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Food-grade cationic antimicrobial ε-polylysine transiently
alters the gut microbial community and predicted metagenome
function in CD-1 mice
Xiaomeng You1, Jonah E. Einson1,2, Cynthia Lyliam Lopez-Pena1,5, Mingyue Song1, Hang Xiao1, David Julian McClements1 and
David A. Sela 1,3,4

Diet is an important factor influencing the composition and function of the gut microbiome, but the effect of antimicrobial agents
present within foods is currently not understood. In this study, we investigated the effect of the food-grade cationic antimicrobial
ε-polylysine on the gut microbiome structure and predicted metagenomic function in a mouse model. The relative abundances of
predominant phyla and genera, as well as the overall community structure, were perturbed in response to the incorporation of
dietary ε-polylysine. Unexpectedly, this modification to the gut microbiome was experienced transiently and resolved to the initial
basal composition at the final sampling point. In addition, a differential non-random assembly was observed in the microbiomes
characterized from male and female co-housed animals, although their perturbation trajectories in response to diet remain
consistent. In conclusion, antimicrobial ε-polylysine incorporated into food systems transiently alters gut microbial communities in
mice, as well as their predicted function. This indicates a dynamic but resilient microbiome that adapts to microbial-active dietary
components.
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INTRODUCTION
It is estimated that the mucosal surfaces of the human
gastrointestinal tract (GIT) are colonized by a total of 1013–1014

microorganisms that assemble into communities.1 As such, these
microbial communities are diverse in form and function and often
contribute to host homeostatic operations. Host–microbial inter-
actions impact local anatomic sites along the GIT,2–5 as well as
distal locales to participate in host energy balance and
metabolism.6–9 In addition, there is emerging evidence that the
gut microbiome participates in neurodevelopment and cognitive
processes.10–12 Accordingly, there are several external factors that
may alter the community structural trajectory and function in
specific instances. These extrinsic antecedents or perturbations
may be specific to host developmental stage13–15 and include
alterations to diet or other lifestyle elements,16–19 microbiome-
active xenobiotics, such as antibiotics,20–22 host genotype inter-
actions with cultural traditions,13 and exposure to allochthonous
microbiota and environmental chemicals.18, 23 Among these
factors, dietary interventions are a viable strategy to maintain,
restore, or enhance gut microbiota function depending on the
desired outcome.16–19 In a particularly illustrative example of
linking diet with the microbiome, European children that ingest a
modern western diet (i.e. 51.8% carbohydrate, 32.8% fat, and
15.4% protein with high-saturated fat and refined carbohydrate
and low fiber24) exhibit a significantly divergent microbial
community from those living in rural Africa.18 Similar observations
of gut communities and their response to diets rich in fat and

refined carbohydrates with low fiber content has emerged as a
prevailing principle of nutrition.18, 19

In addition to the macromolecule content, other minor
components commonly incorporated in the western diet may
also alter the gut microbiota.24 Nevertheless, it is currently poorly
understood what influence this broad class of molecules may have
on microbial communities and downstream host homeostatic
processes. Various additives are commonly used in commercial
food products to ensure safety, increase shelf life, or enhance
organoleptic properties. Recently, it was reported that common
food-grade emulsifiers (i.e. carboxymethylcellulose and polysor-
bate-80) alter the gut microbiome community, thereby potentially
promoting inflammation, colitis, and metabolic syndrome.25 This
would suggest that under certain conditions a seemingly inert
food additive might influence host physiology subsequent to
interacting with one’s gut microbiota. Clearly, there is a need to
understand this phenomenon in greater depth.
When last enumerated in 2014 there were over 2500 additives

approved for use in US food systems,26 with antimicrobial agents
accounting for a significant fraction. Antimicrobials inhibit or
retard pathogenic and spoilage microbes in foods. Although it is
unknown to what extent antimicrobial activity in a food influences
the resident microbes of the GIT once ingested.
One such food-grade antimicrobial is the cationic homopolymer

ε-polylysine that typically consists of 25–40 L-lysine residues linked
by isopeptide bonds between ε-amino and α-carboxyl groups. The
US Food and Drug Administration (FDA) conferred generally
regarded as safe (GRAS) status on ε-polylysine to be incorporated
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into various food items at levels of 10–500 ppm.27, 28 Accordingly,
ε-polylysine exhibits broad inhibitory activity against several
microorganisms, including fungi, such as Aspergillus niger,
Trichophyton mentagrophytes, Candida spp., and Phaggia rhodo-
zyma. In addition, ε-polylysine restricts a broad range of Gram-
positive and Gram-negative bacterial taxa, such as Bacillus
coagulans, Staphylococcus aureus, Escherichia coli, and Salmonella
typhimurium.29–31 The antimicrobial activity of ε-polylysine has
been largely attributed to its cationic charge, as this allows it to
adsorb onto negatively charged microbial surfaces and disrupt the
cell envelope.32 The cationic nature of ε-polylysine often limits its
application in foods as it could interact with anionic mucins in the
mouth, or spontaneously complex with negatively charged
molecules to impact food integrity.33–35 Delivering ε-polylysine
in an electrostatic complex with anionic polysaccharides, such as
pectin may mitigate these limitations.33–35 These complexes are
designed to retain ε-polylysine-mediated antimicrobial activity.
Both ε-polylysine and pectin evade digestion and absorption by

the host during transit through the GIT.36, 37 Consequently, ε-
polylysine or ε-polylysine–pectin complexes would be expected to
reach the colon intact and thus available to interact with the gut
microbial community. In this study, the antimicrobial food additive
ε-polylysine was experimentally investigated to characterize
potential perturbations to the gut microbiome. In addition, the
impact of electrostatic complexation of ε-polylysine with the
anionic pectin was studied as it is often delivered in this format.

RESULTS
A cationic antimicrobial biopolymer influences murine gut
community diversity
40 female and 40 male 6-week old CD-1 mice were randomly
divided into four groups and segregated by sex (i.e. 10 female and
10 male mice per group) and fed a 20% high-fat diet
supplemented with (i) maltodextrin alone (MD) that served as
the control, (ii) maltodextrin + ε-polylysine (PL), (iii) maltodextrin +
pectin (P), and (iv) maltodextrin + ε-polylysine + pectin (PL-P).
Previous studies showed that mice co-housed together exhibit
similar gut microbial communities.38, 39 Thus, pooled fecal pellets
from each cage were collected in 24-h metabolic cages and
analyzed at three points: week 1 (baseline), week 5 (intermediate
phase), and week 9 (final phase) (Fig. 1). Body weight and food
consumption did not vary regardless of treatment group and
across the entire experimental period.

In order to characterize phylogenetic diversity, the 16S rRNA
gene V3/V4 fragment was sequenced to yield 15,739,734 quality
reads following filtering.40 This provided a mean sample depth of
327,911 sequencing reads per bacterial community. To assess the
α-diversity within a given community, the number of observed
operational taxonomic units (OTUs) was calculated using
weighted UniFrac.41 Rarefaction curves for the observed OTUs
(Fig. S1) approached an asymptote independent of diet, sampling
point, and sex to indicate sequencing depth sufficiently covered
OTU diversity present in the communities extracted from fecal
samples.
At the phylum level, the summation of Actinobacteria,

Bacteroidetes, Deferribacteres, Firmicutes, Proteobacteria, Verru-
comicrobia constituted over 99% of OTUs identified in all samples
analyzed. As previously reported,42, 43 the murine gut microbiome
consists of relatively large contributions provided by the phyla
Bacteroidetes and Firmicutes (Fig. 2). This is consistent with other
mammalian gut communities, including humans and non-human
primates.44, 45 However, the relative abundances of Bacteriodetes
(p < 0.05) and Firmicutes (p < 0.05) were altered in response to the
particular dietary biopolymer (multi-way ANOVA) (Fig. 2). Interest-
ingly, mice fed the ε-polylysine–pectin complex exhibited an
increase of Bacteriodetes at 8.82% (p < 0.05, multi-way ANOVA
Tukey HSD post-hoc) with a corresponding decreasing of OTUs
assigned to Firmicutes by 11.13% (p < 0.05, multi-way ANOVA
Tukey HSD post-hoc). This is relative to the community structure
determined in the maltodextrin-fed control group (Table S1).
Moreover, the ε-polylysine (i.e. no pectin complex) fed mice
exhibited a community relatively deficient for Firmicutes at the
intermediate phase (i.e. 5 weeks) of the study. Remarkably,
Firmicute OTUs rebounded to its initial concentration at the 9-
week sampling point (baseline: 55.24%, intermediate: 34.71%,
final: 59.01%, baseline vs. intermediate: p < 0.05, intermediate vs.
final: p < 0.05, multi-way ANOVA Tukey HSD post-hoc) (Fig. 2 and
Table S3). Exhibiting the same adaptive response, the relative
fraction of Bacteriodetes OTUs transiently increased at 5 weeks of
feeding and converged to initial concentrations at the final time
point (baseline: 35.40%, intermediate: 51.18%, final: 28.82%,
baseline vs. intermediate: p < 0.05, intermediate vs. final: p <
0.05, multi-way ANOVA Tukey HSD post-hoc) (Fig. 2 and Table S3).
A similar transient surge in Verrucomicrobia occurred in mice fed
pectin alone, to fall to original levels at the final sampling point
(baseline: 0.59%, intermediate: 5.46%, final: 1.01%, baseline vs.
intermediate: p < 0.05, intermediate vs. final: p < 0.05 multi-way
ANOVA Tukey HSD post-hoc) (Fig. 2 and Table S4). In aggregate,

Fig. 1 Study design of timeline (a) and grouping (b). Forty female and 40 male 6-week old CD-1 mice were randomly divided into four groups
and segregated by sex and fed a 20% high-fat diet supplemented with (i) maltodextrin alone (MD), (ii) maltodextrin + ε-polylysine (PL), (iii)
maltodextrin + pectin (P), and (iv) maltodextrin + ε-polylysine + pectin (PL-P). Five mice were co-housed and pooled fecal pellets from each
cage were collected in 24-h metabolic cages and analyzed at three points: week 1, week 5, and week 9
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these results indicate that specific food grade biopolymers
transiently direct phyla representation within the murine gut.
This was observed when both ε-polylysine and pectin were
incorporated individually. However, when ε-polylysine was

complexed with the anionic pectin, this phenomenon was not
observed. It is noteworthy that significant population fluxes within
Actinobacteria, Deferribacteres, and Proteobacteria were not
observed regardless of diet (Table S5).
In addition to phylum-level community disruption, several

bacterial genera shifted in response to dietary biopolymers. This
includes members of the genus Bacteroides that were the most
frequently encountered taxa within the mouse gut (14.32 ± 9.58%
across all the samples). In total (across both sexes and sampling
points), Bacteroides representation varied with respect to biopo-
lymer feeding group. Mirroring the response by the phylum
Bacteroidetes, ε-polylysine (p < 0.05, multi-way ANOVA Tukey HSD
post-hoc) and ε-polylysine–pectin complexed treatment (p < 0.05,
multi-way ANOVA Tukey HSD post-hoc) increased the Bacteroides
spp. populations by 7.95 and 7.46%, respectively, in comparison to
the maltodextrin control group (Fig. 3 and Table S6). Other
bacterial populations that were modulated by feeding regimes
include, Adlercreutzia, Lactobacillus, Turicibacter, and Ruminococcus
(multi-way ANOVA, p < 0.05). Specifically, the abundance of
Adlercreutzia decreased regardless of biopolymer relative to the
maltodextrin-fed group. Their relative populations decreased
0.18%, 0.22%, 0.24% in mice fed ε-polylysine, pectin, and ε-
polylysine–pectin complexes, respectively. In addition, the genus
Ruminococcus significantly decreased by 1.39% in response to ε-
polylysine and decreased by 1.44% in the pectin group.
Furthermore, the ε-polylysine–pectin complexed diet significantly
decreased the Lactobacillus content by 4.95%, reflecting overall
diminishment of Firmicutes in this group. This is in contrast to the
pectin diet that enriched for Turicibacter relative to the other three
diets. A full catalog of genera differing in response to biopolymer
conditions is provided in Table S6.
Maltodextrin is commonly employed as a thickening agent or

filler in various nutritional applications. This polysaccharide was
used in the formulation of all treatment diets, and thus served as a

Fig. 3 Relative abundance of bacterial genera in response to dietary biopolymers. Pooled fecal samples were collected from two female and
two male cages per group at each time point. Each bar represents the average relative abundance of a treatment group during each time
point and each colored box represents a bacterial genus taxon. B baseline, M intermediate, F final, MD maltodextrin, PL ε-polylysine, P pectin,
PL+P ε-polylysine–pectin complexes

Fig. 2 Relative abundances of bacteria phyla in response to
biopolymer feeding. Pooled fecal samples were collected from two
female and two male cages per group at each time point. Each bar
represents the average relative abundance bacterial phyla within a
treatment group during each time point with each colored box
representing a bacterial phylum taxon. Bbaseline, M intermediate, F
final, MD maltodextrin, PL ε-polylysine, P pectin, PL+P
ε-polylysine–pectin complexes
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control to determine if maltodextrin alone would enrich for
bacteria capable of hydrolyzing the α-1-4 glycosidic linkages
between D-glucose residues. As such, the relative abundance of
Coprococcus in the mouse gut was enriched while consuming
maltodextrin incorporated within their food. The response
trajectory included a significant increase between baseline and
intermediate sampling points and between baseline and final time
point (baseline: 0.56%, intermediate: 0.98%, final: 0.91%, baseline
vs. intermediate: p < 0.05, baseline vs. final: p < 0.05) (Fig. 3 and
Table S7).
In the ε-polylysine treatment group, the relative abundance of

Bacteroides transiently increased, consistent with the oscillation at
the phylum level (baseline: 8.85%, intermediate: 34.40%, final:
8.74%, baseline vs. intermediate: p < 0.05, intermediate vs. final: p
< 0.05). A similar response was observed for Oscillospira (baseline:
4.96%, intermediate: 2.51%, final: 6.13%, baseline vs. intermediate:
p < 0.05, intermediate vs. final: p < 0.05). This is contrasted with a
transient decrease in OTUs assigned to Ruminococcus (baseline:
2.17%, intermediate: 0.97%, final: 2.10%, baseline vs. intermediate:
p < 0.05, intermediate vs. final: p < 0.05), and Adlercreutzia (base-
line: 0.49%, intermediate: 0.24%, final: 0.34%, baseline vs.
intermediate: p < 0.05) (Fig. 3 and Table S8). Furthermore,
Coprococcus spp. exhibited a sustained enrichment during
feeding, with significant increases between baseline and final
time point (baseline: 0.47%, intermediate: 0.71%, final: 0.91%,
baseline vs. final: p < 0.05) (Fig. 3 and Table S8). This is consistent
with the same trend observed within the maltodextrin control
group. However, Coprococcus populations remain relatively static
in mice-fed pectin and ε-polylysine–pectin complexes.
Pectin transiently enriched for the genus Akkermansia (baseline:

0.59%, intermediate: 5.46%, final: 1.01%, baseline vs. intermediate:
p < 0.05, intermediate vs. final: p < 0.05) contributing to the
observed intermediate increase of Verrucomicrobia. In contrast,
Adlercreutzia populations were diminished in the intermediate
sampling point and remained depressed in the final observation
(Adlercreutzia baseline: 0.48%, intermediate: 0.23%, final: 0.26%,
baseline vs. intermediate: p < 0.05). Candidate genus rc4-4 OTU
representation diminished proportionally, though exhibited
incomplete rebound to initial states (rc4-4 baseline: 1.94%,
intermediate: 1.04%, final: 1.62%, baseline vs. intermediate: p <
0.05) (Fig. 3 and Table S9). Interestingly, Ruminococcus spp.
maintained a diminishing trajectory across the feeding study with
significant differences between baseline and final time points
(baseline: 2.32%, intermediate: 1.63%, final: 1.14%: baseline vs.
final: p < 0.05) (Fig. 3 and Table S9).
Although most genera did not shift in response to ε-

polylysine–pectin complexes, Ocscillospira transiently increased
prior to falling below initial levels (baseline: 3.56%, intermediate:
4.70%, final: 2.44%, intermediate vs. final: p < 0.05). In contrast,
Parabacteroides populations were generally inhibited by any of the
dietary treatments (baseline: 3.44%, intermediate: 0.79%, final:
0.55%, baseline vs. intermediate: p < 0.05, baseline vs. final: p <
0.05). This is similar to rc4-4 (baseline: 2.82%, intermediate: 0.77%,
final: 0.48%, baseline vs. intermediate: p < 0.05, baseline vs. final: p
< 0.05). In totality, gut microbiota genera respond to food grade
additives at the genus level, in particular ε-polylysine (Fig. 3 and
Table S10).
In addition to dietary biopolymers influencing specific taxa, the

structural composition of the community had discernable and
non-random changes in aggregate. ANOSIM46 with 999 permuta-
tions was used to test significant differences between sample
groups based on weighted UniFrac.41 As expected, maltodextrin
did not significantly shift the murine gut microbial community fed
this control in either female or male mice (Fig. 4a, ANOSIM with
999 permutations, p > 0.05). Accordingly, pectin (Fig. 4c, ANOSIM
with 999 permutations, p > 0.05) and ε-polylysine–pectin com-
plexes (Fig. 4d, ANOSIM with 999 permutations, p > 0.05) did not
promote significant shifts within the community. This is in

remarkable contrast to the gut microbiomes that were transiently
altered by ε-polylysine alone. As observed with specific taxonomic
groups at the phylum and genus levels, the community structure
was perturbed at the 5-week point to be subsequently resolved at
the final sampling time. This suggests that the population
composition was corrected to its initial state through adaptation
to the continuously fed biopolymer (Fig. 4b, ANOSIM with 999
permutations, p < 0.05). This was not observed in the ε-
polylysine–pectin complex treated mice, indicative of a shielding
interaction with the microbial community.

ε-polylysine transiently shifts predicted metagenome function
The metagenomic potential inherent to gut microbiomes were
inferred by Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) based on 16S
rRNA phylogenetic data. A total of 6,854,103,780 observations
were predicted across 6909 Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthology groups (KO) within the 48 gut
communities that were profiled by PICRUSt. The resultant data
were categorized into 254 functional pathways encompassing all
of the 48 communities.
In total, there were 44 pathways that were predicted to

significantly shift transiently while mice were consuming ε-
polylysine (ANOVA with Bonferroni correction, p < 0.05) (Fig. 5).
As with alterations to taxonomic structure, the intermediate
samples taken at 5 weeks displayed a significantly different profile
relative to baseline and final sampling points. Among these 44
pathways or networks, 42 pathways are involved in bacterial
metabolism or are otherwise predicted to mediate host–microbial
interactions, with 18 pathways present at 0.5% relative abundance
based on the average of the three sampling points (Fig. 5). Of
these, eight pathways were predicted to decrease at 5 weeks and
return to basal levels at the final sampling. Conversely, 10
predicted pathways exhibited the opposite trend and temporarily
increased in abundance. Accordingly, genes and their pathways
related to general solute transport (baseline: 7.53%, intermediate:
5.88%, final: 7.68%, p < 0.05) and ABC transporters (baseline:
3.35%, intermediate: 2.76%, final: 3.44%, p < 0.05) were suppressed
at the intermediate community state and ultimately rebounded to
baseline levels. This suggests that metabolic needs, and/or
environmental concentrations of desirable solutes, may be briefly
diminished prior to restoration of microbiome structure. Moreover,
predicted central metabolic processes involved in carbohydrate
and protein metabolisms transition to a reversible state, while the
host consumes the ε-polylysine-enriched diet. This is reflected in
glycolytic/fermentative pathways (baseline: 1.05%, intermediate:
1.13%, final: 1.08%, p < 0.05), pyruvate metabolism (baseline:
1.01%, intermediate: 1.07%, final: 1.02%, p < 0.05), fructose and
mannose metabolisms (baseline: 0.085%, intermediate: 0.099%,
final: 0.089%, p < 0.05), and genes associated with oxidative
phosphorylation (baseline: 1.12%, intermediate: 1.23%, final:
1.08%, p < 0.05). The latter KO likely involved in anaerobic
respiration and transiently enriched in the intermediate time
point. In addition to carbohydrate catabolism, pathways asso-
ciated with nitrogen flux were shifted at 5 weeks including amino
sugar and nucleotide sugar metabolisms (baseline: 1.47%,
intermediate: 1.60%, final: 1.50%, p < 0.05), and histidine metabo-
lism (baseline: 0.062%, intermediate: 0.067%, final: 0.061%, p <
0.05). We had initially hypothesized that hallmarks of lysine
catabolism would be enriched in the predicted metagenomes of
mice-fed ε-polylysine, either in the PL or PL-P diet. However, this
signal was not observed in the PICRUSt analysis, suggesting that ε-
polylysine did not select bacterial populations that increased the
lysine catabolic potential.
Whereas the predicted metagenomes responded to dietary ε-

polylysine, no significant differences were detected in the other
three feeding groups. This includes mice-fed ε-polylysine
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complexed with pectin, providing further support for electrostatic
shielding to mitigate the anti-microbial influence of the ε-
polylysine. Pectin alone does not alter the community structure
or predicted function.

Host sex influences the basal microbome but not the response
trajectory
Both male and female mice were observed to determine if
biopolymer activity within the microbiome is sex-dependent.
Accordingly, several bacterial taxa colonized male and female
animals asymmetrically and in a non-random manner. This
includes the phylum Verrucomicrobia found at higher concentra-
tions in female mice than males in aggregate (female: 4.96% of
24 samples, male: 2.63% of 24 samples, p < 0.05, multi-way
ANOVA) (Table S11). Much of this may be accounted for by
differences in Akkermansia populations (female: 4.50%, male:
2.63% p < 0.05). In addition, female mice harbored significantly
greater populations of bacterial genera Parabacteroides (female:
2.47%, male: 0.5%, p < 0.05) and Bilophila (female: 2.13%, male:
0.01%, p < 0.05). In contrast, male mice were colonized by greater
concentrations of Odoribacter (female: 0%, male: 0.92%, p < 0.05),
Turicibacter (female: 0.02%, male: 0.21%, p < 0.05), Clostridium
(female: 0.01%, male: 0.10%, p < 0.05), and candidate genus rc4-4
(female: 0.16%, male: 2.46%, p < 0.05) (Table S12).
In addition to taxonomic differences, there are structural

differences to the community attributable to animal sex evident
in UniFrac distance visualized by principal coordinate analysis
(PCoA) in Fig. 6a. Accordingly, gut microbiota observed in female
and male mice cluster together by sex, and in a manner more
similar within their respective sex than they are to each other
(Fig. 6a, ANOSIM with 999 permutations, p < 0.05). In addition,

Fig. 4 Principal coordinate analysis (PCoA) plots of microbiome response to maltodextrin (a), ε-polylysine (b), pectin (c) ε-polylysine-pectin
complexes (d). PCoA plots based on weighted UniFrac distances. Each sphere represents the pooled communities from 5 mice that were co-
housed during each sampling point. The red circle indicates communities extracted from female mice and blue from male mice. The red and
blue boundaries are delineated arbitrarily and provided solely to aid visualization of each sex group. Principal coordinate PC1, PC2, and PC3
explain 63.02% of the total variance observed

Fig. 5 Effect of ε-polylysine on predicted metagenome function
over time. The relative abundance of intermediate time points show
significant difference from baseline and final time points for all
pathways (p< 0.05)
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hierarchical clustering of microbiomes and bacterial genera based
on their relative abundance exhibited a similar pattern in that
bacterial communities within the same sex tend to cluster (Figs. S2
and S3). The average within group phylogenetic diversity of
female male is smaller than male mice (Fig. 6b, t-test, p < 0.05),
while differences were not observed between female and male
mice in the total number of observed OTUs and Chao 1 index (Fig.
S4).
In contrast to structural differences between female-hosted and

male-hosted microbiomes, only three predicted metagenomic
pathways significantly varied. This includes transcription-related
operations (female: 0.0092%, male: 0.0051%, p < 0.05), aminogly-
coside antibiotic biosynthesis (female: 0.087%, male: 0.080%,
p < 0.05) and glycerophospholipid metabolism (female: 0.55%,
male: 0.52%, p < 0.05). It is unclear whether these underlie
expressed metabolic differences between the two host sexes.
Conservation of function despite taxonomic variation is consistent
with redundancy in genetic potential previously observed within
other microbial communities.46, 47

Despite sex-dependent features, the specific effect of biopoly-
mer treatments remains independent of sex as indicated by PCoA
analysis (Fig. 3). Specifically, ε-polylysine transiently alters the
murine microbiome at the intermediate sampling point regardless
of sex. Whereas pectin or pectin complexed with ε-polylysine does
not alter female and male mice harbored microbiota. A similar
response path is evident in fluxes at the phylum level, as
Bacteriodes and Firmictues representation is temporarily shifted in
response to ε-polylysine in both sexes (Fig. S5). In addition, the gut
microbiomes derived from both sexes exhibited the same change
in Verrucomicrobia when fed pectin (Fig. S5). Furthermore, relative
to the maltodextrin-fed group, the ε-polylysine–pectin complexed
diet increased Bacteriodetes and diminished the Firmicutes
independent of sex. These results indicate that sex-dependent
traits (e.g. hormones) did not act synergistically or antagonistically
with dietary biopolymers to alter community structure overall, and
within major phyla.
Interestingly, dietary biopolymers may alter the genus repre-

sentation that is somewhat dependent on sex. The relative
abundance of Parabacteroides (sex*treatment p < 0.05, multiway
ANOVA), Clostridium (sex*treatment p < 0.05, multiway ANOVA),
Coprococcus (sex*treatment, p < 0.05, multiway ANOVA), and
Bilophila (sex*treatment p < 0.05, multiway ANOVA) exhibited
modest dependence on host sex (Fig. S6). In female mice, the
Coprococcus content was higher in the pectin group relative to the
other three groups in female mice (MD: 0.69%, PL: 0.63%, P: 0.98%,
PL+P: 0.65%, MD vs. P: p < 0.05, PL vs. P: p < 0.05, P vs. PL+P:
p < 0.05). However, in male mice, Coprococcus OTUs of pectin
group were decreased in the microbiomes compared to the other

three groups (MD: 0.94%, PL: 0.77%, P: 0.45%, PL+P: 0.78%, MD vs.
P: p < 0.05, PL vs. P: p < 0.05, P vs. PL+P: p < 0.05). Also, Bilophila
was reduced in female mice-fed ε-polylysine relative to ε-
polylysine–pectin complexed diet (MD: 0.51%, PL+P: 1.63%,
p < 0.05), whereas the microbiome of male mice did not exhibit
this sex-linked population flux. In addition, the interactions of sex,
sampling points, and biopolymer influenced the observed relative
abundance of the genus Turicibacter (p < 0.05), Clostridium (p <
0.05), Coprococcus (p < 0.05), and the candidate genus rc4-4
(p < 0.05).

DISCUSSION
It is widely recognized that dietary constituents often influence
the composition and function of gut microbial communities.16–19

However, there is a critical scientific gap in understanding the
potential interactions with additives that restrict microbial activity
in foods. These substances are added to preserve food integrity
during storage and are believed to be inert or benign with respect
to toxicology to the consumer. In this study, we report the in vivo
influence on the microbiome by a food grade antimicrobial ε-
polylysine. Both ε-polylysine and pectin are not hydrolyzed or
absorbed in the upper GIT,36, 37 thus have the opportunity to
interact with resident microbial communities established along
the full length of the GIT.
ε-polylysine has been deemed by the US FDA to be a GRAS

antimicrobial agent to be deployed against a wide range of
bacteria, yeasts, and molds.29–31 Thus, we hypothesized that ε-
polylysine modulates specific gut microbial populations and the
overall community structure during this dietary intervention.
Interestingly, the microbial community adapted or compensated
for ε-polylysine activity and converged on the initial equilibrium
state by the final sampling. This is in contrast to the effect of
broad-spectrum antibiotics on the gut microbiome. Typically an
antibiotic prompts a durable shift within the microbiome that
remains until removal of this pharmacological stress.21, 48 In
contrast, ε-polylysine transiently perturbs the murine gut micro-
biome during the course of the dietary intervention. This is
indicative of dynamic interactions between specific food struc-
tures at the host–microbial interface. One potential explanation is
that the community possesses an innate resiliency towards this
exogenous biopolymer rather than increasing the degradation of
ε-polylysine. It is unknown if this is an irreversible adaptation or an
observed oscillation between alternative stable states over the
course of the dietary intervention. It would be interesting to
ascertain if this is a form of acquired resistance within specific
bacteria.49 In addition, competition between microbial popula-
tions for limited resources may contribute to this adaptation.50

Fig. 6 Sex difference in gut microbiome structure (a), and phylogenetic diversity (b). Red dots represents female mice microbiomes and blue
dots represent those analyzed from male mice. The PCoA plot is based on weighted UniFrac distances between all OTUs identified in female
and male mice. Female mice showed a significant difference from male mice by ANOSIM with 999 permutations analysis (p< 0.05). In b,
microbiomes harbored in female mice exhibited a significantly lower PD value than male mice. * p< 0.05
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Regardless of phylogenetic relatedness, bacteria compete for
limiting nutritive requirements and potentially overlapping func-
tional roles.50 In addition, there is a potential for negative
feedback emanating from the host to correct disruption in
host–microbial homeostasis. Thus, the host may resolve the
perturbation between microbial populations to restore or preserve
an unknown function.
In our results, as expected, the murine gut microbiome consists

of relatively large contributions provided by the phyla Bacter-
oidetes and Firmicutes. Interestingly, ε-polylysine transiently
increased the abundance of Bacteroidetes relative to the
diminishment of Firmicutes OTUs. Bacteroidetes and Firmicutes
are the primary phyla that dominate the distal gut of mammals
and may be associated with local physiological outcomes,51

nutrient digestion and absorption,52 metabolic function,44, 53

among other operations. Thus, deviation from stable Bacteroi-
detes and Firmicute ratios may induce a host program that
stabilizes the community structure. This putative mechanism
remains to be tested with scientific rigor. A similar correction has
been previously observed in obese individuals experiencing
weight loss.44 Consistent with this hypothesis, 44 predicted
metagenomic networks were transiently modulated and
rebounded towards the original metabolic potential when
observed at the end of the feeding trial.
In addition to antimicrobial activity, ε-polylysine has been

ascribed anti-obesogenic properties by limiting pancreatic lipase
activity,54, 55 enhancing fecal lipid excretion,56 and suppressing
postprandial hypertriacylglyceridemia.55 However, in this study,
differential weight gain among treatment groups was not
observed in the animal or in post-sacrifice measurement of
visceral fat (data not shown). It is possible that the concentration
chosen for the feeding trial was insufficient to impact adiposity
while consuming a high-fat diet. Moreover, the fluctuations in the
microbiome within ε-polylysine-fed group might offset this anti-
obesogenic effect.44

It is compelling that ε-polylysine complexed with pectin did not
exhibit the same transient perturbation to the gut community.
Often these biopolymer complexes are employed in food systems
to stabilize their physicochemical properties. Interestingly, pre-
vious studies indicated that ε-polylysine–pectin complexes main-
tained similar antimicrobial properties as ε-polylysine in vitro.34, 35

This is in stark contrast to in vivo results in our mouse model as
pectin clearly mitigates ε-polylysine microbial-active function. The
exact mechanism by which ε-polylysine is shielded by pectin is
unclear, although it is tempting to speculate that the anionic
pectin shields the surface-active function of the cationic ε-
polylysine.
Although pectin was not predicted to exert anti-microbial

activity, some pectin preparations may enrich specific microbial
population within the gut.57, 58 Pectin is a hetero-polysaccharide
integrated into the plant cell wall and widely used in food systems
as a gelling agent or a stabilizer. In the pectin treatment group,
Akkermansia transiently increased to achieve original population
levels at the end. Akkermansia muciniphila is considered to be
beneficial in certain contexts and inversely correlates with body
weight in rodents and humans studies.59, 60 The transient
enrichment of Akkermansia spp. mirrors the influence of ε-
polylysine on the microbiome resiliency. In order to fully
determine the community response kinetics, a densely sampled
temporal study is required to evaluate anti-microbial, as well as
prebiotic activity.
Consistent with previous reports,61–64 the basal gut microbiome

structure within the CD-1 mice exhibits sex-dependent differ-
ences. Interestingly, microbiota that are harbored by adult females
are more similar to communities that colonize prepubescent mice
of both genders than the male microbiota,61 indicating a potential
causal relationship with androgens. In this study, we observed a
distinct clustering of female and male microbiomes, further

emphasizing the importance of controlling for sex differences in
future studies in animal models. Despite variation in phylogenetic
diversity, predicted metagenomic differences between sexes were
minimal.
It is possible that cage effects influenced the composition of the

microbiome. Mice were co-housed in four separate cages (two
cages per sex). As mice are coprophagic it may contribute to the
development of a common microbiome in cage mates.39 In order
to minimize the potential for this confounder, we collected and
analyzed pooled feces samples. Thus, compositional change in the
microbial community is more likely due to dietary treatment.

CONCLUSIONS
In this study, we investigated the influence of the food-grade
antimicrobial biopolymer ε-polylysine on the compositional
stability of the murine microbiota. Bacterial phylogenetic diversity
within fecal extracts were ascertained by high-throughput
amplicon sequencing of the 16S rRNA gene, and community
function was predicted from relative abundances of taxa using
PICRUSt. Our results indicate that dietary ε-polylysine transiently
alters the gut microbiome prior to restoration of the initial
microbial population structure at the conclusion of the feeding
trial. This is indicative of a community adaptive response to ε-
polylysine that our results demonstrate is active on the micro-
biome in vivo. This perturbation is mitigated when the cationic ε-
polylysine is associated with the anionic polymer pectin to
incisively link ε-polylysine physicochemical properties with func-
tion. Finally, the absolute population structure of these murine gut
microbial communities was observed to be sex-dependent, but
did not alter the response trajectory to the antimicrobial ε-
polylysine.

MATERIALS AND METHODS
In vivo mouse feeding trial
The animal study was performed in accordance with the protocol
approved by the University of Massachusetts, Amherst Institutional Animal
Care and Use Committee (#2014-0079). Forty female and 40 male 6-week
old CD-1 mice (36–40 g male, 29–33 g female) were obtained from Charles
River Laboratories (Wilmington, MA, USA). The animals were housed in
specific pathogen free cages (5 animals/cage) in an air-conditioned room
(temperature 23 ± 2 °C, 50 ± 10% humidity, 12-h light–dark cycle) with ad
libitum access to water and food. The mice were fed a 20% lipid diet to
mimic the typical western concentrations for 1-week acclimation.65

Subsequent to a 1-week acclimation period, 40 female and 40 male mice
were randomly divided into four treatment groups and segregated by sex
(10 female and 10 male mice per group). The four dietary treatments were:
(1) maltodextrin alone (MD) that served as the control, (2) maltodextrin + ε-
polylysine (PL), (3) maltodextrin + pectin (P), and (4) maltodextrin + ε-
polylysine + pectin (PL-P). Maltodextrin with a dextrose equivalent of ~18
(Maltrin® M180) was provided by the Grain Processing Corporation
(Muscatine, IA, USA). ε-Polylysine was purchased from Wilshire Technol-
ogies, Inc. (Princeton, NJ, USA). High-methoxyl pectin was donated by TIC
Gums (White Marsh, MD, USA). The biopolymer solutions were converted
into powders and incorporated into the 20% lipid mouse diet as described
previously.27, 65 The amount of ε-polylysine incorporated was based on
estimating a likely adult exposure level to ε-polylysine in beverages. The
maximum concentration of ε-polylysine as a preservative is 0.025% w/w.66

The daily dosage (g/g body weight) of ε-polylysine that were fed to the
mice was based on the average American body weight67 and on the
average per capita annual consumption of soft drinks in the United
States,68 which is estimated to be 1.4*10−6 g/g body weight. Previous
studies have demonstrated that a mass ratio of 20:1 pectin-to-polylysine
leads to electrostatic complexes that retain their antimicrobial efficacy
while inhibiting precipitation.33–35 Therefore, the final concentration of
biopolymers exposed to mice are: (1) MD, 1.4*10−5 g/g body weight, (2)
MD, 1.4*10−5 g/g body weight, PL, 1.4*10−6 g/g body weight, (3) MD,
1.4*10−5 g/g body weight, P, 2.8*10−5 g/g body weight, and (4) MD,
1.4*10−5 g/g body weight, PL, 1.4*10−6 g/g body weight, P, 2.8*10−5 g/g
body weight. The amount of powders incorporated into the mice diet were
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made weekly based on calculation of the exposure level, the moisture of
the powder from the spray dryer, and the average mice body weight of
previous week. Pooled fecal pellets from each cage were freshly collected
in 24-h metabolic cages and analyzed by 16s rRNA gene sequencing for
gut microbiome at three time points: week 1 (baseline), week 5 (middle
phase), and week 9 (final phase) subsequent to collection and storage at
−80 °C (Fig. 1).

Phylogenetic profiling by sequencing of the 16S rRNA gene
amplicon
Total DNA was extracted from fecal pellets with the QIAamp DNA Stool
Mini Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol
with the addition of a bead-beating step (FastPrep-24TM 5G MP
Biomedicals Inc., USA). The concentration and quality of the recovered
DNA was estimated with a NanoDrop Spectrophotometer (Thermo
Scientific, Waltham, MA, USA). PCR was performed to amplify the 16S
rRNA gene marker using primers that bound the V3 and V4 regions, which
also incorporates the Illumina overhang adaptor. The primer set was
developed by Illumina (FwOvAd_341F 5’TCGTCGGCAGCGTCAGATGTGTA
TAAGAGACAGCCTACGGGNGGCWGCAG) and
(ReOvAd_785R 5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTA

CHVGGGTATCTAATCC).69 PCRs were performed in a 96-well format on a
Veriti thermal cycler (Life technology, Carlsbad, CA, USA) using 2x KAPA
HiFi Hotstart ReadyMix (KAPA Biosystem, Wilmington, MA, USA). AMPure
XP beads (Beckman Coulter, Danvers, MA, USA) were used to purify the V3/
V4 fragment amplicon from free primers and other contaminants. A
second PCR attached dual indices and Illumina sequencing adapters using
the Nextera XT Index Kit (Illumina, San Diego, CA, USA) with an additional
round of AMPure XP bead purification. PCR products were quantified with
the Qubit dsDNA BR Assay (Life technology, Carlsbad, CA, USA) and
amplicon quality verified by DNA analysis ScreenTape Assay on Tape
Station 2200 (Agilent Technologies, Santa Clara, CA, USA). PCR products
were pooled in equimolar concentration and diluted to 4 nM and
denatured immediately prior to sequencing on an Illumina MiSeq (pair-
end; V3; 5% PhiX) (Illumina, San Diego, CA, USA).

Informatic and statistical analyses
Raw Illumina fastq files were quality filtered and analyzed using the
quantitative insights into microbial ecology (QIIME) software pipeline
v1.9.1.70 Reads were truncated at any site containing more than three
consecutive bases receiving a quality score <1e−5, and discarding reads
containing one or more ambiguous base calls, as were truncated reads of
<190 nt. OTUs were assigned in QIIME using UCLUST71 with a threshold of
97% pairwise identity. Open reference OTU picking was performed using a
subset of the greengenes bacterial 16S rRNA database (13_8 release),40

filtered to remove incomplete and unannotated taxonomies. Bacterial
OTUs were classified taxonomically using a QIIME-based wrapper of
UCULUST, against the Greengenes 16S rRNA database using a 0.50
confidence threshold for taxonomic assignment. Bacterial 16S rRNA gene
sequences were aligned using PyNAST72 against the greengenes core set
filtered at 97% similarity with chimera sequences identified and removed
using ChimeraSlayer73 with the resultant alignment yielding a phyloge-
netic tree using FastTree.74 OTUs representing less than 0.01% of the
filtered read pool was removed to avoid inflated estimates of diversity,75 as
were quality-filtered samples containing less than 10 sequences.
Alpha-diversity (within-sample species richness) and beta-diversity

(between-sample community dissimilarity) estimates were calculated using
weighted UniFrac41 distance between samples for bacterial 16S rRNA reads
(evenly sampled at 300 reads per sample). Principal coordinates were
computed from the resulting distance matrices to be visualized as 3D PCoA
plots. Hierarchical clustering analyses were based on relative abundance of
OTUs and heat map graphics were generated in R with heatmap.2 library
package. To determine whether metadata group contained differences in
phylogenetic or species diversity, ANOSIM46 with 999 permutations was
used to test significant differences between sample groups based on
weighted UniFrac41 distance matrices. Mice were grouped according to the
categorical independent variables described in the metadata and include:
treatment (MD, PL, P, PL-P), time point (baseline, intermediate, final), and
sex. To see the effect of treatment, time point, sex on relative abundance
of taxa, multi-way ANOVA (treatment, time point, sex) was performed with
Tukey’s post hoc test. Results are presented as mean ± SD.
Metagenomic functional shifts in communities were predicted using

PICRUSt. OTUs were first normalized by dividing each OTU by the

predicted 16S copy number abundance and then aligned to the
greengenes 16S rRNA database using a closed reference picking protocol
within PICRUSt.76 Statistical tests were used to compare functional groups
within the STAMP software environment, and Bonferroni correction was
performed for multiple analyses.77 For all analyses, statistical significance
was declared if the p-value < 0.05.

Availability of supporting data
The sequence data set supporting the results of this article is available in
Qiita microbial study management platform under study ID 11118.
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