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Abstract

Abstract conceptual representations are critical for human cognition. Despite their impor-

tance, key properties of these representations remain poorly understood. Here, we used

computational models of distributional semantics to predict multivariate fMRI activity pat-

terns during the activation and contextualization of abstract concepts. We devised a task in

which participants had to embed abstract nouns into a story that they developed around a

given background context. We found that representations in inferior parietal cortex were pre-

dicted by concept similarities emerging in models of distributional semantics. By construct-

ing different model families, we reveal the models’ learning trajectories and delineate how

abstract and concrete training materials contribute to the formation of brain-like representa-

tions. These results inform theories about the format and emergence of abstract conceptual

representations in the human brain.

Author summary

How do we conceive abstract concepts, like love, peace, or truth? In this study, we investi-

gate how our brains support the activation and contextualization of such abstract con-

cepts. We asked participants to embed abstract nouns into a coherent story while we

recorded functional MRI. Using multivariate analysis techniques, we computed how simi-

lar different abstract concepts were represented during this task. We then modelled these

neural similarities among concepts with computational models of distributional semantics

which capture the words’ co-occurance statistics in large natural language corpora. Our

results reveal a correspondence between the computational models and brain representa-

tions in the inferior parietal cortex. This correspondence held when the computational

models were only trained on subsets of the corpora that contained as few as 100,000 sen-

tences and only abstract or concrete words. Our findings establish a neural correlate of

abstract concept representation in the inferior parietal cortex, and they provide a first

characterization of the format of these representations.
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Introduction

The use of conceptual knowledge is one of the foundations of human intelligence. On the neu-

ral level, concepts are represented in a complex network of brain regions [1]. Fueled by novel

computational models of distributional semantics, researchers have recently started to unravel

the format of concept representations in this neural network. By harnessing linguistic co-

occurrence statistics, these models not only capture representations of concepts from written

and spoken language [2–5], but also predict representations of novel concepts [6].

However, these recent advances in understanding the representations of conceptual knowl-

edge largely hinge on the study of concrete concepts. And although some of the previous stud-

ies (e.g., [3,6]) have included both concrete and abstract words, they probed representations

across the two, and therefore, could not reveal how specifically abstract concepts are repre-

sented. Only few studies have explicitly investigated how abstract concept representations are

organized [7–10]. To date, key questions about the emergence and the format of these repre-

sentations remain heavily debated [11].

Here, we model brain representations that support the activation and contextualization of

abstract concepts. We recorded fMRI while participants were tasked with embedding abstract

nouns into a background context. By relating brain activations during this task to targeted

models of distributional semantics, we shine a new light on the format of abstract concept rep-

resentations in the human brain.

Results and discussion

In an fMRI experiment, we visually presented 61 abstract German nouns (see Materials and

Methods). Participants (n = 19) read these words and silently embedded them into a coherent

story that they were developing around a prespecified contextual background (Fig 1A). This

task was chosen to be engaging while ensuring a sufficiently deep level of processing. Here,

participants were required to retrieve the meanings of the words and use those meanings, inte-

grating them with a complex ongoing stream of thought.

Cortical responses were modelled in a representational similarity analysis (RSA) frame-

work. In RSA, the representational organization found in the brain is directly compared to the

representational organization found in candidate representational models: this is done in a

computationally straightforward way, whereby pairwise similarity relations are correlated

across a larger set of stimuli [12]. Here, we used an RSA searchlight approach, in which we

extracted similarity relations among the words across the whole cortex (Fig 1B; see Materials

and Methods). We modelled these similarities using a word2vec model of distributional

semantics [13], trained on a 45-million sentence corpus (SdeWaC [14]).

The model predicted brain activations in the left inferior parietal cortex (IPC; Fig 1C), most

prominently covering the angular gyrus, but extending into the superior parietal and middle

occipital cortices (158 voxels, peak: -36/-58/46, t[18] = 6.16), and in right IPC, with an anterior

cluster primarily in the supramarginal gyrus (91 voxels, peak: 45/-46/58, t[18] = 4.91), and a

posterior cluster in the angular gyrus (35 voxels, peak: 36/-73/40, t[18] = 4.80). Detailed analy-

ses, reported in the Supplementary Information (Fig B in S1 Text), show that this correspon-

dence was not driven by individual words present in the stimulus set. These results show that

bilateral IPC represents semantic similarities of abstract concepts. They further suggest IPC as

a cortical hub for the activation and contextualization of abstract concepts.

This interpretation, however, warrants a note of caution: Although it is tempting to strongly

interpret the IPC representations as a reflection of concept coding, they may also reflect lin-

guistic coding. While the distributional information extracted from word2vec inherently
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contains conceptual properties (e.g., [15–17]), it is primarily linguistic. As also our experimen-

tal design used words to activate representations in the brain, the similarities between the

model and the brain we see may be driven by the linguistic, rather than the conceptual infor-

mation these words carry.

Controlling for emotional and sensory word properties

Some researchers have argued that abstract concepts are represented through their grounding

in the emotional domain [18,19]. To test whether IPC representations are indeed driven by the

words’ emotional content, we re-performed the analysis while partialing out valence and

arousal ratings (see Materials and Methods). We still found clusters in left (36 voxels, peak:

-33/-64/31, t[18] = 4.73), and right (108 voxels, peak: 63/-40/31, t[18] = 7.30) IPC, suggesting

that the emotional content is insufficient to explain abstract concept representation in parietal

cortex. Notably, the left IPC cluster somewhat shrunk after controlling for emotional word

properties. This may be because word2vec models can pick up on emotional features implicitly

contained in word embeddings [17].

IPC is also sensitive to sensory properties, such as visual form [20] and phonological speech

attributes [21]. However, when repeating the analysis while partialing out early activations in a

Fig 1. Representation of abstract concepts in parietal cortex. A) Participants completed 10 runs of fMRI recordings. Before each run, they established a

unique background context in their mind and were then asked to silently narrate a story of their own making that included the subsequent 61 abstract words,

which were presented in a different random order in every run (all German word stimuli in Table A in S1 Text). B) In a searchlight analysis, representational

dissimilarity matrices (RDMs) were extracted (i) from the brain data, by pairwise cross-validated correlations among localized activity patterns, and (ii) from a

word2vec model of distributional semantics, by pairwise correlations among hidden-layer activations. C) Correlating the neural and model RDMs revealed

clusters in bilateral inferior parietal cortex (IPC), primarily covering the angular gyrus. Brain maps are thresholded at pvoxel<0.001 (uncorrected) and

pcluster<0.05 (FWE-corrected). Cross-sectional images of the significant clusters as well as unthresholded statistical maps can be found in the Supplementary

Information (Figs G and H in S1 Text). D) These clusters persisted when repeating the analyses while partialing out the effects of emotional word content

(using affect grids), visual wordform (using a visual-categorization DNN), and auditory properties of the spoken words (using a speech-recognition DNN). E)

Within the IPC cluster defined on the full 45-million sentence model (marked by an arrow), we compared model families trained on different corpus sizes and

on only abstract or concrete words, respectively. Brain-like representations emerged in models that were trained on as little as 100,000 sentences and on either

abstract or concrete embeddings. Dots show individual-participant data, error bars denote SEM, asterisks represent p<0.05 (FDR-corrected).

https://doi.org/10.1371/journal.pcbi.1009837.g001
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visual-categorization deep neural network (DNN; see Materials and Methods), we still found

clusters in the left (157 voxels, peak: -36/-58/46, t[18] = 6.07) and right (anterior: 76 voxels,

peak: 51/-49/52, t[18] = 4.70; posterior: 32 voxels, peak: 39/-76/40, t[18] = 4.82) IPC. Similarly,

when controlling for activations obtained from a speech-recognition DNN (see Materials and

Methods), we still found clusters in left (113 voxels, peak: -33/-64/31, t[18] = 5.43,

pcluster<0.001), and right (53 voxels, peak: 48/-46/55, t[18] = 4.68) IPC. These results show that

sensory properties are unrelated to IPC representations of abstract concepts.

In the Supplementary Information (Fig D in S1 Text), we additionally show that word fre-

quency cannot account for the correspondence between the word2vec model and brain repre-

sentations in IPC.

Trajectories towards brain-like representations

Our observation that the word2vec model and IPC share abstract concept representations led

us to ask how the model acquires this property. To test whether co-occurrence statistics are

acquired incrementally over increasing experience with human language, we devised a word2-

vec model family whose members were trained on staggered amounts of data, from the full

45-million sentence corpus down to fragments as small as 1,000 sentences. We then evaluated

how well models trained on less data could still predict representations in the IPC cluster that

yielded the best correspondence with the full 45-million sentence model (see Materials and

Methods).

This analysis revealed decreasing correspondence with decreasing training data (mean

r = 0.74, t[18] = 5.89, p<0.001). Nonetheless, a model trained on only 100,000 sentences

(~0.2% of the corpus) still predicted IPC representations well (t[18] = 3.46, pFDR = 0.002; com-

parison to full model: t[18] = 2.15, p = 0.045), whereas models trained on smaller training sets

did not (Fig 1D). Direct comparisons of all models to the full model trained on 45m sentences

can be found in the Supplementary Information (Fig E in S1 Text). These results show that

brain-like representations are learned through linguistic co-occurrence statistics, which can

emerge already from a (relatively) modest degree of training experience.

Modelling brain representations from abstract and concrete embeddings

Some theorists argue that the meaning of abstract concepts needs to be derived through the

activation of related concrete concepts, which are in turn grounded in sensory experiences

[22,23]. This view prompts the hypothesis that representations of abstract concepts originate

primarily from co-occurrence statistics between abstract and concrete words, rather than

among abstract words alone. To test this hypothesis, we trained word2vec models on subsets

of the 45-million sentence corpus that we devised to consist of abstract or concrete words only

(see Materials and Methods).

Models trained on abstract-only and concrete-only corpora both predicted representations

in IPC (Fig 1E). Reproducing the previous pattern of results, we found that models trained on

larger fractions of the corpus predicted representations better (abstract only: mean r = 0.36, t

[18] = 2.55, p = 0.010; concrete-only: mean r = 0.73, t[18] = 4.32, p<0.001). Interestingly, rep-

resentations were modelled equally well by the most extensively trained abstract-only (t[18] =

3.09, pFDR = 0.010) and concrete-only models (t[18] = 2.60, pFDR = 0.018; comparison: t[18] =

0.50, p = 0.62), suggesting that brain-like representations of abstract concepts can emerge

from either abstract or concrete semantic embeddings.

Conclusions

Our findings yield multiple key insights into abstract concept representation:
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First, our findings provide novel evidence that the IPC is a core area for concept coding [1].

Returning to the question of whether our results reflect genuine conceptual representation or

language-specific codes, the localization of effects to the IPC indeed provides tentative evidence

for the former: IPC activations are not routinely observed in language tasks (see [24])–by con-

trast, particularly the angular gyrus is often implicated in brain networks for concept representa-

tion [25]. Others, however, have recently contested this role of the IPC, as the region is not

consistently activated during semantic cognition [26,27]. Critically, the current study used a task

that required participants to activate and contextualize abstract concepts. In this task, we identify

the angular gyrus as a critical hub for the dynamic use of abstract knowledge, consistent with the

view that this region plays a key role in combinatory linguistic processing [28–32]. Such combi-

natory processing may be particularly critical for abstract concepts, which more strongly need to

be contextualized in a situational way during everyday use. It is worth noting, however, that our

study does not establish that the angular gyrus is specifically important for representing abstract

but not concrete words. In fact, previous results suggest that concrete words activate the angular

gyrus just as strongly as abstract words [33], so that future studies need to carefully compare the

representation of abstract and concrete concepts in this region.

Second, our study shows that brain representations of abstract concepts can be predicted

from distributional word embeddings in natural language [10]. Interestingly, the organization

of abstract concepts, as found in our brains, can be modelled from linguistic embeddings in

both abstract and concrete realms of knowledge. This result shows that despite their represen-

tational dissimilarities [34,35], abstract and concrete concepts may be organized through

shared principles. It is worth noting that the models constructed from abstract-only and con-

crete-only corpora in our study still produced a moderately high inter-correlation (r = 0.78).

Although this suggests a similarity in abstract words’ embeddings within other abstract and

concrete words, this high correlation also limits the potential of our analysis to reveal substan-

tial differences in how well these models predict neural representations. Future studies could

specifically assemble stimulus sets that target concepts for which embeddings in the abstract

and concrete realms are more different.

Third, our data informs theories of abstract knowledge representation [11]. Our results do

not provide evidence for theories suggesting that abstract concepts are coded solely through

emotional associations [19] or the activation of related concrete concepts [23,36]. Further, in our

study, we did not find evidence for an additional visual representation of abstract concepts [7,37]

or for a grounding of abstract conceptual knowledge in cognitive/motor systems [38]. Our find-

ings rather suggest that abstract knowledge is reflected in distributional relationships in neural

representations of the concept or language processing systems. However, the question how

distributional codes (such as the ones capitalized on by language models like word2vec) relate to

word meaning is controversial: positions range from claims that word meaning is determined by

distributed relations and respective neural codes akin to those in word2vec [39–41] to the argu-

ment that distributional codes are insufficient to provide insights into meaning [42]–under this

view, the observed similarities might be an emerging phenomenon rather than the underlying

coding scheme. The current investigation cannot arbitrate between such theoretical positions.

Fourth, our results suggest that by harnessing co-occurrence statistics from linguistic expe-

rience, computational models of distributional semantics can acquire abstract concept repre-

sentations that are organized in similar ways as biological representations. Although massive

corpora are immensely popular for modelling language organization, our analyses of model

learning trajectories show that brain-like representations can emerge from much smaller train-

ing sets of only 100,000 sentences. Cleary, our study provides only a first, coarse approxima-

tion of the tentative learning trajectory towards brain-like representations. Future work needs

to map out the emergence of more fine-grained information along these learning trajectories
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to investigate how closely the acquisition of the models’ representations across training can

predict human concept learning and development [43].

Finally, our study highlights that computational models–through systematic manipulation

of model training regimes–can yield targeted insights into the emergence and format of con-

cept representations. Moving ahead, future studies could not only refine training regimes but

also comprehensively manipulate a set of fundamental model parameters [44]. First advances

have recently been made by comparing language models with different architectures to brain

data [45], by enriching models with predictive and contextual information [46–49] and by test-

ing the applicability of linguistic models to experiences in domains like vision [50–52]. In the

future, employing such targeted model-based analyses may yield further fine-grained insights

into how our brain represents abstract knowledge.

Materials and methods

Ethics statement

All procedures were approved by the ethical committee of the Department of Education and

Psychology, Freie Universität Berlin, and were in accordance with the Declaration of Helsinki.

Formal written consent was obtained from all participants.

Participants

Nineteen healthy adults (mean age 28.8 years, SD = 6.1; 10 female) with normal or corrected-

to-normal vision completed the experiment. All of them were right-handed and native Ger-

man speakers. Participants were recruited from the online participant database of the Berlin

School of Mind and Brain [53] and received monetary reimbursement or course credits.

Stimuli and paradigm

The stimulus set consisted of 61 abstract German nouns. These nouns were chosen from a list

of the most frequent German words (from: wortschatz.uni-leipzig.de), from which they were

arbitrary selected to cover a range of themes. All words and their English translations can be

found in the Supplementary Information (Table A in S1 Text).

During the fMRI experiment, participants completed 10 runs. Before each run, participants

read through one of 10 contextual background stories. All texts and their English translations

can be found in the Supplementary Information (Table B in S1 Text). Participants were asked

to mentally image themselves being in the scenario outlined in the text. After reading through

the text, participants were instructed to use the subsequently presented words in the upcoming

run to mentally narrate a story that incorporates the words as they are shown on the screen.

They were instructed that it is completely up to them how the story unfolds as long as they use

all the words in their story. Stories were chosen to be emotionally engaging to increase partici-

pants’ immersion into the task. The order of the 10 stories was randomized for every

participant.

Each run contained 61 experimental trials. On each trial, one of the abstract words was

shown for 3 seconds, in black Arial font on a gray background. Trials were separated by an

inter-trial interval of 1.5 seconds, during which a fixation cross was shown. In addition to the

experimental trials, each run included 14 fixation trials, where only the fixation cross was

shown throughout the trial. Trial order was randomized within each run.

To ensure that participants paid attention to the words, we introduced a simple manual

task: In each run, 7 of the word were shown in pink color and participants had to press a but-

ton whenever they saw one them.
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Runs started and ended with brief fixation periods; each run lasted 5:48 minutes. The stim-

ulation was back-projected onto a translucent screen at the end of the MRI scanner bore and

controlled using the Psychtoolbox [54].

Additionally, prior to the experiment, each participant completed a practice run (using a

background text different from the ones used in the experiment).

Two participants completed a version of the experiment that differed in two aspects: the

inter-trial interval was 1s instead of 1.5s and no behavioral task was included.

MRI acquisition and preprocessing

MRI data was acquired using a 3T Siemens Tim Trio Scanner equipped with a 12-channel

head coil. T2�-weighted gradient-echo echo-planar images were collected as functional vol-

umes (TR = 2s, TE = 30ms, 70˚ flip angle, 3mm3 voxel size, 37 slices, 20% gap, 192mm FOV,

64×64 matrix size, interleaved acquisition). Additionally, a T1-weighted image (MPRAGE;

1mm3 voxel size) was obtained as a high-resolution anatomical reference. Preprocessing was

done in MATLAB using SPM12 (www.fil.ion.ucl.ac.uk/spm/). The functional volumes were

realigned and coregistered to the T1 image. The T1 image was normalized to MNI-305 stan-

dard space to obtain transformation parameters used to normalize participant-specific results

maps (see below).

Representational similarity analysis

To quantify neural representations, we used multivariate representational similarity analysis

(RSA) [12]. In RSA, neural representations are first characterized by means of their pairwise

similarity structure (i.e., how similarly each stimulus is represented with each other stimulus).

The pairwise dissimilarities between neural representations are organized in neural represen-

tational dissimilarity matrices (RDMs) indexed in rows and columns by the experimental con-

ditions compared. Then, the neural similarity structure (i.e., the neural RDMs) are correlated

to model RDMs, which capture different aspects of the conditions’ similarity. Significant cor-

relations between the neural RDMs and these model RDMs indicate that the aspect of similar-

ity conveyed by the model is represented in the brain.

In recent studies, RSA has successfully been used to relate representations in computational

models of language processing and human cortex [10,49,55,56]. Other studies have probed cor-

respondences between language processing models and the brain through the use of encoding

models [2,3,6,48,50]. Encoding models seek to directly establish a mapping between the feature

dimensions extracted by the computational model and fMRI responses in individual voxels. For

this task, they require diverse and large sets of data to train the model weights [57], which the

current design was not optimized for. RSA and encoding models offer largely complimentary

quantifications of neural representations, with comparable sensitivity [58] and comparable con-

straints regarding interpretability [59]. However, although RSA offers a straightforward and

computationally efficient way to relate computational models and population codes in the brain,

one limitation needs to be taken into account when interpreting the results: representations in

some parts of the brain may rely on intricate weightings of few feature dimensions and may

therefore be harder to identify with RSA than with encoding models.

Extracting neural dissimilarity. Separately for each participant and each run, we first

modeled the functional MRI data in a general linear model (GLM) with 67 predictors (61 pre-

dictors for the 61 words, and 6 predictors for the 6 movement regressors obtained during

realignment). From these GLMs, we obtained 610 beta weights of interest for every voxel,

which quantified the voxel’s activation to each of the 61 words in each of the 10 runs. All fur-

ther analyses were carried out using a searchlight approach [60], that is, analyses were done
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repeatedly for a spherical neighborhood (3-voxel radius) centered on each voxel across the

brain. This approach allowed us to quantify and model neural representations in a continuous

and unconstrained way across brain space.

For each searchlight neighborhood, neural RDMs were created based on the similarity of

multi-voxel response patterns, using the CoSMoMVPA toolbox [61]. Within each neighbor-

hood, we extracted the response pattern across voxels evoked by each word in each run. We

then performed a cross-validated correlation analysis [62]. Unbiased, cross-validated distance

metrics like cross-validated correlations are generally considered more reliable than non-

cross-validated metrics (such as plain correlations) for estimating pattern similarities in brain

data [63]. For this analysis, the data were repeatedly split into two halves (all possible 50/50

splits; results were later averaged across these splits) and the response patterns for each word

were averaged within each half. For each pair of words, we then computed two correlations: (i)

within-condition correlations were computed by correlating the response patterns evoked by

each of the two words in one half of the data with the response patterns evoked by the same

word in the other half of the data, and (ii) between-condition correlations were computed by

correlating the response patterns evoked by each of the two words in one half of the data with

the response patterns evoked by the other word in the other half of the data. By subtracting the

between-correlations from the within-correlations for each pair of words, we obtained an

index of how dissimilar two words are based on the response patterns they evoked in the cur-

rent searchlight neighborhood. Repeating this analysis for each pair of words yielded a 61×61

neural RDM for each searchlight.

Modelling neural dissimilarity. To model the semantic representation of the abstract

words, we used a word2vec computational model of distributional semantics [13]. The model

was trained on the SdeWaC corpus, which contains 45 million German sentences [14], using

the gensim library (https://github.com/RaRe-Technologies/gensim). The model hyperpara-

meters were the following: dimensions = 300, model type = skipgram, windowsize = 5, mini-

mum count = 1, iterations = 50. For each word in the corpus, this model yields a vector

representation that indicates its position in a 300-dimensional vector space. Distances in this

vector space reflect similarities in word embeddings. We then created a 61×61 RDM based on

the pairwise correlations of the 300 vector-space features for each of the words used in the

experiment.

To establish correspondences between the model and the brain data, the model RDMs were

correlated with the neural RDMs for each searchlight, using the lower-off diagnonal entries of

each RDM. These correlations were then Fisher-transformed and mapped back to the search-

light center. We thereby obtained brain maps of correspondence between each model and the

neural data. For each participant, these maps were warped into standard space by using the

normalization parameters obtained during preprocessing.

Controlling for emotional, visual, and auditory word properties. As an emotional con-

tent model, we used participants’ responses in an affect grid task, where 20 participants (partly

including the participants in the current experiment) concurrently rated each word’s valence

and arousal by selecting one compartment of a 9×9 grid [64]. From these data, we created two

RDMs: (i) a valence RDM, whose entries reflected pairwise absolute difference in the words’

valence ratings and (ii) an arousal RDM, whose entries reflected pairwise absolute difference

in the words’ arousal ratings. The valence and arousal RDMs were mildly correlated with each

other (r = 0.19) and with the different word2vec model RDMs (all r<0.24). The words’ similar-

ity in valence an arousal did not significantly predict brain activations in a searchlight analysis.

As a visual word form model, we used activations in the three earliest convolutional layers

an AlexNet DNN pre-trained on object recognition [65,66], which have been shown to capture

representations of simple visual attributes in visual cortex [67]. We printed the 61 words as
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they appeared in the experiment on a 225×225 pixel gray image background and fed these

images to the DNN. The resulting network activations were used to construct model

RDMs. For each of the first three convolutional layers of the network, the RDM was con-

structed by computing pairwise distances (1-correlation) between layer-specific activation vec-

tors. The visual DNN RDMs were only very weakly correlated with the word2vec model

RDMs (all r<0.1). Searchlight analyses revealed that the first three layers of the visual DNN

predicted activations in bilateral posterior visual cortex, including fusiform cortex (see Fig A

in S1 Text).

As a model of auditory, phonetic word similarity, we used activations in a DNN model of

auditory speech recognition [68]. We obtained spoken versions of the 61 words from the

ttsmp3 webpage (https://ttsmp3.com/text-to-speech/German/). The sound files were resized

to a length of 2 seconds by right-padding them with zeros, transformed into a cochleagram

representation, and then passed through the speech recognition branch of the DNN. The

resulting network activations were used to construct model RDMs. For each of the seven layers

of the network, the RDM was constructed by computing pairwise distances (1-correlation)

between layer-specific activation vectors. The auditory DNN RDMs were only weakly corre-

lated with the word2vec model RDMs (all r<0.16). Searchlight analyses revealed that the early

layers of the auditory DNN, because of the correlation between word length and speech dura-

tion, also predicted activations in bilateral posterior visual cortex. By contrast, the last layer of

the network specifically predicted activations in left middle temporal gyrus (Fig A in S1 Text).

To control for emotional and sensory properties, we performed searchlight analyses relating

the neural RDMs and the word2vec model RDMs as before, while we partialed out the two

emotion predictor RDMs, the three visual DNN predictor RDMs, or the seven auditory DNN

predictor RDMs, respectively. Specifically, for each searchlight neighborhood, we computed a

partial correlation between the neural RDM and the predictor RDM which was controlled for

the control RDMs. This procedure ensured that if the control RDMs predicted the same por-

tion of variance in the neural RDM as the predictor RDM, the correlation would disappear

(for similar approaches, see [69–71]). All other aspects of the analysis remained identical to the

previous searchlight analysis.

Region of interest analyses. For further dissecting the representations in left parietal cor-

tex, we specifically focused on this area in a region-of-interest (ROI) analysis. The IPC clusters

that showed significant correspondence with the word2vec model in the main analysis were

chosen as the ROI. Neural RDMs were generated from pairwise correlations of activity pat-

terns across all voxels in the ROI; the procedure was otherwise identical to the procedure

applied in the searchlight analysis (see above).

As ROI definition was done on the basis of the model that was trained on the full 45-million

sentences SDeWaC corpus, we never evaluated this model statistically in our ROI analysis. We

instead probed the correspondence between neural RDMs in the ROI and RDMs built from a

set of different word2vec model families whose training regimes differed in important aspects.

To probe the behavior of our word2vec model with changes in training set, we created a

model family whose members were trained on different amounts of data. Models were trained

on different fragments of the corpus (containing 45m, 10m, 1m, 100k, 10k, or 1k sentences).

Each of these fragments corresponded to the first n sentences in the corpus (e.g., the 1k model

comprised the first 1,000 sentences). We thereby ensured that the smaller fragments were

always completely included in the larger ones.

Additionally, we constructed a model family whose members were trained on abstract

words and a model family whose members were trained on concrete words. Members in each

family differed by the amount of data they were trained on (as outlined above). Abstract and

concrete words were defined on the basis of the abstractness-concreteness scale of the IMS
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norms (https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/affective-

norms) [72]. For the abstract-only models, we chose words that had a z-value of<0 on the on

this scale and removed all other words from the corpus; this left us with ~65 million words

(~4% of the corpus). For the concrete-only models, we chose words that had a z-value of>0

and removed all other words from the corpus; this left us with ~280 million words (~18% of

the corpus). Note that for the concrete-only models, the 61 abstract words were also left in the

corpus, so that relationships between them and the concrete words could be obtained.

For all models of each model family, we extracted a 61×61 RDM, which was then correlated

with the neural RDM extracted for the ROI; these correlations were Fisher-transformed before

statistical analysis. Correlations between all RDMs constructed from the word2vec models can

be found in the Supplementary Information (Fig C in S1 Text).

Statistical testing

For the searchlight analyses, to detect spatial clusters in which the neural data were explained

by the different representational models, we performed one-sided t-tests against zero across

participants, separately for each voxel in the correlation maps. The resulting statistical maps

were thresholded at the voxel level at pvoxel<0.001 (uncorrected) and at the cluster level at

pcluster<0.05 (family-wise error corrected, as implemented in SPM12). These thresholds were

selected based on recommendations for cluster-based thresholding of fMRI results [73]. In the

Supplementary Information (Fig F in S1 Text), we show that similar results are reached with

an alternative statistical approach based on threshold-free cluster enhancement (TFCE [74]).

For the ROI analyses, correlations between neural RDMs extracted from the IPC ROI and

model RDMs were evaluated using one-sided t-tests against zero across participants. Results

were corrected for multiple comparisons across the different training corpus sizes using FDR

corrections.

Supporting information

S1 Text. Fig A. Neural correlates of visual and auditory word similarity. Visual word simi-

larity, as modelled by the early layers of the an AlexNet DNN (here: layer 3) predicted activa-

tions in bilateral posterior visual cortex, including fusiform cortex (866 voxels, peak: -24/-97/-

5, t[18] = 7.89). Auditory similarity of the spoken words was modelled by a speech recognition

DNN. Early layers of the network (here: layer 2), because of the correlation of word length and

speech duration, also predicted activations in bilateral posterior visual cortex (266 voxels,

peak: 24/-76/-8, t[18] = 6.51). By contrast, the last layer of the network (layer 7) predicted acti-

vations in left middle temporal gyrus (34 voxels, peak: -60/-13/-8, t[18] = 5.61). Brain maps are

thresholded at pvoxel<0.001 (uncorrected) and pcluster<0.05 (FWE-corrected). Fig B. Individ-

ual-word effects. a) Brain-model correlations in left IPC when individual words were deleted

from the model RDMs and neural RDMs before performing the analysis. The relatively homo-

geneous pattern shows that no single word exerted a substantial influence on the correspon-

dence between model and brain. Error margins denote standard errors of the mean. b) Brain-

model correlations in left IPC when removing a subset of up to 30 words at random from the

RDMs. Results across 100 analyses with random subsets removed reveal that the pattern

largely holds for smaller subsets of the stimulus space. All data points are means across all par-

ticipants. Fig C. Model intercorrelations. Pairwise correlations between the representational

dissimilarity matrices (RDMs) constructed for all word2vec model variants used in the study.

Fig D. Controlling for word frequencies. a) Whole-brain searchlight analysis when control-

ling for similarities in word frequency using partial correlations. This analysis yielded results

analogous to the original analysis (Fig 1C), with two clusters in right IPC (80 voxels, peak: 45/-
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46/58, t[18] = 4.91, and 35 voxels, peak: 36/-73/40, t[18] = 4.79) and one cluster in left IPC

(163 voxels, peak: -36/-58/46, t[18] = 6.23). b) Region-of-interest analysis in IPC for differently

sized training corpora when similarities in word frequencies were controlled for. This analysis

revealed essentially identical results to the main analysis (Fig 1E). c) Relative frequencies of the

61 abstract words across the differently sized training corpora. Despite some variations across

corpus size, the words that were frequent in large corpora were also more frequent in the small

corpora. Words are sorted by frequency in the largest (45m) corpus. Fig E. Direct model com-

parisons in left IPC. Differences between in brain-model correlations between the full model

(45m sentences and all words included) and the trimmed models. Asterisks indicate significant

differences to the full model, FDR-corrected for multiple comparisons. The full model itself is

omitted from the plot. Color conventions are the same as in Fig 1E. Error bars denote standard

errors. Fig F. Whole-brain searchlight with TFCE statistics. Here, we used an alternative sta-

tistical test, based on threshold-free cluster enhancement (TFCE; Smith & Nichols, 2009), as

implemented in CoSMoMVPA (Oosterhof et al., 2016). Z-scores for TFCE values were

obtained by comparing the actual values to values across a null distribution constructed from

10,000 sign permutations. The resulting statistical maps were thresholded at z>1.96 (p<0.05).

As in the main analysis (Fig 1C), two clusters emerged in right parietal cortex (503 voxels,

peak: 42/-46/58, z = 2.58, and 88 voxels, peak: -6/-58/58, z = 2.11) and one cluster emerged in

left parietal cortex (442 voxels, peak: -27/-73/46, z = 2.89). Although also centered on the IPC,

TFCE yielded somewhat more liberal results, with clusters extending more into the superior

parietal cortices. No other clusters emerged across the brain. Fig G. Searchlight results on

cross-sectional images. Coronal brain slices are overlaid with regions that show significant

correlations between neural representations and the full word2vec model (as in Fig 1C). Fig H.

Unthresholded searchlight results. Coronal brain slices are overlaid with unthresholded t-

maps comparing brain-model correlations to zero for the full word2vec model (as in Fig 1C).

Slices are spaced continuously between z = -34 and z = 54. Negative t-values are truncated.

Table A. Abstract words. The 61 abstract German words used in the experiment and their

English translations. Table B. Background contexts. The 10 background contexts used in the

experiment and their English translations. The gray text on the bottom was always used during

the practice run.

(PDF)
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