compared
these two strategies with other leading de novo transcrip-
tome assemblers on both simulated and real datasets. The
experimental results provide a whole picture of the supe-
rior performance of DTA-SiST with the cost of acceptable
more memory. Future work includes developing smaller-
sized data structure while keeping the searching speed
and transcript extracting algorithms with higher recall
and precision.
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