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Abstract

Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-

dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the

peroxisome, apoplast and cytoplasm and play an essential role in growth and developmen-

tal processes and response to biotic and abiotic stresses. Here, we identified PAO genes in

common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the

genome organization, evolutionary features and expression profiles of the wheat PAO

genes (TaPAO). Expression analysis using publicly available RNASeq data showed that

TaPAO genes are expressed redundantly in various tissues and developmental stages. A

large percentage of TaPAOs respond significantly to abiotic stresses, especially tempera-

ture (i.e. heat and cold stress). Some TaPAOs were also involved in response to other

stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may

have various functions in stress tolerances responses, and play vital roles in different tis-

sues and developmental stages. Our results provided a reference for further functional

investigation of TaPAO proteins.

Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD genome), is one of the most

important cereal crops. It is constantly exposed to abiotic and biotic stresses such as heat, cold,

salinity, drought and various fungal diseases. These stresses reduce growth and yield and may

cause plant death. Therefore it is essential to understand how wheat adapts and survives in

stressful environments, and to develop methods to increase its tolerance under environmental

stresses [1].

Polyamines (PAs), are small aliphatic amines of low molecular weight that are involved in

various developmental processes in living organisms. Main PAs in cells include diamine

putrescine (Put), triamine spermidine (Spd), tetramines spermine (Spm), cadaverine (Cad)

and thermospermine (T-Spm). Due to their cationic nature, polyamines are capable of binding

to negatively charged molecules such as RNA and DNA and affect gene expression, protein
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synthesis and regulation of ion channels [2]. De novo production of PAs in plants includes Put

production directly from ornithine by ornithine decarboxylase (ODC), or indirectly from argi-

nine by arginine decarboxylase (ADC) [1]. Put is then converted into Spd by spermidine

synthase with the addition of an amino propyl moiety donated by decarboxylated S-adenosyl

methionine (dcSAM). Similarly, Spm (and its isomer T-Spm) is formed from Spd via Spm

synthase, with the same amino propyl group rendered by dcSAM [3, 4] (Fig 1).

PAs can be oxidized by copper-containing diamine oxidases (CuAOs or DAOs) and flavin-

containing (FAD-containing) polyamine oxidases (PAOs) [5]. DAOs mainly catalyze the oxi-

dation of Put and Cad producing 4-aminobutanal, ammonia (NH3) and hydrogen peroxide

(H2O2) [6, 7]. PAOs are divided into two major groups. The first group catalyzes Spd and Spm

to produce 1,3-diaminopropane (DAP), H2O2, and N-(3-aminopropyl)-4-aminobutanal or 4-

aminobutanal, which is referred to as the terminal catabolism (TC) pathway [5, 7, 8]. The sec-

ond group is involved in the back conversion (BC) pathway by converting Spm back to Spd

and Spd to Put [7, 9].

Plants accumulate osmolyte compounds in response to abiotic stresses such as drought and

salinity. Major cellular osmolytes including proline, glycine betaine, and PAs are found in

plants, animals, and bacteria [10]. In plants, PAs are essential for development and stress

response. Many plant processes such as embryogenesis, organogenesis, particularly flower ini-

tiation and development, fruit setting and ripening, as well as leaf senescence, require PAs [3,

Fig 1. Polyamine biosynthesis in plants. ADC, arginine decarboxylase; AIH, agmatine iminohydrolase; CPA, N-carbamoyl putrescine amidohydrolase;

dcSAM: decarboxylated S-adenosylmethionine; SAM: S-adenosylmethionine; SAMDC: S-adenosylmethionine decarboxylase; SPDS: spermidine

synthase; SPMS: spermine synthase; TSPMS: thermospermine synthase; spermidine synthase: SPDS; spermine synthase: SPMS; PAO: polyamine oxidase.

The donor of the aminopropyl groups is dc-SAM, which is formed by decarboxylation of SAM, through an enzymatic reaction catalyzed by SAMDC. The

aminopropyltransferases donating aminopropyl residue to Put or Spd for production of Spd or Spm are SPDS and SPMS.

https://doi.org/10.1371/journal.pone.0236226.g001
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11]. Cells need to maintain the homeostasis of PAs through their modulation, biosynthesis,

conjugation, and transport, since high concentrations of polyamines are highly toxic [12].

Spd and Spm and Put levels are differentially regulated by environmental stresses [13],

although the mechanism of PA action in response to stresses still remain unclear. Put levels are

increased with low potassium (K+) availability in plants suggest that Put and its catabolites pos-

sess a potential in controlling cellular K+ and Ca2+ [14]. During drought, the PA pathway is

activated which leads to a Put to Spd canalization that is ABA-dependent. Drought tolerant

and sensitive cultivars seem to be different in their capacity to accumulate different PAs over a

minimum threshold [15].

H2O2 produced through PA oxidation is involved in a hyper-sensitive (HR) reaction that

can lead to bacterial pathogen tolerance [16]. Exogenous Spm results in HR-mediated resis-

tance of Arabidopsis leaves to cucumber mosaic virus via the induction of the expression of

some H2O2 -dependent signaling components and transcription factors. Addition of a PAO

inhibitor represses the activation of defense genes and alleviates ROS generation and HR, con-

firming that PAO is involved in the resistance response [17]. There is evidence that PA oxida-

tion in the apoplast together with the generated reactive oxygen species (ROS) are involved in

programmed cell death (PCD) and xylem differentiation [3]. The transcript levels of PA syn-

thesis genes, and the activities of corresponding enzymes are responsive to stresses, providing

a relationship between polyamine and stresses [1]. Plant PAOs play significant roles in metal

(e.g. aluminum, copper, and cadmium) toxicity tolerance [18–22]. In wheat, the cell wall-

bound PAO (CW-PAO) oxidized Spd and generated H2O2 under aluminum toxicity but Put

application resulted in plant tolerance against Aluminum-induced oxidative stress via inhibit-

ing PAO activity and hence lowering H2O2 production [20].

PAO genes have been isolated and characterized from several model plants. One of the first

polyamine oxidases identified was a FAD-based PAO in maize apoplast, a 53-kDa monomeric

glycoprotein enzyme [23]. Most of the identified plant PAO genes such as A. thaliana AtPAO1
to AtPAO5 are involved in the BC pathway. AtPAO1 and AtPAO5 are located in the cyto-

plasm, while AtPAO2, AtPAO3 and AtPAO4 have a peroxisomal localization [24–26].

AtPAO1 is involved in biotic and abiotic stress tolerance and may play roles in root develop-

ment and fertility. On the other hand AtPAO2 might be involved in root, shoot, leaf, and

flower development. AtPAO3 and AtPAO4 are expressed in all tissues and whole growth

stages and show similar expression patterns [27, 28]. Rice harbors seven PAO genes. OsPAO3
and OsPAO5 are very similar and highly expressed in both the seedling stage and in mature

plants, while the other PAO members are only expressed at very low levels in all plant tissues.

OsPAO4 and OsPAO5 prefer to use Spm and T-Spm as substrates, but cannot oxidize Spd to

Put. Therefore, OsPAO3 catalyzes a full BC-type pathway, while OsPAO4 and OsPAO5 only

catalyze a partial BC-type pathway [4].

In the present study, PAO genes were identified in T. aestivum, T. urartu and Aegilops
tauschii using bioinformatic approaches and their gene structure, conserved protein motifs

and domains and phylogenetic relationships were analyzed. Furthermore, we examined the

expression of the wheat PAO genes over different tissues and developmental stages and in

response to biotic and abiotic stresses.

Materials and methods

Identification of PAO genes

Polyamine oxidase genes of common wheat (T. aestivum) and its relatives T. urartu and Ae.
tauschii, were identified by BLASTP search, Hidden Markov Model (HMM) analysis and vali-

dation of conservative domains. For this, the Arabidopsis, barley (Hordeum vulgare), maize
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(Zea mays), rice (Oryza sativa) and Brachypodium distachyon PAO protein sequences (S1

Text) were used as queries to perform BLASTP searches against the T. aestivum, T. urartu and

Ae. tauschii genome (E-value < 1e-5) in the EnsemblPlants database at https://plants.ensembl.

org. Furthermore, an HMM matrix of five AtPAO and seven OsPAO protein sequences was

used to search the PAO proteins in jackhmmer (https://www.ebi.ac.uk/tools/hmmer/search/

jackhmmer) [29]. We then selected the unique sequences of the above two search results and

checked them for the presence of each of the amine oxidase domains (Pfam: PF01593) alone

or in combination with copper amine oxidase (N2 and/or N3-terminal), using the Pfam

(https://pfam.xfam.org) and InterPro (http://www.ebi.ac.uk/interpro) databases. Proteins with

amine oxidase in combination with other extra domains were excluded, as such architectures

are known to have functions different from PAO. For example, plant lysine histone demethy-

lases which possess an additional SWIRM domain are involved in demethylation of mono-

and di-methylated lysines of histones [30]. Other described genes such as zeta-carotene desa-

turase, protoporphyrinogen oxidase, prolycopene isomerase and protein FLOWERING locus

D-like protein were also excluded.

Identification of orthologs and homoeologs

PAO homoeologous genes and pairwise gene orthologs among T. aestivum, T. urartu, Ae.
tauschii, A. thaliana and O. sativa, barley, maize, rice and Brachypodium distachyon were iden-

tified through the “homoeologous” and “orthologoues” links in the gene-based display of the

EnsemblPlants summary page for each target gene. PAO genes were mapped to their respective

locus in the wheat genome in a circular diagram using shinyCircos [31] where homoeologous

chromosomes were aligned close together and banded according to the general FISH patterns

of pTa535-1 and (GAA)10 probes.

Characterization of TaPAO genes

Characteristics of each of the identified amino oxidase proteins such as isoelectric point (pI),

amino acid sequence length (AA) and molecular weight (MW) were obtained from the Prot-

Param website at https://web.expasy.org/protparam [32]. A GFF3 annotation file containing

the locations of TaPAOs in genome and their structural information was extracted from the

wheat GFF3 file and the exon-intron structures was displayed using the Gene Structure Dis-

play Server (GSDS, http://gsds.cbi.pku.edu.cn) [33]. The conserved domains of the TaPAO

protein sequences were searched from Pfam [34] and MEME [35] websites and the resulting

files were visualized in TBtools software [36]. Wheat and rice PAO protein sequences were

also aligned in Jalview [37] and the locations of the domains identified by MEME, were deter-

mined on the alignment output file.

Phylogenetic analysis

Multiple sequence alignment of the full-length protein sequences of the identified PAO pro-

teins was performed using the “msa” package [38] of R version 3.6.1 (The R Project for Statisti-

cal Computing, Vienna, Austria). Subsequently, a neighbor-joining tree was obtained with 100

bootstrap replicates using the “ape” package [39] and used to generate a tree in R using the

“ggtree” package [40].

Expression analysis of TaPAO genes using RNAseq

RNAseq data of 30 TaPAO genes was retrieved from www.wheat-expression.com [41] as pro-

cessed expression values in transcripts per million (TPM) for all the available tissues and
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developmental stages [42] and for response to different stresses including Fusarium [43, 44],

cold [45], Zymoseptoria [46], heat and drought [47], phosphorous starvation [48], powdery

mildew [49] and PEG (https://www.ebi.ac.uk/ena/browser/view/PRJNA306536). TaPAO gene

expression values were transformed and used to generate barplots in R. Count matrix data of

all experiments were also downloaded and used for differential gene expression analysis, using

the DESeq2 package [50] to statistically compare the mean expression level of each TaPAO
gene between control and stress conditions. A heatmap was generated from log2(TPM+1)

transformed values of TaPAO genes over developmental stages using R package “pheatmap”.

Ternary plots were generated from the stress response data using the R package ggtern [51].

For this, genes with zero expression in all homoeologs were excluded.

Detecting alternative splicing events among TaPAOs
Wheat genome sequences and annotations (IWGSC RefSeq v1.0) [52] were downloaded from

https://plants.ensembl.org/info/website/ftp/index.html. In order to detect and visualize the

alternative splice variants, we firstly downloaded RNAseq reads [SRP043554, 45] from https://

www.ebi.ac.uk. RNAseq data belong to the wheat plants (‘Manitou’ cultivar) in three-leaf stage

at normal (grown at 23˚C for 4 weeks after germination) and cold stress (grown at 23˚C for 2

weeks followed by 4˚C for another 2 weeks) conditions. After removing the low quality reads

and inspecting for adapter sequences, the raw RNA sequence data from each sample were

mapped to the wheat reference genome using HISAT2 and transcripts were assembled and

merged using StringTie with default settings [53]. Normalization of abundance estimates as

FPKM (fragments per kilobase of transcript per million mapped reads) values, differential

gene and transcript expression analysis and graphical displaying of alternative splice variants

were done using the “ballgown” package [54].

Results

Identification of PAO proteins in common wheat, T. urartu and Ae. tauschii
BLASTP and the Hidden Markov Model (HMM) matrix of Arabidopsis, barley, maize, rice

and B. distachyon polyamine oxidase genes (S1 Text) was used to search the amino oxidase

proteins in common wheat, Ae. tauschii and T. urartu protein databases. In total, after verifica-

tion of the identified sequences for the presence of each amino_oxidase domain (Pfam:

PF01593) or copper amine oxidase-catalytic domain, either alone or in combination with cop-

per amine oxidase (N2 and/or N3-terminal), 30 PAO genes in T. aestivum, 6 PAO genes in T.

urartu and 7 PAO genes in Ae. tauschii were identified. These genes were named TaPAO1 to

TaPAO11, followed by the name of the harbouring chromosome. For those identified PAO
genes which were orthologous to rice PAOs, the same numbers were assigned as for the rice

PAO genes (Table 1).

Phylogeny and characterization of PAO genes

The sequence length of TaPAO proteins ranged from 340 (TaPAO2-2A) to 585 (TaPAO8-1A,

TaPAO8-5B and TaPAOUn) amino acids. The average molecular weight was 54.68 kDa, vary-

ing between 37.87 kDa (TaPAO2-2A) and 62.42 kDa (TaPAO8-5B). The isoelectric points (pI)

of TaPAO members ranged from 5.02 (TaPAO2-2A) to 9.30 (TaPAO7-4A), with an average of

6.11, showing a weak acidity (Table 1). In order to identify the evolutionary relationships

between PAO members, a phylogenetic tree of 63 PAO protein sequences belonging to T. aes-
tivum, T. urartu, A. tauschii, O. sativa, B. distachyon, H. vulgare, Z. mays and A. thaliana was

constructed using protein sequences based on the neighbor-joining method. The tree clustered
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Table 1. Information and physicochemical characteristics of PAO genes in bread wheat, T. urartu and Ae. tauschii.

Species Name Transcript ID AA MW (kDa) pI ASN D ASN��

TuPAO5 TRIUR3_11268-T1 520 57376.68 5.34 1 + -

TuPAO9 TRIUR3_14057-T1 504 56367.99 6.45 1 + -

T. urartu TuPAO6 TRIUR3_12020-T1 454 50979.07 7.12 1 + -

TuPAO3 TRIUR3_18876-T1 484 53632.17 5.34 1 - -

TuPAO4 TRIUR3_11269-T1 520 57376.68 5.34 1 + -

TuPAO10 TRIUR3_14834-T1 490 55178.33 5.36 1 + -

AetPAO4-2D AET2Gv21199400.1 490 53358.12 5.36 10 + -

AetPAO3-2D AET2Gv21031900.5 513 57023.23 5.51 36 - -

AetPAO5-2D AET2Gv21199100.12 492 54373.33 5.51 15 + -

Ae. tauschii AetPAO7-4D AET4Gv20654900.7 526 59025.88 6.55 12 - -

AetPAO6-7D AET7Gv21301800.1 498 55934.48 5.99 6 - -

AetPAO11-7D AET7Gv20928100.8 503 56533.91 5.64 11 - -

AetPAO1-3D AET3Gv20612000.2 517 55184.35 5.09 3 + -

TaPAO8-1A TraesCS1A02G407600.1 585 61964.34 7.93 1 + 3

TaPAO8-5B TraesCS5B02G529400.1 585 62050.42 8.40 1 - 4

TaPAO8-5D TraesCS5D02G528500.1 582 61688.97 7.59 1 - 2

TaPAO10-4B TraesCS4B02G385300.1 481 53676.73 5.76 1 - 1

TaPAO10-5A TraesCS5A02G549600.1 495 55509.74 5.60 1 + 1

TaPAO11-7A TraesCS7A02G378800.1 457 51891.59 5.55 1 - 1

TaPAO11-7B TraesCS7B02G280700.1 477 54210.02 5.55 1 - 2

TaPAO11-7D TraesCS7D02G375700.1 503 56533.91 5.64 2 - 2

TaPAO2-2A TraesCS2A02G053400.1 340 37651.87 5.02 1 - 1

TaPAO3-2A� TraesCS2A02G467300.1 484 53646. 20 5.34 1 - 2

TaPAO3-2B� TraesCS2B02G490100.1 484 53604.16 5.34 1 - 3

TaPAO3-2D� TraesCS2D02G467300.1 484 53632.17 5.34 1 - 2

T. aestivum TaPAO4-2A� TraesCS2A02G548200.1 490 53266.07 5.37 1 + 2

TaPAO4-2B� TraesCS2B02G579100.1 490 53312.05 5.35 1 + 1

TaPAO4-2D� TraesCS2D02G549300.1 540 58748.37 5.64 1 + 2

TaPAO5-2A� TraesCS2A02G548100.1 487 53768.67 5.44 1 + 4

TaPAO5-2B� TraesCS2B02G579000.1 526 57604.88 5.45 1 + 2

TaPAO5-2D� TraesCS2D02G549200.1 492 54373.33 5.51 3 + 4

TaPAO6-7A� TraesCS7A02G539200.1 508 56928.63 6.58 2 - 2

TaPAO6-7B� TraesCS7B02G461800.1 495 55486.12 6.40 1 + 1

TaPAO6-7D� TraesCS7D02G524900.1 498 55946.45 5.99 1 + 1

TaPAO9-2A TraesCS2A02G159500.1 474 49845.89 6.27 1 + 1

TaPAO9-2B TraesCS2B02G185100.1 471 49635.65 6.11 1 + 1

TaPAO1-3A� TraesCS3A02G250700.1 510 54902.17 5.49 1 + 1

TaPAO1-3B� TraesCS3B02G280200.1 507 54518.62 5.22 1 + 1

TaPAO1-3D� TraesCS3D02G251100.1 491 52509.23 5.07 1 + 1

TaPAO7-4A TraesCS4A02G039600.1 468 52554.66 9.30 3 + 3

TaPAO7-4B TraesCS4B02G265900.1 493 55334.93 7.23 1 - 1

TaPAO7-4D TraesCS4D02G265800.1 493 55354.78 6.52 1 - 1

TaPAOUn TraesCSU02G062000.1 585 61995.31 7.58 1 + 1

AA, amino acid sequence length; MW, molecular weight; pI, isoelectric point. ASN: alternative splice variants. “1” indicates only a single transcript.

�: wheat PAO genes that are confidently orthologous with the corresponding rice PAOs. ASN: alternative splice variants from EnsemblPlants. D: gene direction, ‘+’:

forward. ‘-’: reverse.

ASN��: alternative splice variants identified in ‘Manitou’ cultivar from experiment SRP043554.

https://doi.org/10.1371/journal.pone.0236226.t001
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the PAOs into six clades (Fig 2). Clade I contains three TaPAO6 homoeologs plus AetPAO6-

7D of Ae. tauschii, TuPA6 of T. urartu and BdPAO1 of B. distachyon. Clade II was composed

of TaPAO7, TaPAO10 and TaPAO11 homoeologs, HvPAO1 and HvPAO2 of H. vulgare,
TuPAO7, TuPAO10, AetPAO7, AetPAO11. ZmPAO1 of Z. mays and O. sativa OsPAO2,

OsPAO6 and OsPAO7 proteins are also in the clade II which are involved in the TC catabo-

lism pathway (Fig 1). Clade III was composed of TaPAO1 homoeologs plus AetPAO1-3D of

Ae. tauschii together with OsPAO1, BdPAO5 and AtPAO5. Clade IV was the biggest clade

with 24 PAO proteins containing TaPAO3, four and five homoeologs together with their

orthologs from T. urartu, Ae. tauschii, B. distachyon and O. sativa plus AtPAO2~4. Clade-V

Fig 2. Phylogenetic tree of PAO proteins from T. aestivum, T. urartu and Ae. tauschii, A. thaliana, B. distachyon, H. vulgare, O. sativa and Z.

mays.

https://doi.org/10.1371/journal.pone.0236226.g002
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had seven members including TaPAO8 and TaPAO9 homoeologs together with TaPAO2-2A

and TaPAOUn. Clade VI contained only AtPAO1, which appeared significantly different from

other characterized PAOs. Taken together, it seems that the identified wheat PAOs in the pres-

ent study were not equally distributed among the different clades. Based on the retrieved data

from EnsemblPlants, TaPAO5-2D, TaPAO6-7A, TaPAO7-4A, TaPAO11-7D and all the Ae.
tauschii genes produces multiple splice variant (Table 1).

Analysis of chromosomal locations of TaPAO genes

A physical map of the location of the TaPAO genes on the A, B, and D chromosomes is illus-

trated in Fig 3. The TaPAO genes were mapped to 16 wheat chromosomes plus the unassembled

(Un) part of the genome. Homoeologs were connected using central links. Homoeologous

chromosomes were aligned close together and banded according to the general FISH patterns

of pTa535-1 and (GAA)10 probes. The TaPAO genes showed uneven distribution across the A,

B, and D subgenomes with a higher density on homoeologous group 2, and absence on chro-

mosomes 1B, 1D and 6A, 6B and 6D. TaPAO3, TaPAO4 and TaPAO5 showed a similar exon/

intron structure (Fig 4) and were located together on the distal end of the long arm of homoeo-

logous group 2, with the same order. TaPAO6 and TaPAO11 were also located close together

on homoeologous group 7A, 7B and 7D but did not show noticeable structural similarity.

Structure, domain and motif analysis of TaPAO genes

Exon–intron structural diversity within a gene family is an important clue for the evolutionary

and functional analyses of gene family members. Gene structure, exons and introns were

obtained for the identified 30 TaPAO genes to interrogate their genomic organization (Fig

4A). Based on the wheat genome annotation, most TaPAO genes have introns in their struc-

ture and the number of exons varied from 1 (TaPAO9-2A, TaPAO9-2B, TaPAO1-3A and

TaPAO1-3B) to 11 (TaPAO5-2B).

Protein domain analysis showed that most TaPAO members contained a typical amino_oxi-

dase catalytic domain (alone or in combination with DAO) plus an NAD/FAD binding domain,

with only TaPAO4-2A/-2B/-2D lacking an NAD/FAD binding domain (Fig 4B). The MEME

motif search tool identified six conserved motifs in TaPAO proteins (Fig 5). The distribution pat-

terns of these motifs in TaPAO proteins is shown in Fig 4C. Motif 3 is present in all TaPAO pro-

teins except TaPAO2-2A. Motif 6 uniformly distributed to all TaPAOs except TaPAO11-7A/-7B

and TaPAO2-2A. Motif 1 was available in all TaPAO except TaPAO2-2A, TaPAO1-3A/3B/3D,

TaPAO9-2A/2B, TaPAO8-1A/5B/5D and TaPAO-Un. Motifs 2, 4 and 5 were present in all

TaPAOs except TaPAO2-2A, TaPAO9-2A/2B, TaPAO8-1A/5B/5D and TaPAO-Un (Fig 4C).

Expression profile analysis of TaPAOs under developmental stages

Analysis of expression profiles of TaPAO genes at various tissue and developmental stages

using the expVIP data revealed that most TaPAOs are differentially expressed during develop-

mental stages. For example, TaPAO3-2A/2B, TaPAO4-2A/2B/2D and TaPAO5-2A/2B/2D are

highly expressed in specific tissues and developmental stages. The expression levels of

TaPAO11-7D increased dramatically in some tissues such as leaf sheath, ligule, spike and

spikelet during developmental stages. TaPAO8-1A/5B/5D genes also showed a clear tissue and

developmental specific expression pattern and mainly downregulated in shoot, root and most

parts of spike such as flower, ovary, anther, embryo and grain (Fig 6). On the other hand,

TaPAO9-A/B/C, TaPAO7 and TaPAO10 are less responsive to different conditions, tissues and

developmental stages, although some homoeologs of these genes were active in some tissues

and developmental stages (Fig 6 and Fig 7).
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Expression profiles of TaPAOs under biotic and abiotic stresses

The differential expression of TaPAOs under biotic stresses (powdery mildew pathogen, Zymo-
septoria tritici, stripe rust and Fusarium graminearum pathogen infections) and abiotic stresses

(cold, heat, drought, heat and drought, phosphorus starvation and PEG) was assessed using

the downloaded RNAseq data from expVIP. Results show that the expression of TaPAO8,

TaPAO3, TaPAO4, TaPAO5, TaPAO1-3A and TaPAOUn was significantly upregulated in the

Fig 3. Chromosomal location of PAO genes on wheat chromosomes. Homoeologous genes were mapped to 16 wheat chromosomes (composed of A,

B, and D subgenomes) plus one unassembled chromosome (Un) using shinyCircos. Homoeologs were connected using central links. Chromosome were

banded according to pTa535-1 (red bands) and (GAA)10 (blue bands) FISH patterns. Chromosome number is indicated outside the outer circle.

https://doi.org/10.1371/journal.pone.0236226.g003
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leaf of the ‘Manitou’ cultivar under cold stress. However, TaPAO11-7A/7B/7D were downre-

gulated under the same condition (Fig 7A). Expression profiles of TaPAO-7D were also

slightly downregulated under phosphorus starvation (Fig 7J). Furthermore, the transcript

expressions of TaPAO3, TaPAO4 and TaPAO5 homoeologs were significantly increased under

heat or under a combination of heat and drought stresses relative to normal condition in seed-

ling leaves of the ‘TAM 107’ cultivar (Fig 7D and 7E), but these genes were not significantly

affected by drought stress (Fig 7F). An expression pattern relatively similar to heat stress was

observed for TaPAO3, TaPAO4 and TaPAO5 homoeologs under PEG treatment, although

they showed less expression abundance compared to under heat stress conditions (Fig 7H and

7G). Contrary to the cold (A), heat and drought (B) and heat (C) stresses, the expression of

TaPAO11 homoeologs was significantly increased under PEG treatment, especially in the

‘Giza 168’ cultivar. Interestingly, TaPAO3 and TaPAO4 genes were differentially expressed

between ‘Giza 168’ and ‘Gemmiza 10’: while the transcript levels of these genes decreased

under PEG in ‘Giza 168’, expression of some genes, such as TaPAO4 significantly increased

under similar condition in ‘Gemmiza 10’.

Although some other genes and homoeologs were differentially expressed in other experi-

ments, high variation in the data prevented reliable conclusions (Fig 7K and 7L). For example,

the expression of TaPAO4 homoeologs was significantly increased in coleoptile sheath

enclosed shoot tissue of common wheat ‘Chara’ three days after inoculation with F. grami-
nearum (Fig 7C). Some TaPAOs were also differentially expressed between non-inoculated

and inoculated leaves of the ‘N9134’ cultivar seven days after stripe rust and powdery mildew

stress treatment (Fig 7K and 7L).

Expression changes of TaPAO genes were also shown in ternary plots for the first three

experiments of Fig 7M, 7N and 7O. Ternary plots for the other TaPAO genes are presented in

S1 Fig. Wheat ternary plots, provide an immediate view about the relative expression and

abundance of homoeologous genes from each of the wheat three subgenomes. For example,

Fig 4. Gene structure, protein domain and motif analysis of TaPAOs. A) Exon–intron structures of TaPAO genes. B) Distribution of conserved

domains within TaPAO proteins. C) Distribution of all motifs identified by MEME.

https://doi.org/10.1371/journal.pone.0236226.g004
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the position of TaPAO11 on the plot shows that it is dominantly expressed from the D subge-

nomes (S1 Fig and Fig 7M), while TaPAO1 is mainly expressed from the A subgenomes.

Involvement of alternative splicing in TaPAO genes

To explore alternative splicing in TaPAO genes, the RNAseq data (45.31 Gb) from the leaves

of common wheat cultivar ‘Manitou’ exposed to normal (23˚C) and cold stress (4˚C) condi-

tions (accession number: SRP043554) was downloaded and aligned to the recent wheat refer-

ence genome. The overall alignment rate was 93.61%. Transcripts were assembled using

StringTie. Differential transcript expression analysis and graphical displaying of alternative

splice variants were done using the “Ballgown” package [54]. Compared to the number of

splice variants mentioned for each gene in EnsemblPlants, novel isoforms were identified for

12 out of 30 TaPAO genes (Table 1). Because the wheat annotation file was used by StringTie

during the assembly, most of the identified transcript should be due to alternative splicing.

Structure and expression levels of distinct isoforms of the TaPAO5-2D gene under normal

(23˚C) and stress (4˚C) conditions are illustrated in Fig 8, where isoforms expressed at higher

levels than the others are indicated by the darker color. Structure and expression levels of iso-

forms for the other TaPAO genes are presented in S2 Fig. For most genes, different isoforms

responded differently between normal and stress conditions (Fig 8 and S2 Fig). Among the

TaPAO genes, we did not identify any isoforms that were available only in one condition.

Fig 5. Multiple sequence alignment of wheat and rice PAO protein sequences. The locations and logos of the

conserved domains of TaPAO genes identified by MEM are indicated. Searching in Pfam identified domains 1, 2, 3 and

4 as Flavin containing amine oxidoreductase; domain 6 as NAD_binding_8 and no result was found for domain 5.

https://doi.org/10.1371/journal.pone.0236226.g005

Fig 6. Log2 based expression levels for several TaPAO genes in different tissues during developmental stages. TPM values belong to Ramı́rez-González,

Borrill (42) and retrieved from www.wheat-expression.com.

https://doi.org/10.1371/journal.pone.0236226.g006

PLOS ONE PAO gene family in common wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0236226 August 31, 2020 12 / 22

https://doi.org/10.1371/journal.pone.0236226.g005
http://www.wheat-expression.com/
https://doi.org/10.1371/journal.pone.0236226.g006
https://doi.org/10.1371/journal.pone.0236226


Fig 7. Barplots of the transcript expression rates (mean ± sd) of TaPAO genes in common wheat under different stress conditions including A) Leaf of

‘Manitou’ cultivar under normal (control) and cold stress conditions. B) ‘Chinese Spring’ cultivar 4 days after mock inoculation or inoculation with F.

graminearum. C) Coleoptile-sheath-enclosed shoot tissue of common wheat ‘Chara’, 3 days after mock inoculation or inoculation with F. graminearum. D, E

and F) seedlings of ‘TAM 107’ cultivar under a combined of heat and drought stress (40˚C and 20% PEG-6000) and normal (22˚C) conditions (D) heat

(40˚C) and normal (22˚C) conditions (E) and drought (20% PEG-6000) and control (22˚C) conditions (F). G and H) Leaf tissue of ‘Ciza 168’ and ‘Gemmiza

10’ under control and PEG treatment conditions. I) Leaves of the “Riband” cultivar after mock inoculation (control) or inoculation with Zymoseptoria tritici
isolate IPO323. J) Seedlings of the “Chinese Spring” cultivar 10 days after phosphorus starvation and under control conditions. K) Seedlings of the “N9134”

cultivar 7 days after mock inoculation or after inoculation with powdery mildew. L) Seedlings of the “N9134” cultivar seven days after mock inoculation or
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Discussion

Structural characterization of polyamine oxidase genes (PAOs) in wheat

In the present study, we identified six PAO genes in diploid T. urartu, seven in diploid Ae.
tauschii and 30 in hexaploid wheat (T. aestivum) by genome-wide approaches. We also struc-

turally and functionally characterized the TaPAO genes using the publicly available RNAseq

data. Previous studies have identified five PAO members in A. thaliana [55], seven in rice [4],

two in barley [56], one in maize [57], seven in tomato [58], six in sweet orange [1], five in B.

distachyon [59] and twelve in upland cotton [60].

The identified TaPAO genes are distributed on 16 out of 21 wheat chromosomes plus the

unassembled (Un) chromosome. As seen in the phylogenetic tree, each of the TaPAO homo-

eologous members aligned together in the same clade along with their T. urartu and Ae.
tauschii orthologs (Fig 2). The TaPAO genes generally showed an uneven distribution across

the A, B, and D subgenomes. Similar biased distribution of gene family members is wide-

spread. For example, TaWD40, TaGST and TabZIP family members are unevenly distributed

inoculation with stripe rust. In each experiment ‘� ’, ‘��’ and ‘���’ indicate statistically significant differences from control at 0.05, 0.01 and 0.005 significant

levels, based on DESeq2 adjusted p-values. M, N and O) Ternary plot showing relative expression abundance of TaPAO genes under different stress

conditions. In each ternary plot, a circle or a triangles reflects the relative contribution of homoeologs of a gene under the normal or stress condition

respectively, and their sizes indicate the total expression in TPM. The data code for each study and the evaluated wheat cultivar are also indicated at the top

(in barplots) or bottom (in ternary plots) of the subfigures.

https://doi.org/10.1371/journal.pone.0236226.g007

Fig 8. Expression levels in FPKM and the structure of distinct isoforms of the TaPAO5-2D gene under normal (23˚C) and

stress (4˚C) conditions from the SRP043554 experiment (A). Expression levels of isoforms are shown by barplots ± standard

deviations (B) and in varying shades of yellow (C). Boxes represent exons and horizontal lines connecting exons represent

introns.

https://doi.org/10.1371/journal.pone.0236226.g008
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across wheat chromosomes [61–63]. A high structural similarity of exon/intron structure

between TaPAO3, TaPAO4 and TaPAO5, and their close affinity at the distal end of the long

arm of homoeologous group 2 suggest that a gene duplication event might be involved in the

evolution of these genes [64].

Expression profile analysis of TaPAOs during developmental stages

Tissue expression profile analysis revealed that many TaPAOs are expressed in a redundant

manner in different tissues during developmental stages in bread wheat (Fig 5), supporting the

idea that PAOs are involved in various tissues during all developmental processes in all living

organisms [2, 6, 65].

Expression profiles analysis of TaPAOs in response to abiotic stress

It is believed that PA molecules and PAOs also participate in responses to various abiotic

stresses [6, 18, 65]. This has been specifically supported by the presence of putative cis-acting

elements in the promoter region of polyamine biosynthetic genes including ADC and

SAMDC which are regulated by transcription factors such as MYB, ABF and WRKY [66–68].

Concordantly, identification of consistently up- and downregulated expression patterns for a

number of TaPAOs such as TaPAO8, TaPAO4, TaPAO5 and TaPAO11 under cold, drought or

heat stresses suggest the involvement of PAO genes in multiple abiotic stress responses (Fig 6).

Specifically, TaPAOs clearly responded to low and high temperatures. A similar temperature

response has been suggested for PAO genes of cotton [60]. Similarly, MdPAO2 expression was

upregulated in apple fruit by elevating the CO2 concentrations under low-temperature/low-O2

storage [69]. In tomato, SlPAOs respond to abiotic stresses including heat, wounding, cold,

drought, and salt [58].

In wheat, polyamine oxidases, were salt-induced in a salinity-tolerant genotype and showed

higher expression compared with a salt-treated wild type, indicating that TaPAOs may play

important roles in salinity tolerance as well [70]. TaPAOs have also been involved in osmotic

stress: both abscisic acid pre-treatment and PEG induced osmotic stress, increased the Put, but

decreased the Spm contents in wheat leaves, suggesting a connection between PA metabolism

and abscisic acid signalling that leads to the controlled regulation and maintenance of Spd and

Spm levels under osmotic stress in wheat seedlings [71]. Compared to high temperature alone,

high temperature plus exogenous application of Spm and high temperature plus Spd signifi-

cantly increased grain weight of a heat-resistant wheat variety by 19% and 5%, and of a heat-

sensitive variety by 31% and 34%. Spm, Spd, and proline contents also increased significantly,

while Put contents decreased during grain filling indicating that exogenous Spm and Spd

could ameliorate heat damage during grain filling [72].

Expression profile analysis of TaPAOs in response to biotic stress

Only a few TaPAOs significantly responded to biotic stresses during disease development but

this was genotype and stress-type dependent and varied between experiments. This is not sur-

prising because gene expression in response to biotic stress has been shown to vary signifi-

cantly based on environmental conditions. For example, F. graminearum produces a different

gene expression pattern when infecting diverse tissue types or at different stages of infection in

wheat [73]. Differential gene expression patterns could also be dependent on the specific iso-

lates infecting host genotypes [74].

Experiment SRP060670 (i.e. Fig 6B) was the only case where TaPAO11 genes which are

located on the long arm of homoeologous group 7, were not expressed under both normal and

Fusarium stress conditions. This result suggests that the examined wheat genotype in this case
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might be a ditelocentric addition line CS-7EL(7D) where the 7DL chromosome arm has been

substituted by 7EL arm of Thinipyrum elongatum [43], subsequently affecting gene expression.

Differential response of homoeologous genes

Differential response of homoeologous genes in allopolyploids is common when the plant is sub-

jected to stresses. Here, unequal expression of homoeologs in response to stress was observed for

some TaPAO genes such as TaPAO11 under high temperature (Fig 7D, 7E) and phorphorus star-

vation (Fig 7J). Dong and Adams (2011) investigated the expression patterns of homoeologs in

response to heat, cold, drought and high salt stresses in allotetraploid cotton (Gossypium hirsu-
tum) and observed variation in the contribution of homoeologous genes to abiotic stresses [75].

Similarly, some homoeologs of Coffea canephorawhich are involved in the mannitol pathway,

presented unequal contributions in response to drought, salt and heat stresses [76]. While PA-

related genes play crucial roles in stress response, the mechanisms of this PA reaction are not

clear. Some evidence suggests that PAO enzymes respond to stress mainly by modulating the

homeostasis of reactive oxygen species (ROS) [1], but a clear understanding of the biochemical

functions of PAO proteins requires more experimental investigation.

Involvement of alternative splicing in TaPAO genes

Among the 30 TaPAO genes, 15 produced more than one isoform while only 3 TaPAO genes

had alternative splice variants in EnsemblPlants. In total, 30 alternative splice variants were

identified in wheat cultivar ‘Manitou’. Therefore, a major proportion of TaPAO transcript

diversity is due to alternative splicing. Observation of a large fraction of novel isoforms in

RNAseq data is common. It is believed that about 60% of intron-containing genes are alterna-

tively spliced in plants [77, 78]. For example, 63% of intron containing genes are alternatively

spliced in soybean, and on average, each AS gene contain six to seven AS events [78]. In com-

mon wheat, 200, 3576 and 4056 genes exhibited significant alternative splice pattern changes

in response to drought, heat, and a combination of heat and drought stresses, respectively,

implying that expression patterns of alternative splice variants are significantly altered by heat

rather that drought [79]. Moreover, if RNAseq data from samples belonging to different devel-

opmental stages and extreme conditions were to be examined, a higher proportion of alterna-

tively spliced genes and splice variants would likely be identified. Alternative splicing might

also observed in different tissues and developmental stages [80]. But in the present study, all

the TaPAO genes were constitutively alternatively spliced in all samples.

Possible localization and pathway of wheat PAO proteins

The previously characterized PAO proteins in clades II (Fig 2) including ZmPAO1, HvPAO1,

HvPAO2, OsPAO2, OsPAO6 and OsPAO7 have TC catalytic activity while PAOs in clades III,

IV, V and VI including BdPAO2,3, AtPAO1~5 and OsPAO1,3~5 are involved in BC pathway.

These suggest that the wheat PAOs in clades II including TaPAO7,10,11 homoeologs might

also be involved in TC pathway and the remaining TAPAOs (i.e. TaPAO2~5, 8,9) are most

likely active in BC pathway. Sequence similarity (S3 Fig) with the characterized PAOs and

gene ontology data from EnsemblPlant further support this prediction and suggest that

TaPAO1 homoeologs are localized in cytoplasm and have spermine or thermospermine oxi-

dase activity in BC pathway. AtPAO2~4, and OsPAO3~5, are believed to localize in peroxi-

somes based on possessing (S/A/C)(K/R/H)(L/M), in their C-termini which is a putative type

-I peroxisomal targeting signal called PTS1 [4, 24]. Presence of SRL sequence in the C-termini

of wheat TaPAO3 and TaPAO5 (Fig 5 and S3 Fig) and B. distachyon BdPAO2 and BdPAO4

suggests that these proteins are localized in peroxisomes. OsPAO4 and OsPAO5 are situated
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in peroxisome [4, 81] while OsPAO1, AtPAO1 and AtPAO5 are located in the cytoplasm [82].

Therefore, we conclude that the similar wheat proteins such as TaPAO1, TaPAO8, TaPAO9

homoeologs, TaPAOUn and TaPAO2-2A may also be cytoplasmic. OsPAO6, OsPAO7 and

ZmPAO1 are localized to the apoplastic space [81, 83] and have a high degree of sequence sim-

ilarity to wheat TaPAO6, TaPAO7, TaPAO10 and TaPAO11 homoeologs (S3 Fig), therefore

these wheat PAOs are possibly localized to the apoplastic space as well. In dicots, apoplastic

PAOs may be present in limited species [84] but they are found in monocotyledons such as

maize (ZmPAO1), barley (HvPAO1 and HvPAO2), and rice (OsPAO7), which are involved in

TC-type pathways to catalyze PA [81, 85].

Conclusion

We identified and characterized 30 PAO genes in common wheat that unevenly distributed

across the wheat chromosomes. TaPAO genes were expressed redundantly in various tissues

and developmental stages but a major fraction of TaPAOs responded significantly to abiotic

stresses especially to temperature (i.e. heat and cold stresses). Some TaPAOs were also involved

in responses to other stresses such as, powdery mildew, stripe rust and Fusarium infections in

wheat. Overall, TaPAOs likely function in stress tolerances and play vital roles in different tis-

sues and developmental stages. To understand the exact mechanisms of polyamine catabolism

and biological functions of TaPAOs, more genetic and biochemical experiments are required.

Our results provide a reference for further functional investigation of TaPAOs proteins.

Supporting information

S1 Text. Amino acid sequences of PAOs. Polyamine oxidase (PAOs) protein sequences from

A. thaliana and O. sativa. Z. mayz, B. distachyon and H. vulgare that used for the identification

of wheat, T. urartu and Ae. tauschii PAOs.

(DOCX)

S1 Fig. Homoeologs expression abundance of TaPAO genes of common wheat. Ternary

plot showing relative expression abundance of TaPAO genes under different stress conditions.

In each ternary plot, a circle or a triangles reflects the relative contribution of homoeologs of a

gene under normal or stress condition, respectively and their sizes indicate the total expression

in TPM. The data code for each study and the evaluated wheat cultivar are also indicated at

bottom of subfigures.

(TIF)

S2 Fig. Structure and isoform expression levels of TaPAO genes. Structure and expression

levels in FPKM of distinct isoforms of eight TaPAO genes in normal (23˚C) and stress (4˚C)

from SRP043554 experiment. Expression levels are shown in varying shades of yellow.

(TIF)

S3 Fig. PAO protein sequences alignment. Alignment of the amino acid sequences of PAOs

from T. aestivum, T. urartu, Ae. tauschii, A. thaliana, O. sativa, B. distachyon, H. vulgare and Z.

mays. The alignment was performed by ClustalW (https://www.genome.jp/tools-bin/clustalw)

and exhibited by the Jalview (https://www.jalview.org/).

(TIF)
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