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Abstract

Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and
geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit
model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model
differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and
parameters; (2) the overall deforestation rate emerges ‘‘bottom up’’, as the sum of local-scale deforestation driven by local
processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations
are deforested. For the scenarios evaluated–pre- and post-PPCDAM (‘‘Plano de Ação para Proteção e Controle do
Desmatamento na Amazônia’’)–the parameter estimates confirmed that forests near roads and already deforested areas are
significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that
our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that
there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under
pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual
deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of
the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the
Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This
pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal
protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its
isolation.
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Introduction

The Amazon is the largest remaining continuous tropical

rainforest on Earth. It covers about 6 million square kilometres

and crosses nine nations’ boundaries. Brazil is the country that

hosts the largest portion (about 60% of the area) of the Amazon.

This region is characterized by its high cultural and biological

diversity[1], but by 2009 already 19% of its forest cover had been

converted to other land uses[2]. Deforestation models have been

developed to predict which areas are more likely to be deforested

in the future and to simulate the impacts of different conservation

and market strategies[3,4], or climatic trajectories and environ-

mental policies[5], on the spatial patterns of future forest cover.

The rate of deforestation – that is, the area deforested per year –

in the Brazilian Amazon is highly variable [6]. These fluctuations

are related to several factors such as the economic health of the

country, infrastructure development, and the world’s demand for

agricultural products, such as beef or soybeans[6–9]. More

recently, governance through command and control, restriction

to rural credits and expansion of protected areas, helped by a

global economic crisis, seem to have contributed to reduce

deforestation[10] going in an opposite trend to Brazil’s economic

growth[11].Although these regional and global factors influence

the deforestation rates in the Brazilian Amazon, deforestation is

ultimately the sum of thousands of local deforestation events,

which occur with an intensity that varies greatly across the region

due to many factors including physiographic attributes, access to

infrastructure, human population characteristics and dynamics,

and socioeconomic organization[12].

Geist and Lambin [13] identified two types of causes for tropical

deforestation: proximate causes (e.g. infrastructure expansion and

agriculture expansion) are human activities that directly lead to

change at the local level; and underlying causes, which can be

demographic (population dynamics), economic (economic growth

or change), technological (improvement or development) or

political (environmental laws or policies). When modelling land

cover change, modellers aim to select statistically variables that

best represent these causes at the scale the model is being

developed. For example, economic variables in small-scale models
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might include the decisions of private actors such as farmers who

decide whether they will deforest part of their land [14–16].By

contrast, larger-scale models (such as the one we present here),

cannot address this fine-scale decision-making process and instead

focus on what drives deforestation at the regional scale, such as

landscape-scale changes in agricultural land and/or infrastructure

development plans [4,17,18]. However a model may represent the

process of deforestation, and whichever predictor variables it may

include, it is crucial that the models are constrained against

observational data, such that their predictors are at least consistent

with the rates and patterns of deforestation observed in the recent

past.

The single most important factor that drives deforestation in the

Brazilian Amazon is agricultural expansion. Climate and soils are

the main constraints to agriculture[19], and infrastructure such as

roads determine the ease with which agricultural products can be

transported to market. The inaccessibility and humid climate of

the northwest regions of the Amazon leaves states like Amazonas

less agriculture-prone, whereas along the southern and eastern

margins of the Amazon, favourable climates for agriculture

combined with extensive road networks explain the concentration

of deforestation activity in this particular region of the Ama-

zon[20].

To move beyond these generalizations and to develop policies

for managing the balance between agriculture, biodiversity, and

carbon storage in the Amazon, requires models that can predict

the potential magnitude, timing and spatial patterns of defores-

tation under different policy scenarios[21]. Several such models,

focussing on different aspects of the problem, have been

published[3–5,17,22]. As expected, there are still high uncertain-

ties attached to projecting the location and rate of future

deforestation[23,24] intrinsic to any modelling methodology,

mostly because deforestation is statistically rare in the Brazilian

Amazon (i.e., the large majority of the forest areas remain

unchanged). In addition, uncertainties in predictions arise from

differences in the proximate and underlying processes that the

models attempt to replicate, and limitation of data in adequate

time and space scales. Several models predict the potential spatial

pattern of forest cover in the Brazilian Amazon under scenarios

that maintain the overall deforestation rate as it is today (business

as usual) or scenarios that assume implementation of additional

government measures (governance), either for the whole region

[3,4] or for sub-regions Soares-Filho et al. [4]. Additional studies

have used more explicit policy scenarios, such as changes in law

enforcement [22], or climate change [5],to adjust the regional

deforestation rates that drive the models.

Deforestation models use a set of biophysical and socio-

economic variables, such as accessibility maps (mainly roads and

rivers), landscape maps (land-cover/land-use), cattle and soy

prices, human population density and agricultural suitability

maps, to predict where deforestation is more likely to occur in

the future. Although using different methodologies, they all agree

that maintaining the rate of deforestation at current levels would

have devastating impacts on the ecosystem and atmosphere, and

agree about the relative risk among different regions. Laurance et

al. [3]used a simple spatial model to generate two scenarios for the

future of the Amazon, with the main difference being the

effectiveness of protected areas in preventing deforestation. Both

scenarios suggested a dramatic landscape alteration, ranging from

28% to 42% of the region deforested or heavily degraded over the

20 year period beginning in 2001, especially in the south-eastern

areas of the Brazilian Amazon. The authors concluded that the

efforts to avoid deforestation by improving conservation will be

overwhelmed by the destructive trends observed in this region.

Soares-Filho et al. [4], although using an improved methodology

that allowed for different deforestation rates among the 47sub-

regions of the Amazon, found a similar effect, albeit one that took

an additional three decades to manifest. All these policy-sensitive

scenarios revealed that, given a regional deforestation rate, the

spatial pattern will continue to be mostly concentrated in the

eastern part of the Amazon where the infrastructures are well

developed. Similar results were found by Wassenaar et al. [17],

who used the modelling environment CLUE-S to model

deforestation in Central and tropical South America until 2010.

Here, we introduce a dynamic and spatially-explicit predictive

model of deforestation for the Brazilian Amazon. Our model

captures three important aspects of deforestation: uncertainty,

emergence, and contagion. The first source of uncertainty is due to

deforestation, at the local level, being probabilistic. Because of this

stochasticity, we could not expect to predict the details of

deforestation perfectly, even if we could predict the magnitude

and regional spatial pattern perfectly (by analogy, we could not be

expected to predict whether a coin would land heads up or tails

up, even if we knew that it was fair). In addition, there is

uncertainty in the model structure (e.g. best set of predictor

variables to use, and how to include their effects), the values of

predictor variables (e.g. they might be derived, with some error,

from satellite images), and in the parameter values of models (e.g.

the coefficient that determines the impact of a given predictor

variable on the probability of deforestation). As such, models

predicting deforestation should allow for the calculation of

uncertainty on the predicted magnitude, timing and spatial

patterns of deforestation resulting from the inherent stochasticity

of deforestation events [25]. Although many models in the

literature do include stochastic elements in their approaches (e.g.

[4,5]), they do not take advantage of this to provide spatial

uncertainty measures associated with their outputs; the uncertainty

is only provided by the means of different scenarios. The

uncertainty associated with model predictions is crucial to policy

makers who need to weigh up the model predictions against other

considerations, and other models.

Emergence refers to fact that regional or country-wide deforesta-

tion rates (or amount of forest loss) are the sum of deforestation

occurring at the local scale, influenced by local factors (such as

proximity to roads), and local processes. Even regional or global

drivers occur via local processes (e.g. changes in tax regimes or law

enforcement). Because of emergence, the local, and then overall,

rates of deforestation can change through time in ways that are not

readily anticipated when viewing the phenomenon at the regional

scale. Emergence of new deforestation is modelled stochastically

but it is driven by local social-economic drivers.

In contrast to previous models, simulating deforestation as an

emergent phenomenon allows our model to predict how the

overall deforestation rate (or the rate in different regions) might

change as deforestation moves across a landscape. This is a

fundamentally different approach from accepting the overall rate

as a top down input that is imposed upon a spatial model, with

that pre-determined amount of deforestation then distributed

across the region. This latter approach is widely used by many

modelers (e.g.[4,5,16]). However, the advantage to our bottom-up

approach is that we need to parameterise just one model rather

than two: both the top-down and bottom-up approaches need to

parameterise spatial models to distribute deforestation across a

landscape, but the top-down approach requires a second, separate

model to be parameterised to determine how much deforestation

will occur.

Contagion refers to the fact that location surrounded by recently

deforested land, are likely to be more likely to suffer deforestation

Predictive Deforestation Model Amazon
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themselves. This deforestation then increases the probability of

other nearby locations. Capturing contagion is crucial because it

allows deforestation to spread through space. There is an analogy

here with epidemiology[26,27]: once a disease [deforestation] first

invades [begins] in a local region where there are susceptible

individuals [forest], it can spread rapidly, especially if there a

vector of transport or easy access [roads, rivers, etc.] between

infected hosts [deforested areas] and susceptible individuals [forest

areas].

Some models in the literature have made use of a ‘patch

expander’ function and cellular automata models (e.g.[4]), which

are based on neighbourhood effects and have some similarities to

contagion. However, the ‘patch expander’ function is only used

post-probability analysis: when calculating the weights of the

variables to determine the probability of deforestation, the

neighbourhood is accounted for, but as a distance metric (distance

to previous deforestation) (e.g.[4]). Following a ‘seed’ deforestation

event, the ‘patch expander’ function is used to create a spatial

arrangement that more closely approximates reality, but it

depends on pre-determined spatial probabilities of deforestation,

rather than influencing those probabilities itself. Further, given

that the rate of change is imposed ‘top-down’ in these models, the

neighbourhood effect can only influence the location of change,

but not the rate of change. By contrast, in our model we embed

the neighbourhood effect into the model itself, allowing this

contagious process to influence where, and also how much,

deforestation will occur. Contagion is also important in the way it

combines with stochasticity/uncertainty, because it allows random

deforestation to spread into local clusters of deforestation, leading

to patterns of deforestation that are very different from those that

come from applying deforestation homogenously within regions.

Finally, we improve on previous models by conducting a series of

stringent model validation tests, comparing the model predictions

of one scenario with observed deforestation events over a nine year

period.

Materials and Methods

Data sources
The first step of the modelling procedure was to identify the

main drivers of deforestation in the Brazilian Amazon. The

qualitative conclusions from a large literature are that deforesta-

tion occurs primarily near previously deforested areas[28,29], near

roads[28,30–33], near markets[28,29,34],in areas with a pro-

nounced dry-season[29,31], and in regions that have been

previously logged[35]. Deforestation does occur in protected

areas, but the rate tends to be lower than outside protected areas,

as is the case in Rondônia [29,33,36,37]. However, in many other

parts of the Brazilian Amazon this apparent effect is partially

confounded with the fact that protected status tends to be

conferred on relatively isolated regions where rates would be

expected to be lower anyway [38]. The likely underlying causes of

deforestation in the region are changes in gross domestic product

(GDP), agricultural GDP, the size of the live cattle herd, and the

rate at which temporary and permanent agriculture are expanding

[6,39].

We obtained input data to represent these proximate and

underlying causes of deforestation (Table 1). The data was mostly

obtained from three Brazilian institutions: Brazilian National

Institute for Space Research (INPE), Brazilian Institute for

Geography and Statistics (IBGE) and Amazon Institute of People

and the Environment (Imazon). It included maps of historical

deforestation, forest cover, road networks (official and unofficial),

protected areas, rivers, topography, settlements and soil fertility.

Dry season length maps were created by applying the methodol-

ogy developed bySombroek [19] to the historical monthly

precipitation data (1960–1990) in the Brazilian Amazon, obtained

from the World Meteorological Organization (WMO). Economic

data for each of the ,700 municipalities of the Brazilian Amazon

were obtained from IBGE, representing municipality GDP and

agricultural GDP, the size of the live cattle herd, and the land area

under temporary and permanent agriculture.

The data were separated into two categories of variables: static

and dynamic variables[40]. Static variables represented features

that are assumed to stay constant through time such as soil fertility,

topography, main rivers, state and dry season length. In our

model, we also assumed that the distribution of protected areas is a

static feature of the region, although the last decade experienced

rapid and large expansion of protected areas. Dynamic variables,

by contrast, represent features that change through time. In the

model we present here, only forest cover itself and the proportion

of deforested neighbour cells were treated as dynamic. There are

several variables that are dynamic but which we considered to be

static in our model due to a lack of data. This includes the

economic variables (GDP, cattle herd, area of temporary and

permanent agriculture), as we do not have economic models

available to predict the value these variables take in the future.

Similarly, we considered the road network to be a static feature of

the landscape. Note that road networks in the Brazilian Amazon

are known to be expanding [41], suggesting they should be

considered as dynamic rather than static variables. However, in

the absence of a validated model of road network expansion, we

were unable to replicate this process and hence treated road

networks as a static landscape feature (see Discussion). Static

variables were calculated just once, in the beginning of the

modelling process, whereas dynamic variables were re-calculated

at each time step (year). Model variables were estimated

individually for 565 km pixels across the Brazilian Amazon.

In contrast to previous modelling, we used as metric of local

deforestation the proportion of deforested grid-cells in the

neighbourhood of the focal cell. This contrasts with the usual

approach of using Euclidean distance to the closest deforested

cell[3–5]. We made this decision because our model updates the

local deforestation probabilities as the neighbourhoods change

through time. Within this dynamic framework, the Euclidean

distance metric results in a very rapid, but diffuse, expansion of

deforestation, characterized by rapidly spreading regions, within

which there are a few deforested cells within a matrix of intact

forest. This diffuse pattern of deforestation is not apparent in

current deforested landscapes. The rapid expansion in models

occurs because deforestation in a single cell immediately reduces

the Euclidean distance over a large neighbourhood around that

cell (in fact all cells, anywhere in the whole region, which are closer

to the new deforestation event than to any previous event,

experience an increase in deforestation probability). The diffuse

pattern occurs because, if a cell already has a single deforested cell

nearby, further deforestation events can have no effect on the local

rate of deforestation (any event further away than the closest

previous event has no further effect on local deforestation). By

contrast, when using neighbourhood metric such as employed

here, the local deforestation probability responds only to

neighbouring cells, and builds continuously as the surrounding

neighbourhood is deforested. As a result, simulations using the

neighbourhood metric result in deforestation spreading in a well

defined front, characterized in space as a rapid gradient from

intact forest, to almost pure deforestation – a pattern that is

consistent with observed patterns of deforested land.

Predictive Deforestation Model Amazon
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Model structure, parameterization and selection
Our model is based around Pdefor,x,t, the probability that cell x

becomes deforested in a set interval of time t. The fact that Pdefor,x,t

is specific to a given time t illustrates how our model updates the

local deforestation through time. We defined this probability as a

logistic function:

Pdeforx,t~
1

(1zexp{kx,t )
ð1Þ

such that as kx,t goes from minus infinity to plus infinity, Pdefor,x,t

goes from 0 to 1. We could then write simple linear models for kx,t

as a function of the driver variables affecting location x at time t.

Similar logistic regression techniques have been successfully used

and have become the standard method for assessing deforestation

probabilities [29,40,42]. The modelling procedure flowchart is

shown in Figure 1 and the full model C++ code is provided in

online (Supporting Information S1).

In 2004, the Brazilian government implemented the ‘‘Plano de

Ação para Proteção e Controle do Desmatamento na Amazônia’’

(PPCDAM), which implemented a set of enforcement measures to

fight illegal deforestation[43]. The PPCDAM also coincided with a

global economic downturn that reduced the economic incentives

for deforestation[10], and thus the post-2004 period represents a

deforestation ‘regime’ that is very different to what was observed

before. Before 2004, deforestation rates were increasing rapidly

and deforestation was spreading quickly, whereas after 2004 the

situation changed and the rates slowed down significantly[10].

Therefore, we fitted models to the data for observed deforestation

that occurred pre-PPCDAM, between 2001 and 2002, whereas for

a post-PPCDAM scenario the transition year used was 2009–

2010.These two time periods represent very different deforestation

regimes in the region, and thus the two calibrations of the model

should result in different scenarios of deforestation by 2050.

We fitted 106 models to the observed deforestation patterns in

each of the two transitions periods representing our two

deforestation scenarios. Models differed only in the combination

of static and dynamic variables included in the definition of kx,t. To

fit each of these 106 models we used ‘Filzbach’, a freely available C

library developed by DP and others (http://research.microsoft.

com/en-us/projects/filzbach/). Filzbach uses Markov Chain

Monte Carlo (MCMC) sampling techniques to return, for each

parameter, a posterior probability distribution from which we can

extract the posterior mean, and a credible interval, given the

model structure and the data. To carry out the parameter

estimation, all that is necessary is to define the log-likelihood,

which is a measure of goodness of fit between the model

predictions and the observations, given a particular combination

of parameters :

‘(X Ds,h)~
X

x,t
logfZx,tPdeforx,tz(1{Zx,t)(1{Pdeforx,t)g ð2Þ

where Zx,t is the observed deforestation at location x at time t, and s

refers to one of the 106 models that we considered. The likelihood

defined in Eq. 2 assumes independence among the samples, and is

the same likelihood that underlies any standard logistic regression.

The exact set of 106 models was arrived at by forward stepwise

regression. We chose the forward stepwise method, widely used in

predictive studies[29,44,45] to first assess the impact of each

variable on the probability of deforestation individually, and then

to determine the additional predictive power gained by adding

additional variables. In the first step, only the intercept is included,

giving a one-parameter model. To assess this model, we used

cross-validation, a statistical technique used to assess how

accurately the model will predict data that was not used to train

Table 1. Details of the input data used to calibrate the model for the transition period 2001–2002 and 2009–2010(data name,
description, source, reference year and type).

Name Description Source Year Type

Deforestation Annual deforestation INPE1 2002 and 2010 Polygon

Previous deforestation All deforestation occurred INPE1 Until 2001 and 2009 Polygon

Forest cover Remaining forest cover INPE1 2001 and 2009 Polygon

Roads Only main rivers IMAZON2 2004 and 2007 Polyline

Rivers Official and unofficial roads IBGE3 - Polyline

Settlements Includes main cities, villages, and smaller settlements IBGE3 - Points

Topography Altitude in km SRTM4 - Raster

Protected areas Include indigenous lands, federal and state reserves IMAZON2 2001 and 2009 Polygon

Soil Fertility Reclassified for three classes: low, medium and high IBGE3 - Polygon

Dry Season Length Number of months with precipitation ,100 mm WMO5 1960/90 Points

Live Cattle Number of head per municipality (heads) IBGE3 2001/02 and 2009/10 Converted polygon

Temporary Agriculture Area Total area of temporary agriculture (ha) IBGE3 2001/02 and 2009/10 Converted polygon

Permanent Agriculture Area Total area of permanent agriculture (ha) IBGE3 2001/02 and 2009/10 Converted polygon

Gross domestic product Municipalities’ gross domestic product IBGE3 2001/02 and 2009/10 Converted polygon

Agricultural gross domestic product Municipalities’ agricultural gross domestic product IBGE3 2001/02 and 2009/10 Converted polygon

1INPE – Instituto Nacional de Pesquisas Espaciais (http://www.dpi.inpe.br/prodesdigital/prodes.php).
2IMAZON – Instituto do Homem e Meio Ambiente da Amazônia (http://www.imazon.org.br/).
3IBGE – Instituto Brasileiro de Geografia e Estatstica (http://www.ibge.gov.br/home/download/geociencias.shtm).
4SRTM – The Shuttle Radar Topography Mission from National Aeronautics and Space Administration (NASA http://www2.jpl.nasa.gov/srtm/).
5WMO – World Meteorological Organization (http://www.agteca.com/climate.htm).
doi:10.1371/journal.pone.0077231.t001
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the model [46]. The cross validation was carried out by

parameterising the model against a randomly selected subset of

50% of locations, then calculating the likelihood of the remaining

50% of the locations, using eq. 2. The purpose of the cross

validation was to find a model that included those only predictor

variables that had demonstrable predictive ability. Cross valida-

tion, where possible, is superior to model selection using

information criteria such as the AIC, which is known to often

lead to over-fitting [47,48]. Next, each of the nine variables were

added individually to the intercept-only model, creating a set of 2-

parameter models that were again assessed with cross-validation.

When all two-parameter models were trained and tested, the

variable responsible for the highest maximum likelihood model

was kept in the model and the remaining eight variables were

again added individually. This procedure was repeated until all

models were trained and tested, which resulted in a table with each

model and the corresponding training and testing likelihoods, from

which we selected the ‘best model’ as the one with the maximum

test likelihood from all of the 106 models. However, after this

procedure was complete, we found that some of the variables

included in the best model had a non-significant confidence

interval. In these cases, we chose the second best model, which had

a slightly lower maximum likelihood, where all variables were in

fact significant. This last, conservative, step, was carried out to

further reduce the potential for over-fitting. The forward stepwise

procedure was repeated for each of the two transition periods

corresponding to the pre- and post-PPCDAM scenarios.

Figure 1. Modelling procedure flowchart. The flowchart illustrates the construction and running of the deforestation model. i is the model
iteration, t is the year, ROC refers to the Receiver Operating Characteristic and AUC is the area under the ROC curve.
doi:10.1371/journal.pone.0077231.g001
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Simulations
Once we had settled on the best statistical model for explaining

past deforestation during each of the two transition periods, we

used it to simulate future deforestation up to 2050 under the pre-

and post-PPCDAM scenarios. To do so, all that was necessary was

to re-apply eq. 1 in each time step, recalculating the dynamic

variables (e.g. fractional deforestation around each location x), and

using a slightly different set of parameter values at each iteration

(to incorporate parameter uncertainty), drawn from a Gaussian

distribution using the estimated mean and standard deviation for

each parameter. This provided an updated Pdefor,x,t for each

location x, which was then deforested with that probability. In

practise, this was implemented as follows: for each x, draw a

random number from a uniform distribution bounded at 0 and 1,

and deforest x if this number is less than Pdefor,x,t. After these

deforestation events were implemented, Pdefor,x,t was calculated for

every location x again, allowing for another round of deforestation.

This procedure illustrates the three key aspects of our model

mentioned above (see Introduction).The model is stochastic,

because each individual deforestation event is drawn randomly

using a weighted probability. Deforestation is contagious, because

deforestation at location x increases the probability of deforestation

at neighbouring locations, inducing further deforestation events

which themselves further increase the probability of deforestation

in the neighbours of the neighbours. Finally, the total (region-wide)

deforestation rate at any time t, emerges as the sum of the local,

stochastically determined, deforestation events, rather than being

imposed top-down. The total deforestation rate can also vary

through time, due to changes in the spatial configuration of forest

cover in relation to the static and dynamic variables incorporated

in the model. During each simulation, we kept a record of the

fraction of cells undergoing deforestation at each time step, and a

record of the pattern of forest vs. non-forest at each time step.

To calculate the uncertainty in model predictions, we ran the

simulations multiple times (N = 100iterations) and summarised the

outputs across models at each time step. This allowed us to

construct confidence intervals around our model predictions,

rather than providing a single ‘answer’. The uncertainty is

represented by our final simulation outputs are a deforestation

probability map calculated for each year in the simulation as the

number of times a pixel was selected to be deforested in that year,

divided by the total number of iterations. For each pixel that was

deforested in the simulations, we also estimate the mean date at

which it was deforested as well as the inter-quartile range around

that date. This quantifies the uncertainty in the exact timing of

deforestation events in the model simulations.

Model validation
We validated our model predictions for the pre-PPCDAM

scenario (parameterised with the transition year 2001–2002)

against observed data for each year within the period 2002–

2010 by calculating the area under the Receiver Operating

Characteristic (ROC) curve in each year, which is used in many

land-cover change studies [17,49,50]. For the post-PPCDAM

scenario (parameterised with the transition year 2009–2010), the

validation was only done for the first year of predictions (2010),

reflecting the time period of deforestation data used to calibrate

out model. For each of the 100 model iterations, we calculated the

Figure 2. Stepwise regression output. Figure shows both training and testing maximum likelihoods achieved by each of the 106 models used to
explain deforestation rates in the Brazilian Amazon in the (a) pre-PPCDAM and (b) post-PPCDAM scenarios.
doi:10.1371/journal.pone.0077231.g002
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area under the ROC curve (AUC) value and three measures of

precision on a pixel-by-pixel comparison: perfect match (the model

predicts the exact location of deforestation), commission (over-

predicting, the model predicts deforestation events that did not

happen) and omission (under-predicting, the model did not predict

deforestation in a location where deforestation happened). These

three measures were calculated annually, using the observed and

predicted annual deforestation maps; and for the pre-PPCDAM

scenario were also calculated cumulatively, using the observed and

predicted sum of deforestation at each time step (2002, 2002–

2003, 2002–2004, etc.), for the time period from 2002 through

2010. Additionally, we calculated the proportion of observed

annual and cumulative deforestation that occurred within certain

distances (0, 5, 10, 25 and 50 km) of our predicted deforestation at

each time step.

Results

Model calibration
In both scenarios, the test likelihood returned from the cross

validation increased rapidly with the addition of the first

parameter, with additional parameters having progressively

smaller impact on predictive power (Fig. 2). Most variables were

found to have the impact we expected on deforestation

probabilities (Table 2). For instance, for both periods, distance

to roads or rivers or settlements had a negative sign suggesting

higher deforestation closer to these features. Also, protected areas

had a negative sign, but here representing a lower probability of

deforestation inside these areas when compared to unprotected

land. Further, annual increases in GDP, the size of the live cattle

herd, and the area of land in permanent agriculture were found to

have a positive impact on the probability of deforestation. By

contrast, change in temporary agriculture area was non-significant

in both cases, whereas change in agricultural GDP was found to

only be significant in the period post-PPCDAM.

The most important variable was distance to roads, followed in

turn by neighbourhood deforestation and protected areas, with

our analysis indicating that deforestation probabilities were lowest

in Indigenous lands, slightly higher in Federal and then State

reserves, and highest in unprotected land. State also exerted

considerable influence on deforestation probabilities and was

retained in our best model. The only difference between scenarios,

apart from variations in the effect size of individual variables

(Table 3), was the inclusion of total GDP in the post-PPCDAM

scenario. Adding additional variables had negligible effects on the

test likelihood (Fig. 2) and were consequently omitted from the

final model. The final set of parameter values used in the

deforestation simulation for each scenario are shown in Table 3.

Table 2. Mean and 95% confidence intervals of the single variable models, for each scenario (pre- and post-PPCDAM).

Pre-PPCDAM Post-PPCDAM

Parameter Mean Lower Upper Mean Lower Upper

name limit limit limit limit

Intercept 24.7911 24.8830 24.6983 25.9828 25.9997 25.9372

Previous Deforestation 4.9659 4.5774 5.2429 2.1113 20.8230 3.2692

Roads 20.00018 20.00021 20.00016 20.00011 20.00018 20.0001

Rivers 20.00002 20.00003 20.00001 20.00005 20.00007 20.00003

Settlements 20.00005 20.00005 20.00004 20.00006 20.00009 20.00004

Topography 21.9345 21.9991 21.7693 21.8200 21.9969 21.5012

Soil fertility 0.0001 0.0000 0.0005 0.0002 20.0002 0.0005

Dry season length 0.3194 0.2931 0.3394 20.3075 20.4019 20.2190

Cattle 0.3947 0.1890 0.5294 0.1388 0.0013 0.3916

GDP 0.0532 0.0007 0.1535 0.0182 0.0005 0.0566

GDP agro 0.0064 20.0002 0.0201 0.0447 0.0013 0.1882

Temporary Agriculture 0.0273 20.0001 0.0849 0.0119 20.0004 0.0413

Permanent Agriculture 0.3687 0.1534 0.5828 0.0658 0.0006 0.1966

Prot. Areas–State 20.6281 21.1474 20.1856 21.7402 21.9976 21.2311

Prot. Areas–Federal 21.0426 21.7319 20.6574 20.5949 21.4540 0.0360

Prot.Areas–Indigenous 20.9151 21.1168 20.7429 20.3833 20.8982 20.1657

State – Maranhao 20.4757 21.2139 0.2250 0.3687 21.2280 1.6955

State – Tocantins 20.4989 21.6543 20.0464 0.2303 21.6190 1.0590

State – Pará 20.5673 20.7502 20.3772 20.6250 21.1601 20.2796

State – Roraima 20.9969 21.3064 20.7918 20.3807 21.0302 0.0041

State – Amapá 20.8455 21.3031 20.5581 21.1259 21.9959 20.3580

State – Acre 20.3752 20.5039 20.2386 21.1043 21.8357 20.4237

State – Rondônia 20.1172 20.2069 20.0410 20.3711 21.0441 20.0691

State – Amazonas 20.5297 20.6677 20.4354 20.4841 21.0160 20.2883

State – MatoGrosso 20.0590 20.1149 20.0005 20.3109 21.1723 20.0439

doi:10.1371/journal.pone.0077231.t002
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Model validation
In both the pre- and post-PPCDAM scenarios, the models had

apparently strong predictive power with mean AUC values of 0.92

in the first year. In the pre-PPCDAM scenario, which had a longer

period of model validation, we found that the predictive power of

the calibrated parameter set declined through time to 0.86 over

the first 8 years of model predictions (2002–2010).

In addition, for the pre-PPCDAM scenario, we compared the

model predictions with observed data pixel by pixel, both annually

and cumulatively from 2002 through 2010. Although most land

cover change modellers prefer to compute statistics that compare

model outputs with those from a random distribution, such as the

Kappa-family of metrics[4,5], we believe that making more

demanding pixel-by-pixel comparisons is a more informative and

more direct representation of how accurately the model predicts

the actual rate and spatial patterns of deforestation[51]. On an

annual basis, the model predictions perfectly matched an average

of just 2% of observed deforestation events in 2002 and this

percentage dropped further through time (Fig. 3a). However, the

cumulative prediction accuracy improved through time, for the

time span that validation data is available, with an average of 15%

perfect match between predicted and observed deforestation by

2010 (Fig. 3a).These results suggest that the model is correctly

predicting the general spatial pattern of deforestation, but that the

ability to predict the exact sequence of deforestation events is very

poor. The majority (.60%) of all annual observed deforestation

fell within 25 km of predicted deforestation, and virtually all

observed deforestation (84 to 94%) was within 50 km of predicted

deforestation. There was no significant change through time in

these values (Fig. 4a). When analysed cumulatively (Fig. 4b), an

average of 80% of all observed deforestation from 2002 through

2010 occurred within 10 km (2 pixels) of deforestation predicted

by the model.

Annual rates of omission errors closely tracked the rate of

deforestation (Fig. 3b), with the model omitting more deforestation

events in years with more deforestation and omitting fewer

deforestation events in years with less deforestation. Commission

errors were high and followed the opposite pattern, with most

pixels that were predicted to be deforested in a particular year not

being observed (Fig. 3c). When validated against cumulative

patterns of predicted and observed deforestation commission

errors increased through time whereas omission errors decreased,

again indicating that the emergent spatial patterns of deforestation

are reliable but that the exact sequence in which pixels and

deforested is poorly predicted (Fig. 3b and c).

Rate and location of land-cover change
The total amount (or rate) of deforestation in any given year

emerged bottom-up from the accumulation of stochastically

determined local deforestation events, and predicted that defor-

estation rates would almost halve by the year 2050 under the pre-

PPCDAM scenario (Fig. 5). Annual differences in deforestation

rates among model iterations of the pre-PPCDAM scenario were

as much as 0.2%, whereas the post-PPCDAM scenario showed a

more stable rate through time (Fig. 5). In 2002, our first year of

model predictions for the pre-PPCDAM scenario, the model

predicted an average deforestation rate of 0.85%, and for 2010 the

pre-PPCDAM predicted a deforestation rate of 0.82% whereas

under the post-PPCDAM scenario the average was just 0.2%.

Model predictions from the first three years of simulations in both

pre- and post- PPCDAM scenarios were in line with observations

for this region from INPE [52].These results suggest that the

Brazilian government’s PPCDAM program, helped by the

coincident global economic downturn, seems to have been

successful in lowering deforestation rates. Because we only have

one dynamic variable in the model (deforestation neighbourhood),

Table 3. Mean and 95% confidence intervals of the final set of parameter inputs used in the deforestation simulations, for each
scenario (pre- and post-PPCDAM).

Pre-PPCDAM Post-PPCDAM

Parameter name Mean Lower limit Upper limit Mean Lower limit Upper limit

Intercept 23.70 24.88 22.57 24.96 25.92 23.28

Previous Deforestation 2.10 1.70 2.57 2.32 1.61 3.07

Roads 20.00011 20.00013 20.00009 20.00006 20.00009 20.00003

GDP - - - 0.45 0.08 0.76

Prot. Areas–State 20.18 20.73 0.09 20.18 20.97 0.52

Prot. Areas–Federal 20.40 20.84 20.19 20.71 21.25 20.19

Prot.Areas–Indigenous 20.52 20.75 20.41 20.42 20.75 20.13

State – Maranhao 0.10 20.25 0.451 0.63 21.21 1.91

State – Tocantins 20.40 20.58 20.23 20.04 21.34 0.90

State – Pará 20.11 20.2 0.02 0.01 20.53 0.43

State – Roraima 20.49 20.6 20.4 20.09 20.64 0.31

State – Amapá 20.31 20.4 20.2 20.30 20.96 0.20

State – Acre 20.10 20.2 20.04 20.09 20.41 0.17

State – Rondônia 20.01 20.1 0.04 20.08 20.34 0.12

State – Amazonas 20.18 20.2 20.1 20.19 20.43 20.01

State – MatoGrosso 0.00 20.04 0.04 20.1 20.29 0.04

At each iteration, a slightly different set of parameters’ values is drawn from these distributions to be used in the model that predicts deforestation from 2002 (or 2010
in the post-PPCDAM scenario) to 2050.
doi:10.1371/journal.pone.0077231.t003
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the predicted deforestation rate dropped almost constantly

through time in the pre-PPCDAM scenario, presumably because

all pixels near roads that had the highest deforestation probabilities

became deforested leaving behind just pixels with relatively low

deforestation probabilities. This pattern is less evident in the post-

PPCDAM scenario since the predicted rate of deforestation is

much lower. Between the years 2010-2050, the difference in

deforestation rates between the pre- and post-PPCDAM scenarios

suggests that implementation of PPCDAM will have resulted in an

average cumulative reduction in deforestation of 389,884 (6657,

95% C.I.) km2.

Using the annual deforestation probability outputs (Supporting

Information S2), we mapped the cumulative deforestation

probability predicted for 2050 for both scenarios (Fig. 6a,b), and

created two video outputs showing deforestation probability

accumulating from 2002 (or 2010 if post-PPCDAM) to 2050

(Supporting Information S3).We found that pixels within a short

distance from roads had a very high probability of becoming

deforested in the next 40 years, but that protected areas play a vital

role of inhibiting the spatial expansion of deforestation.

The ‘‘wave’’, or temporal sequence, of deforestation across the

Brazilian Amazon (Fig. 6c,d) suggests that the sequence of

deforestation events follows the deforestation probabilities them-

selves for both scenarios, with deforestation occurring first along

the southern and eastern boundaries of the Amazon before

spreading along and out from major highways that penetrate the

Basin. However, the magnitude of change is much less intense in

the post-PPCDAM scenario. Each iteration of our model

represented a different possible future, because we allowed for

uncertainty in the model parameters and stochastically determined

deforestation events, meaning that in different iterations pixels

could be deforested in different years. To capture this uncertainty

in our predictions of the wave of deforestation, we mapped out a

measure of variance, the inter-quartile range, around our estimates

of the year in which each pixel was deforested. The median value

of the inter-quartile ranges was 15 years, showing a large amount

of uncertainty in the exact timing of deforestation events. In

general, for both scenarios, model uncertainty was lowest along

the Arc of Deforestation and in areas where nearby roads give

immediate access to forest. In the most inaccessible parts of the

Figure 3. Pre-PPCDAM model validation results comparing pixel by pixel predicted and observed deforestation between 2002 and
2010. Three validation statistics are presented: (a) mean percent of perfect match; (b)errors of omission; and (c)errors of commission. Validations
were conducted in two ways. The ‘annual’ validations compare predictions from a single year with observations for that same year, whereas
the‘cumulative’ validations compare all deforestation predictions up to and including that year with observations of cumulative deforestation over
the same time period. Variation in these values arises from the 100 model iterations.
doi:10.1371/journal.pone.0077231.g003
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Brazilian Amazon, the inter-quartile range around our deforesta-

tion predictions was as high as 40 years.

Discussion

With a predicted increase in global human population and,

consequently, a rise in external demand for agricultural products,

the future of the Brazilian Amazon is at stake if pre-PPCAAM

annual deforestation rates prevail in the next decades. In order to

predict the potential impacts of deforestation on biodiversity and

evaluate the potential effectiveness of conservation strategies, it is

vital to be able to accurately predict the magnitude and

geographical distributions of future deforestation. However, as

we showed the models are not yet accurate enough and it remains

vital to improve the prediction of deforestation models. Our model

is not the first attempt to make these predictions, but goes beyond

previous attempts by capturing three important aspects of

deforestation which have poorly been explored in the past:

uncertainty, emergence, and contagion. Additionally, we use the

stochastic nature of the model to specifically estimate uncertainty

around model predictions, which we found to be substantial, by

allowing model parameters to vary at each model iteration.

Overall our analyses suggest that we can have some confidence in

the spatial patterns of cumulative deforestation that will emerge

over the coming decades, but that we have little, if any, power to

predict the exact sequence of deforestation events at the level of

individual pixels. This remains one of the biggest difficulties in

land cover change models [53].

Our statistical analysis identified several predictor variables that

had demonstrable predictive power for deforestation, but also

showed that adding extra predictor variables and parameters to

the model does not necessarily lead to a better model. We found

that, for both scenarios, the proportion of deforested neighbours

has a strong influence on the probability of a given pixel itself

being deforested events, which indicates that the ‘‘behaviour’’ of

deforestation mimics that of an infectious disease, increasing our

Figure 4. Pre-PPCDAM model validation showing the spatial dependence of model accuracy. Values represent the proportion of (a)
annual and (b) cumulative observed deforestation from 2002 through 2010 that fell within a threshold distance from predicted deforestation.
doi:10.1371/journal.pone.0077231.g004
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confidence in modelling deforestation as a contagious process.

Once it starts in a region it can spread very rapidly [49,54] and

that spread is even more rapid when roads provide easy access to

forests.

Roads play a major role in determining where and how much

deforestation will occur and our model has confirmed a large body

of literature that emphasises the important impact of roads on

deforestation patterns [13,55]. Regrettably, there is presently a

lack of validated models predicting the rate and pattern of

expansion of the road network itself in the Amazon [56], making it

difficult to include them as a dynamic variable in a deforestation

model [4]. We can estimate where and when official roads will be

created[4], but the same is not true for unofficial roads which are

very widespread in the region and represent a major threat to

forests [41].Given that we allowed the rate of deforestation to

emerge from the model itself in a bottom-up manner for both our

scenarios, the fact that the predicted deforestation rate drops

through time in the pre-PPCDAM is partly, perhaps mostly, an

artefact of having a static road network as an input variable in the

model, although we know the road network is continuously

expanding in this region. We would expect that incorporating a

dynamic road network in the model[56], which would continually

expand roads through time, would keep deforestation probabilities

high and lead to a more steady, or even increasing (as forest would

decrease), deforestation rate for both scenarios. However, we also

note that economic models of deforestation in the Brazilian

Amazon predicted deforestation rates to begin declining under a

Business as Usual scenario around 2030 [4], although the

reduction predicted there was much lower than predicted by our

model. The influence of using static road maps in our model

predictions ensures that our predictions of the difference in

cumulative deforestation between the pre- and post-PPCDAM

scenarios can be considered conservative.

Protected areas strongly constrained the spatial pattern of

deforestation in the pre-PPCDAM and post-PPCDAM scenarios,

in line with other more direct analyses of the effectiveness of

Amazonian protected areas[36], and we also found that different

types of protected areas exert stronger or weaker limits of

deforestation [36]. Where roads were adjacent to protected areas,

we found that deforestation was much more intensive relative to

the wider spatial spread of deforestation that occurred around

road networks that did not abut protected areas. This suggests,

therefore, that the implementation of reserves bounding roads

Figure 5. Predicted deforestation rate in the Brazilian Amazon between 2002 and 2050. Deforestation rates emerged from the local
deforestation probabilities in the spatial model, for both the pre- and post-PPCDAM scenarios, and variation in these values arises from the 100 model
iterations. Thick lines represent the median, boxes the inter-quartile range and whiskers the maximum and minimum simulated deforestation rates.
doi:10.1371/journal.pone.0077231.g005
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should be supported as an effective means of limiting the spatial

spread of deforestation [37].

Within the nine states of the Brazilian Amazon, Mato Grosso,

Pará and Rondônia are the three that have had the highest levels

of annual deforestation [29] and this will remain true for the

foreseeable future (although there are some early signs of

deforestation starting to reach the lower part of the Amazonas

state) in both our scenarios, unless governance is improved and

there is a strong incentive to restore already degraded lands.

According to our pre-PPCDAM simulations, by 2050 Mato

Grosso and Rondônia will virtually have no forest left outside the

reserves, and the reserves themselves will become very isolated,

even though our pre-PPCDAM scenario shows a clear decline of

deforestation rates. This pattern is less strong in the post-

PPCDAM scenario due to the lower rate of deforestation;

however, even here the same states will have the strongest

landscape modification. By contrast, even in our most aggressive

scenario of deforestation (pre-PPCDAM), Amazonas and Roraima

are protected by their inaccessibility, benefitting from the ‘passive

protection’ that arises from their geographic isolation[38,57].

However, new planned initiatives to pave roads in all Brazilian

Amazon means deforestation will continue to progress, and in

particular, in these states[4] the passive protection will be

significantly reduced.

Simulation results show that calibrating our model in a different

transition year can have a great impact on the rate and location of

predicted deforestation. We exploited this variation by calibrating

the model for transitions before and after the implementation of

PPCDAM, a strong plan to prevent deforestation by the Brazilian

government. Our simulations showed a less aggressive scenario of

future deforestation both in terms of rate and spatial spread when

the model is fitted after the PPCDAM was implemented, when

compared to the pre-PPCDAM simulations which were achieved

by calibrating the model for a year before the PPCDAM. If we

assume that the conditions post-PPCDAM are maintained into the

future, we predict this will nearly 390,000 (6660, 95% C.I.) km2 of

cumulative deforestation by 2050. However, recent changes to the

Brazilian Forest Code suggest that the strong level of reduction in

deforestation rates between 2004–2010 may not be maintained

into the future[58], although it remains unlikely that rates will

climb back to the high values that occurred in the early 2000s.

For both scenarios, because the spatial and temporal patterns of

deforestation resulted from stochastic iterations, which also

incorporated variation in the model parameters, we were able to

Figure 6. Deforestation predictions for the Brazilian Amazon under the pre- and post-PPCDAM scenarios. Cumulative deforestation
probability in the year2050 (a) under the pre-PPCDAM and (b) the post-PPCDAM scenario; the wave of deforestation, represented as the median year
in which each pixel was deforested (c) under the pre-PPCDAM and (d) the post-PPCDAM scenario; and uncertainty in the model predictions,
quantified as the inter-quantile range of the year in which each pixel was deforested (e) under the pre-PPCDAM and (f) the post-PPCDAM scenario. In
panels (c,d) and (e,f), measures of central tendency and variation were obtained by comparing model outputs from the 100 model iterations.
doi:10.1371/journal.pone.0077231.g006
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capture the temporal and spatial uncertainty in our model

predictions. Furthermore, the choice of calibrating our pre-

PPCDAM model for the year 2001–2002 enabled us to validate

our model predictions for eight consecutive years (2002–2010)

both annually and cumulatively, which is rarely done in land-cover

change modelling studies. These particular aspects of the model

(uncertainty resulting from stochasticity and parameter uncertain-

ty; emergence; contagion; and validation over more than one time

step), which have not previously been used together in land-cover

change models, allow us to place more confidence on the long

term deforestation predictions. The implications from our

uncertainty analyses and stringent validations are that we can be

more confident in the cumulative pattern of deforestation

probabilities through time rather than the exact temporal

sequence. However, we are far from accurately predicting the

exact sequence in which forests (pixels) will be deforested.

The modelling procedure we have presented here for the

Brazilian Amazon under two different scenarios (pre- and post-

PPCDAM) can also be used to test the potential impacts of

different scenarios, such as the impacts of the construction of new

roads and new hydroelectric dams, the implementation of new

protected areas, or to estimate biodiversity and carbon losses due

to land-cover change. For instance, under the pre-PPCDAM

scenario the model predicts rates higher than those observed after

the downturn of agriculture in 2005–2006, which is believed to

greatly influence the reduction of deforestation in this region [33].

If, however, this economic downturn had translated into less road

development the model could dynamically update the road layer

and rates would slow down given that the access to forest was

stabilizing. Once we re-calibrate the model for the post-PPCDAM

scenario using data from 2009–2010, the predicted rates changed

considerably and again matched those directly observed by

PRODES. However, the largest changes observed in predicted

rates between the two scenarios are more directly related to

calibration data rather than the emergency property of the model.

Therefore, predicting deforestation rates remains the greatest

challenge in land cover change modelling. The scenarios presented

here were mainly to show the potential of our model structure to

quantify the impact of different scenarios, and demonstrate that it

can be adapted to address questions about the impacts of policy

decisions. Furthermore, tools such as this have potential to be

integrated into decision-making processes, providing guidance to

conservationists and policy-makers as they plan and test competing

land cover decisions. However, these must take into account both

the spatial and temporal scales where the model was built and

tested, and how the uncertainty in the model output varies at each

scale. For instance, models not only can be used to project future

trends of deforestation but also to evaluate policy impacts in a long

term. However, given that our results showed a low ability to

predict the exact temporal sequence of deforestation, we stress the

idea that models should provide their users a measure of

uncertainty attached to their predictions.We believe that the

probabilistic approach we have developed here represents an

important step towards the goal of more fully engaging land cover

change models with land cover planning decisions.
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from 2002 through 2050 (pre-PPCDAM) and from 2010
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Supporting Information S3 Video showing cumulative
deforestation probability from the pre-PPCDAM and
post-PPCDAM scenarios, from 2002 to 2050 in the
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to higher deforestation probability.
(AVI)

Author Contributions

Conceived and designed the experiments: IR DP RE. Performed the

experiments: IR DP RE. Analyzed the data: IR DP RE. Wrote the paper:

IR DP CS RE. Designed C++ library used in analysis: DP.

References

1. Barlow J, Ewers RM, Anderson L, Aragao LEOC, Baker TR, et al. (2011) Using

learning networks to understand complex systems: a case study of biological,

geophysical and social research in the Amazon. Biological Reviews 86: 457–474.

2. Pereira D, Santos D, Vedoveto M, Guimaraes J, Verissimo A (2010) Factos

florestais da Amazonia. Belém, Brazil: Instituto do Homem e Meio Ambiente da

Amazônia.
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53. Carlson KM, Curran LM, Ratnasari D, Pittman AM, Soares-Filho BS, et al.

(2012) Committed carbon emissions, deforestation, and community land
conversion from oil palm plantation expansion in West Kalimantan, Indonesia.

Proceedings of the National Academy of Sciences 109: 7559–7564.

54. Boakes EH, Mace GM, McGowan PJK, Fuller RA (2010) Extreme contagion in
global habitat clearance. Proceedings of the Royal Society B: Biological Sciences

277: 1081–1085.
55. Fearnside PM (2008) The Roles and Movements of Actors in the Deforestation of

Brazilian Amazonia. Ecology and Society 13(1): 23. Available: http://www.

google.com/url?sa = t&rct = j&q = &esrc = s&frm = 1&source = web&cd = 1&ved
= 0CCwQFjAA&url = http%3A%2F%2Fwww.ecologyandsociety.org%2Fvol13%

2Fiss1%2Fart23%2FES-2008-2451.pdf&ei = IoNIUrjkMPOx4AOXiYCIBg&usg
= AFQjCNG5jKJ2UsHVQY8IPDoJPtD6qBAKLw&sig2 = MUUbrpL821peipqmf

GsCsw&bvm = bv.53217764,d.dmg. Accessed 2013 Sep 29.
56. Arima EY, Walker RT, Sales M, Souza C Jr, Perz SG (2008) The

Fragmentation of Space in the Amazon Basin: Emergent Road Networks.

Photogrammetric Engineering & Remote Sensing 74: 699–709.
57. Rudel TK (2005) Tropical forests. Regional paths of destruction and

regeneration in the late twentieth century. New York: Columbia University
Press. 240.

58. Malingreau J, Eva H, de Miranda E (2012) Brazilian Amazon: A Significant Five

Year Drop in Deforestation Rates but Figures are on the Rise Again.
AMBIO: A Journal of the Human Environment 41: 309–314.

Predictive Deforestation Model Amazon

PLOS ONE | www.plosone.org 14 October 2013 | Volume 8 | Issue 10 | e77231


