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Piezoelectric materials are important for many physical and electronic devices. Although many piezoelectric ceramics exhibit good
piezoelectricity, they often show poor compatibility with biological systems that limits their biomedical applications. Piezoelectric
peptide and metabolite materials benefit from their intrinsic biocompatibility, degradability, and convenient biofunctionalization
and are promising candidates for biological and medical applications. Herein, we provide an account of the recent progress of
research works on piezoelectric peptide and metabolite materials. This review focuses on the growth mechanism of peptide and
metabolite micro- and nanomaterials. The influence of self-assembly processes on their piezoelectricity is discussed. Peptide and
metabolite materials demonstrate not only outstanding piezoelectric properties but also unique electronic, optical, and physical
properties, enabling their applications in nanogenerators, sensors, and optical waveguiding devices.
1. Introduction

The discovery of piezoelectricity can be traced back to 1880
by the Curie brothers [1]. They studied the effect of crystal
structures on piezoelectric phenomena and further predicted
the relation between voltage and stress for piezoelectric
materials [2]. Natural biomaterials were found to have polar-
ization in 1941 [3], and shear piezoelectricity was later found
by Fukada in various biopolymers like cellulose and collagen
in the 1950s [4]. Excellent piezoelectric properties were
found in Lead-Zirconate-Titanate (PZT) solid-solution
ceramics in 1954 [5], and PZT has since then played an
important role in piezoelectric applications [6]. Piezoelec-
tric materials were used in macroscale electromechanical
transducers for military and marine applications in early
days [7]. Studies and applications of piezoelectric materials
were accelerated with the development of microelectrome-
chanical systems (MEMS) [8]. Piezoelectric materials have
been widely used in energy harvesters, sensors, transformers,
actuators, piezotronics, and so on [7, 9–26]. Piezoelectric
ceramics such as barium titanate, PZT, zinc oxide, and
molybdenum disulfide have been widely studied. However,
their brittleness and nonbiological nature limited their appli-
cation in biological systems.
Piezoelectricity has been found in biomaterials like virus
[27], polyvinylidene fluoride (PVDF) [28, 29], polyhydroxy-
butyrate (PHB) [30], poly-l-lactic acid (PLLA) [31], peptides
[32, 33], amino acid [34], and protein [35]. In addition to
piezoelectric properties, some peptide and metabolite
materials exhibit excellent conductive, optical, and physical
properties, making them excellent candidates for electronic,
optical, and other applications. Using amino acids as building
blocks, these materials are of good biocompatibility, biode-
gradability, and chemical transformation. Those properties
are highly dependent on their self-assembly processes. There-
fore, understanding the self-assembly process and their
properties is important for the fundamental study and practi-
cal applications.

In this review, we provide an overview of piezoelectric
biomaterials in Section 2. In Sections 3 and 4, we discuss
the self-assembly processes of peptide and metabolite mate-
rials, respectively. In Section 5, we discuss in detail their
piezoelectric, semiconductive, optical, thermal, and mechan-
ical properties. Their remarkable properties enable their
applications in nanogenerators, sensors, cell imaging, and
drug releases. At the end of the article, we highlight current
challenges and our perspectives of peptide and metabolite
materials and discuss their great potentials in emerging fields.
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It is expected that this review article will inspire new research
efforts for the fundamental understanding and wide applica-
tion of piezoelectric and functional biomaterials.

2. Piezoelectric Biomaterials

Piezoelectricity is found in many materials with noncentro-
symmetric crystal structures, and piezoelectric charges are
generated when a mechanical stress is applied [36, 37]. Many
biomaterials such as peptides, polyvinylidene fluoride
(PVDF), poly(lactic acid) (PLA), virus, amino acids, and
protein can form noncentrosymmetric crystals and exhibit
piezoelectricity. These materials can be classified into natural
and synthetic biomaterials. Natural biomaterials usually
exhibit weak piezoelectric property and uncontrollable
shapes [38]. Synthetic biomaterials have attracted more and
more research efforts, and synthetic biomaterials with desig-
nable structures and better piezoelectric properties have been
found. PVDF-based polymers are among the most important
piezoelectric biomaterials owing to their outstanding piezo-
electricity, simple structure, and flexibility [39]. It has been
found that PVDF and its copolymers have great potentials
in promoting cell differentiation, bone growth, and neural
and muscle regeneration for tissue engineering and in energy
harvesting systems [33, 40–42]. Their crystal structures, syn-
thesized methods, piezoelectric properties, and applications
were covered in many good review articles [43–47]. In this
review, we mainly focus on piezoelectric peptides and metab-
olite biomaterials.

Piezoelectric peptides received the most attention owing
to their strong piezoelectricity and various nanostructures.
They self-assemble due to noncovalent interactions like
hydrogen bonding interactions, van der Waals interactions,
electrostatic interactions, and hydrophobic and π – π stack-
ing interactions [48, 49]. Some self-assembled nanostructures
have noncentrosymmetric crystal structures and display
excellent piezoelectric properties. Those piezoelectric and
biocompatible peptides play an important role in fabricating
power generators, ultrasensitive sensors, medical delivery
systems, cell culture, metal organic frameworks, and energy
storage devices. Compared to peptides, crystals based on
proteins and amino acids usually displayed weaker piezoelec-
tricity [50, 51]. However, a recent work revealed that a β-gly-
cine crystal exhibited a high piezoelectric constant d16 up to
178 pmV-1, making it a promising candidate for electronics
in bioapplications [52].

3. Synthesis of Piezoelectric Peptide Materials

Piezoelectricity has been found in peptides, including diphe-
nylalanine (FF) [53], cyclo-glycine-tryptophan (cyclo-GW)
[54], β glycine [52], gamma (γ) glycine [55], Fmoc-FF [56],
cyclo-phenylalanine-tryptophan (FW) [54], and bis-cyclic-
β-peptides [57]. Among them, FF peptides were the most
studied piezoelectric biomaterials.

Since the discovery of FF nanotubes by Reches and Gazit
in 2003 through a self-assembly process in solution, the self-
assembly process of FF and FF-based nanostructures have
attracted significant interests from researchers [58]. The FF
nanostructure can be self-assembled into a columnar phase
parallel to the long axis of the structure (Figure 1(a)) [59].
During the self-assembly process, FF units stacked along cyclic
hexamer structures and hosted H2O molecules by strong
hydrogen bonds between FF and H2O. FF molecules with
amine and carboxyl groups form hydrophilic tunnels with
H2O molecules in them [60, 61]. During the self-assembly
process, water content in hydrophilic tunnels affected the
morphological diversity and FF-based peptides including
fibrils, nanowires, nanotubes, nano/microrods, hollow tubes,
quantum dots, and hydrogel have been found [62]. The vari-
ous morphologies of FF-based peptides were tuned by temper-
ature, PH value, solvent, sonication time, and peptide
concentration in solution [63, 64]. FF tubes, wires, and fibers
were easily obtained in water, organic solvent like 1,1,1,3,3,3-
hexafluoro-2-propanol (HFP), methanol, acetonitrile, and
chloroform or mixed solution [65–67] (Figure 1(b)). High
concentration, long-time ultrasonication, and suitable
HPF/water ratio contributed to the formation of the FFmicro-
tube [65]. FF-based nanospheres [68, 69] or quantum dots
[70] were self-assembled in solution at low temperature. FF
supermolecules self-assemble into a noncentrosymmetric hex-
agonal (P61) structure in solution at low temperature, and
good piezoelectric properties were found in many hexagonal
FF nanostructures [71, 72]. When the temperature increases
over 142°C, the hexagonal FF transfered into orthorhombic
(P21212) cyclo-FF crystalline structures [73].

Supramolecular polymer coassembly is an efficient
approach to control the structure of FF peptides [74, 75].
The coassembly with different molar ratios of N-(tert-butox-
ycarbonyl)-L-Phe-L-Phe-COOH (Boc-FF) and FF led to FF
nanotubes with different lengths (Figure 1(c)) [74]. Com-
pared to single FF and Boc-FF tubes, the mixture of FF and
Boc-FF tubes tended to form in double-distilled water at
80°C. The phenomenon was caused by the hydrophobic
nature. Different peptides formed copolymer nanostructures
through self-assembly processes [74]. With the help of π − π
stacking and electrostatic interactions, FF and porphyrin-
based porous microspheres were fabricated via a hierarchical
coassembly method [76]. Using the electrostatic interaction,
a peptide-inorganic sphere was achieved by coassembling
cationic FF and polyanionic phosphotungstic acid in water
(Figure 1(d)) [77].

Ordered horizontal or vertical FF arrays can grow on sub-
strates. Rapid evaporation of FF solution in 1,1,1,3,3,3-hexa-
fluoro-2-propanol (HFP) solvent led to the growth of vertical
peptide nanotube arrays on a siliconized glass substrate
(Figure 2(a)) [78]. In this process, the evaporation of the
HFP solvent allowed the generation of numerous nucleation
sites. FF molecules stacked on the nucleation sites resulted in
the self-assembly of vertical FF tubes. The FF peptide can also
be fabricated into horizontal FF nanotube arrays. Coating
magnetic particles on an FF nanotube with the help of non-
covalent interactions resulted in the growth of ordered FF
nanotube arrays under external low magnetic fields [78]. By
applying high electric fields, B > 7T, the FF building blocks
self-assembled into horizontally ordered tubes without coat-
ing with magnetic materials [79]. The primary reason can be
ascribed to the diamagnetic anisotropy of the aromatic ring
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Figure 1: (a) The molecular arrangements of diphenylalanine hosting water molecules in nanotubes and nanowires in the hexagonal lattice
system after Rietveld refinement [59]. (b) Schematic diagram of self-assembled FF in nanofibers, microtubes, and microrods [65]. (c)
Schematic diagram of coassembled FF and Boc-FF peptide nanotubes. The red molecule represents an FF building block, and the blue
molecule represents a Boc-FF building block [74]. (d) Schematic diagram of a cationic dipeptide and polyoxometalates (POMs)
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[79]. Vertical FF arrays were obtained by growing on an
amorphous peptide film [80]. For example, Ryu and Park
reported well-aligned nanowire arrays with an orthorhom-
bic phase by exposing an amorphous peptide film to ani-
line vapor at a high temperature (Figure 2(b)) [80]. The
morphology of the FF array was finely controlled by aging
temperature and the solvent vapor. When the amorphous
peptide film was converted into a crystalline seed film
under a humid environment, the FF peptides were grown
into vertically aligned microrods on various substrates by
low-temperature epitaxial growth (Figure 2(c)) [72]. Vapor
deposition was another method to grow vertical peptide
arrays [81, 82]. Gazit et al. demonstrated a new vapor
deposition method to achieve orthorhombic (P21212)
cyclo-FF peptides with various lengths and densities
through adjusting deposition time (Figure 2(d)) [81]. By
combining vapor deposition technology with photolithog-
raphy, vertically aligned peptide arrays with desirable pat-
terns were obtained [81, 83]. When plasma was applied
during the vapor deposition, the nanotube structure of
peptides converted into a nanoribbon-like structure with
the increase of plasma’s frequency [84].

4. Synthesis of Piezoelectric
Metabolite Materials

There were a number of reports on artificial proteins with
piezoelectricity [85]. Silk fibroin, one kind of fibrous protein,
has been fabricated into nanostructures that exhibited piezo-
electricity, biocompatibility, and degradation in vivo [50, 85].
Piezoelectric properties have been found in artificial amino
acids [55]. Glycine, the simplest amino acid, can form
crystals with α, β, and γ phases. Among them, both the
β phase with the noncentral symmetric space group P21
and the γ phase with the noncentrosymmetric space group
P32 exhibited piezoelectricity [52]. The single-layer β-gly-
cine is metastable and converts easily into α-glycine in air
[86]. γ-Glycine crystals with a trigonal hemihedral symmetry
are stable at room temperature, but γ-crystals are hard to
grow [87]. It was reported that the stable γ-glycine crystal
was synthesized by either a slow evaporation or a slow cool-
ing progress [55, 88, 89]. The various γ-glycine crystals were
synthesized by a spin coating technology [90]. Their mor-
phologies were controlled by tuning rotation frequency and
changing the wettability of the substrates. Dendritic amino
acid films were obtained at low rotation frequency, while
ordered micro- and nanoisland arrays were achieved at high
rotation frequency. When a mica with a wettable surface was
used as a substrate, a 15 nm film was formed [90].

5. Properties and Applications of Peptide and
Metabolite Materials

5.1. Piezoelectricity. It was reported that the piezoelectric
constant d33 of FF peptides ranged from 5 to 30 pmV-1

[53, 91, 92]. As-grown FF peptides exhibited often random
polarization directions. Applying electric fields during the
self-assembly process resulted in the aligned growth of
peptide microrods with a uniform polarization, and an
effective piezoelectric coefficient d33 = 17:9 pmV−1 was
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obtained [53]. Kholkin et al. synthesized in a solution FF
peptide nanotubes with an effective piezoelectric constant
of at least 60 pmV-1 [71]. The piezoelectric constant
matrix of FF peptides was investigated by Vasilev et al.
[93]. They found that the piezoelectric constant d15 of
FF reached 80 ± 15 pmV−1, higher than the piezoelectric
constant d31 (4 ± 1 pmV−1), d33 (18 ± 5 pmV−1), and d14
(10 ± 1 pmV−1) [93]. The strong piezoelectricity in FF
hexagonal structures is ascribed to the strong dipole
moments Ps of 6FF rings that point at the same orienta-
tion [91]. The orthorhombic structure has antiparallel ori-
entations of Ps in 6FF rings and a zero total polarization
(Figures 3(a) and 3(b)) [91]. Piezoelectric constants of
FF peptides decreased with the increase of temperature
[91]. When the temperature was higher than 140°C,
ferroelectric-like behavior in FF peptides was found,
owing to the formation of an orthorhombic crystal struc-
ture [91, 94]. Piezoelectricity has also been found in other
FF-based peptides. When the FF was modified by adding a
fluorenyl-methoxycarbonyl (Fmoc) side group, the resultant
Fmoc-FF nanofibril was found to have a shear piezoelectric
constant d15 of 33.7 pmV−1 [56].

Finite element analysis demonstrated that a single FF
nanowire generated an output voltage of -1.3V under a com-
pressive load of 10 nN, and the output voltage was 5 times
higher than that generated by a ZnO nanowire [95]. The volt-
age due to a transverse loading in an FF peptide nanowire
was over 6 times higher than that in a ZnO nanowire
(Figures 3(c) and 3(d)) [95]. The high piezoelectric potential
and flexibility make the FF peptide nanowire a promising
candidate for nanogenerators. Nguyen et al. reported micro-
rod arrays with uniform polarizations by applying electric
fields during the self-assembly growth process (Figures 3(e)
and 3(f)) [53]. The FF microrod possessed a piezoelectric
constant d33 as high as 17.9 pmV-1. FF microrod arrays were
further used to fabricate a nanogenerator that produced an
open-circuit voltage of 1.4 V [53]. When the piezoelectric
nanogenerator was combined with a triboelectric nanogen-
erator, a new hybrid nanogenerator was produced and an
output voltage up to 2.2V was obtained [96]. Horizontal FF
peptide arrays have also been used in nanogenerators [97].
Horizontal and unidirectionally polarized FF nanotube
arrays were reported using a meniscus-driven self-assembly
process by Lee et al. [97]. They fabricated peptide fiber arrays
into a nanogenerator device that produced a voltage of 2.8V
under a force of 42N [97]. Other peptides were also recently
reported for the fabrication of generators. Cyclo-GW, one
kind of piezoelectric peptides with a monoclinic (P21) crystal
structure, has an effective piezoelectric constant of 14.1pCN-1

[54]. When the cyclo-GW peptide was fabricated into a nano-
generator, an output voltage of 1.2V at a force of 65N was
demonstrated [54]. W-based aromatic dipeptides such as
cyclo-FW peptides with an orthorhombic crystal structure
were also used to build an energy harvesting device that pro-
duced a high open-circuit voltage reaching 1.4V [98].

Piezoelectricity has been found in proteins and collagens,
and their piezoelectric constants were relatively low in the
range of 0.1-12 pmV-1 [35, 99, 100]. A collagen fibril from
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rat tail tendons exhibited a maximum piezoelectric constant
of 12 pmV-1 [101]. A silk film fabricated by a two-step
method exhibited a dynamic shear piezoelectric constant
d14 ranging from 0.01 to 1.5 pCN-1 under the draw ratio λ
from 1 to 2.7 [85]. The weak piezoelectricity and complicated
synthesis process of proteins limited their applications as a
piezoelectric material. Compared to proteins, the synthesis
of glycine crystals was relatively easy [55]. The piezoelectric-
ity in glycine was found in 1954 for the first time [55]. A
previous report showed that γ-glycine exhibited a low longi-
tudinal piezocoefficient of 10 pmV-1 [55]. Recently, a simple
β-glycine crystal was synthesized by Guerin et al. [52]. They
achieved a high shear piezoelectric constant d16 of up to
178 pmV-1. The transverse shear coefficient d16 was pre-
dicted to be 195 pmV-1 and its voltage constant was pre-
dicted to be 8.13VmN-1 according to a density functional
theory (DFT) computation. However, the β-glycine crystal
was a metastable polymorph [52]. They also synthesized γ-
glycine single crystals and obtained a piezoelectric constant
d33 of 9.93 pmV−1 [52]. The amino acid-based device
enabled a maximum output voltage of ~0.45V under a force
of ~0.172N (Figure 3(g)) [52].

5.2. Semiconductivity. In addition to piezoelectric properties,
semiconductivity was also found in peptides. A cyclo-FF
nanowire obtained by annealing linear FF powders at high
temperature displayed semiconductive properties [102].
The current-voltage (I −V) curve of FF peptides showed that
the current increased from -1.5 nA to -5.0 nA at a constant
voltage of 10V when the temperature increases from
273K to 387K (Figure 4(a)) [102]. Compared to FF, the
conductance of FW was nearly three times higher than
that of FF (0.5 nS) and reached 1.4 nS (Figure 4(b)) [103].

The semiconductivity of peptides was evaluated by DFT
calculations. Cyclo-FF possessed a wide bandgap of 6.41 eV
[104], while cyclo-FW exhibited a small bandgap of 3.63 eV
[105]. The calculated bandgap of cyclo-WW (3.56 eV) was
narrower than that of cyclo-FW (3.63 eV) (Figure 4(c))
[105]. The lower bandgap of cyclo-WW was due to the
increased hydrogen bonding and aromatic interactions in
cyclo-WW, when F was replaced by W [98]. In contrast to
the cyclo-structure, the linear structure of peptides exhibited
a smaller bandgap, owing to the easy electron transport in
the linear structure and easy hole transport in the cyclo-struc-
ture [104]. In a calculated linear peptide mode, FW tubes
showed the lowest energy bandgap (3.04 eV), followed by
dityrosine (YY) and FF tubes (Figure 4(d)) [106]. It was
noted that YY had an energy bandgap of 3.24 eV, slightly
higher than the energy bandgap of FW. In addition, the
energy bandgap of YY was lower than that of FF (4.48 eV)
[106]. Those peptides belong to wide-gap biomaterials [61,
107]. Researchers have been devoted in studying peptide's
electronic properties [108]. Researches showed that the exis-
tence of water molecules in central hydrophilic channels
decreased the band gap of FF and promoted the probability
of electron hopping, leading to the increase of conductivity
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[109]. The conductivity of orthorhombic FF peptides
increased by doping with poly(allylamine hydrochloride)
(PAH) agents [110]. A significant decrease in the peptide’s
bandgap was achieved, and the decreased value reached 1 eV.

Semiconductive properties have been studied not only in
piezoelectric peptides, but also in piezoelectric amino acids
and proteins. The bandgap for a γ-glycine crystal was calcu-
lated as 5.02 eV, indicating insulation characteristics [111].
However, some previous studies revealed that proteins pos-
sessed inherent conductivity properties [112–114]. Protein
arrays of DNA templating can self-assemble into 4 × 4 rib-
bons that serve as templates for a highly conductive single sil-
ver nanoribbon (Figure 4(e)) [115]. This device was
measured with a voltage ranging from -0.2 to 0.2V and the
resistance was found to be 200 Ohm, corresponding to a
resistivity of 2:4 × 10−6 Ohm · m for silver nanowires.
5.3. Optical Properties. Self-assembly piezoelectric peptides
showed attractive optical properties, like photoluminescent
(PL) and optical waveguiding, owing to the inherent hydro-
gen bonding and aromatic supramolecular packing networks
[108]. After packing, the energy losses caused by intermolec-
ular energy transfer was impeded by the limitation of molec-
ular rotations and vibrations, leading to the excitation of
photons [54]. The photon excitation with different wave-
length ranges for peptides was found. A peak of excitation
wavelength located at 284nm was found in FF monomers
that were excited at 260nm [116]. While monomers were
self-assembled into aligned nanotubes, two red shifted peaks
containing a main peak at 305nm located at the ultraviolet
(UV) region and a second peak at 400-500nm located at
the blue region were observed [116]. When linear FF pow-
ders grew into cyclo-FF nanotubes with a vapor-transported
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process, a strong blue emission at 465 nm was found [102].
Emission in blue light region (420 nm) was also found in
cyclo-GW when it was excited at 300-400nm (Figure 5(a))
[54]. In addition to UV and blue emission, red emission
was found under excitation at 515-560nm in an FF nano-
tube, because of its inherent guest dye fluorescence [117].

The PL intensity and peak position of self-assembled
peptides were adjusted by introducing dopants, modifying
the aromatic moieties, or controlling the contents of water
[105, 118]. The UV emission peak position of an FF peptide
nanotube was influenced by the presence of H2O molecules
in their channel core (Figures 5(b)–5(d)) [119]. With the
increase of H2O molecule contents, the UV PL peak position
tended to redshift owing to the splitting of valence-band
peaks with the increase of H2O molecules. When FW peptide
nanoparticles were self-assembled with Zn(II), a blue fluores-
cence emission was found at 370nm [120]. A high fluores-
cence intensity in FW peptide nanoparticles modified with
MUC1 aptamers enabled their use in fluorescence bioima-
ging for recognizing and sensing cancer cells (Figure 5(e)).
Besides, the FW nanoparticles conjugated with the anthracy-
cline chemotherapy drug DOX enabled the real-time moni-
toring of drug release [120].

In addition to PL properties, self-assembly peptides
exhibited optical waveguiding properties. An optical wave-
guiding phenomenon was found in cyclo-FW peptides
when the peptide was excited with a laser. The position
and intensity of laser excitation on samples affected the
intensity of the excitation laser output at both ends of
cyclo-FW (Figure 5(f)) [98]. By adding formaldehyde into
an FF organogel, FF peptide platelets with thicknesses from
tens to hundreds of nanometers were obtained [121]. Thin
FF peptides have optical waveguiding properties, enabling
red emission and light propagation to the end of nanobelts
[121]. The intensity of optical waveguiding was influenced
by the incident angle. With the incident angle increased,
more output light transmitted to its end sides [122]. When
FF was doped with rhodamine B (RhB), FF-RhB microrods
enabled an optical waveguide property at the excited wave-
number of 561nm [65].

5.4. Physical Properties. Thermostability and mechanical sta-
bility are important for practical applications of materials in
the field of flexible devices, especially in nanogenerators
and strain sensors. γ-Glycine crystals synthesized by a gel
method showed a thermal stability of up to 170°C [87].
Peptide nanotubes enabled stabilization in diverse organic
solvents and at high temperatures of up to 300°C [123]. The
morphology of FF nanotubes was kept at a temperature up
to 150°C [67]. When the temperature was higher than
150°C, the crystal structure of FF transformed from a hexag-
onal structure to an orthorhombic structure, indicating the
limited thermal stability of linear FF peptides [124]. Com-
pared to linear FF, cyclo-peptides like cyclo-GW and cyclo-
FW peptides have better thermal stability, and they can bear
a temperature up to 370°C [54, 98]. Like linear FF, the γ-gly-
cine crystal was transformed into α-form as the temperature
was higher than ~168°C [125].

Peptides and metabolite materials exhibited fascinating
mechanical properties. A Young’s modulus of ~19GPa was



Table 1: Summary of some peptides and metabolite materials.

Materials Crystal structures Properties of interests Ref.

FF microrods Hexagonal (P61) Piezoelectricity (d33 = 17:9 pmV−1) [53]

Fmoc-FF Piezoelectricity (d15 = 33:7 ± 0:7 pmV−1) [56]

cyclo-GW Monoclinic (P21) Piezoelectricity (d36 = 14:1 pCN−1) [54]

cyclo-FW crystals Orthorhombic (P212121) Piezoelectricity [98]

β-Glycine Monoclinic (P21) Piezoelectricity (d16 = 178 pmV−1) [52]

γ-Glycine Trigonal (P32) Piezoelectricity (d33 = 9:93 pmV−1) [52]

cyclo-FF Orthorhombic (P21212) Ferroelectricity [73]

cyclo-FF Orthorhombic (P21212) Conductivity (ΔE = 6:41 eV) [104]

cyclo-FW Orthorhombic (P212121) Conductivity (ΔE = 3:63 eV) [105]

FF nanotubes Hexagonal (P61) Optical properties (ultraviolet and blue emission) [116]

cyclo-FF Orthorhombic (P21212) Optical properties (blue emission) [101]

cyclo-GW Monoclinic (P21) Optical properties (blue fluorescence) [54]

cyclo-FW Orthorhombic (P212121) Optical waveguiding properties [98]

γ-Glycine crystals Trigonal (P31) Thermally stable up to 170°C [87]

FF nanotubes Hexagonal (P61) Thermally stable up to 150°C [67]

cyclo-GW Monoclinic (P21) Thermally stable up to 370°C [54]

cyclo-FW Orthorhombic (P212121) Thermally stable up to 370°C [98]

FF nanotubes Hexagonal (P61) Young’s modulus: 27GPa [127]

γ-Glycine Young’s modulus along the (100) plane: 28GPa [129]
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found in FF peptide tubes [126]. FF nanotubes synthesized in
solution exhibited a Young’s modulus of 27GPa and a shear
modulus of 0.21GPa [127]. The unique stiffness and robust-
ness of FF were investigated by DFT calculations. The reason
was ascribed to an array of rigid nanotube backbones with an
interpenetrating “zipper-like” aromatic interlock in FF nano-
tubes [128]. Besides, the stiffness is highly dependent on the
existence of hydrogen bonds in molecular structures, and
the maximal Young’s modulus was achieved when a stress
was applied along the hydrogen bonding network [129].
The improvement in the Young’s modulus was achieved by
forming networks of hydrogen bonds [130]. Boc-Phe-Phe-
OH (Boc-FF) nanospheres with lateral hydrogen bonding
networks and a parallel orientation of building blocks exhib-
ited a Young’s modulus as high as 275GPa, making it a fasci-
natingly stiff and strong organic material [69]. FF peptides
with high mechanical tolerance allowed them to be used as
nanofillers to improve the mechanical properties of epoxy
[131]. Both the shear and peel strength were increased by
70% and 450%, respectively, as compared to undecorated
epoxy [131]. The Young’s modulus of amino acid crystals
was found to be unusually large and highly anisotropic
[129]. α-Glycine exhibited a high Young’s modulus of
44GPa along the (001) face and 29GPa along the (010) face.
The γ-glycine showed a Young’s modulus of 28GPa along
the (100) face [129]. Based on the calculation, the minimum
Young’s modulus is in the order of 10-20GPa and the
maximum Young’s modulus is in the order of 70-90GPa.
The phenomenon of mechanical anisotropy was found in
collagen fibrils [132]. They showed a calculated shear
modulus of up to 33MPa and an experimental shear modu-
lus of 2.9MPa in phosphate-buffered saline, 3.4MPa in
phosphate-buffered saline, and 74MPa at ambient condi-
tions, respectively [132]. Crystal structures and properties
of peptides and metabolite materials are summarized in
Table 1.

6. Conclusion and Outlook

The inherent piezoelectricity found in peptide and metabo-
lite materials enables their applications in fields of nanogen-
erators and sensors. Their piezoelectric properties were
controlled by their chemical composition, crystal structure,
and growing process. Taking advantage of their intrinsic bio-
compatibility and degradability, these biomaterials are prom-
ising candidates for implantable devices for human health
monitoring and tissue engineering. Degradable sensors based
on piezoelectric biomaterials may precisely monitor tissue
regeneration status in real time and decompose into harmless
amino acids at the end of its life. However, several challenges
remain for the application of peptide and metabolite mate-
rials. First, the mechanism of piezoelectricity in biomaterials
needs to be further explored. Biomaterials are distinct from
piezoelectric ceramics, and more and more piezoelectric bio-
materials are discovered in recent years. Molecular dynamics
simulation may help reveal the mechanism of piezoelectricity
in biomaterials. Second, large-scale and ordered biomaterial
arrays with a uniform polarization and strong piezoelectricity
need to be developed. High-performance sensors and nano-
generators ask for materials of good piezoelectricity and uni-
form polarization. Well-designed piezoelectric biomaterials
with desired features are still difficult to achieve. Electrical
and magnetic fields were proven to affect the polarization
of biomaterials and the alignment of nanostructures, and
new growth methods need to be developed to achieve
piezoelectric biomaterials with controlled properties. Third,
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thermally and chemically stable piezoelectric biomaterials
need to be studied in order to put them into practical
applications. Biomaterials, especially amino acids, with sta-
ble crystal structures and properties in working environ-
ments need to be investigated. Last but not the least,
unique properties and corresponding applications of peptide
and metabolite materials need to be explored. Developing
multifunctional devices to meet various application require-
ments is an important development trend nowadays.

Good piezoelectric properties, conductivity, optical prop-
erties, and mechanical properties of peptide and metabolite
materials endow them with great potentials for various
devices. Combining piezoelectricity with semiconductivity,
the peptide and metabolite materials can be used for the
fabrication of biomaterial-based piezotronic devices. The
peptides with outstanding optical properties allow their
application in cell imaging. Piezoelectric peptide and metab-
olite materials with fascinating electronic, optical, and phys-
ical properties are promising for fabricating biocompatible,
degradable, and multifunctional devices, such as an implant-
able device for real-time health monitoring.
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