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A B S T R A C T   

Next generation electrical grid considered as Smart Grid has completely embarked a journey in 
the present electricity era. This creates a dominant need of machine learning approaches for 
security aspects at the larger scale for the electrical grid. The need of connectivity and complete 
communication in the system uses a large amount of data where the involvement of machine 
learning models with proper frameworks are required. This massive amount of data can be 
handled by various process of machine learning models by selecting appropriate set of consumers 
to respond in accordance with demand response modelling, learning the different attributes of the 
consumers, dynamic pricing schemes, various load forecasting and also data acquisition process 
with more cost effectiveness. In connected to this process, considering complex smart grid se-
curity and privacy based methods becomes a major aspect and there can be potential cyber 
threats for the consumers and also utility data. The security concerns related to machine learning 
model exhibits a key factor based on different machine learning algorithms used and needed for 
the energy application at a future perspective. This work exhibits as a detailed analysis with 
machine learning models which are considered as cyber physical system model with smart grid. 
This work also gives a clear understanding towards the potential advantages, limitations of the 
algorithms in a security aspect and outlines future direction in this very important area and fast- 
growing approach.   

1. Introduction 

The completely new framework of electric grid [1–3] globally brings in great efficiency and new features to the consumers and the 
utility through two-way communication. Modernizing the electric grid [1–5] with more communication features, creates various 
security aspects at a larger scale. Smart grid creates optimal solution for generation and transmission pattern [4] in storing energy data. 
In the growing aspect of smart grid [5] dynamic needs of distributed energy resources are very much needed. Thereby smart grid 
creates constant connectivity and bidirectional communication with the required devices with great capabilities. The connected 
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devices are interlinked in a bigger complex network which are employed with smart devices like smart meters [5,6] which creates 
communication between the utility and the consumers. These devices create a dataset of the energy consumption to the utility which 
demonstrates as one of the best communicated frameworks. Numerous research works has been established in the recent years which 
exhibits the importance of the intelligent devices and storage of large amount of data which are connected to the databases [5–7]. This 
massive amount of data which are generated from the Internet of things (IoT), wireless devices are automated at a great level to 
analyses the data. The shift towards the data and security aspects of data should be analyzed at the larger level inorder to understand 
the privacy parameters in smart grid demand response modelling systems [7,8]. Machine learning approaches are identified as the 
important tool for the challenges which put forth by the new generation electricity grid. Artificial intelligence [8–11] at a larger level 
analyses the decision making and also schedules the control which are monitored towards various devices. There is a rising increase in 
machine learning model solutions starting from load forecasting, scheduling, demand response modelling [12,13] and also security 
aspects in smart grid. Optimization are required at a larger aspect from generation side to distribution side and for efficient model 
prediction based on electricity energy consumption. There are numerous analyses for the quality of data collected including demand 
response modelling for consumer’s needs. These involves the dynamic need of security purposes for a cyber-physical system models 
[12,13]. Adequate level of protection system is needed for the proper enhancement of the grid with the data analysis. Machine learning 
model creates an appealing remedy for processing of data and utilizing efficient security solutions. 

There are various works in literature which gives detailed study on smart grid. Initial works exhibits on the demand response 
modelling in smart grid with the usage of effective machine learning models are done for the process of load forecasting models. Load 
scheduling analysis were done based on long term and less impact of these approaches with communication technologies. AI based 
analysis with these demand response modelling in smart grid [1–8] creates an important development for a cyber physical aspect with 
security which brings in required modelling for self-organized algorithms. As the entire analysis are based on the two important terms 
big data and Internet of things hand in hand which projects as an automated analysis. This modelling with machine learning aspects 
creates a learning process which forms a core subarea of artificial intelligence. This creates an interdisciplinary domain drawing ideas 
to identify patterns in the data and the used patterns which are used to predict loads in a decision-making environment [14,15]. This 
work gives a clear picture of the evolution of the power system towards the smart grid with IoT data analysis growth that are followed. 
Of course, managing the massive volume of data in this connected system, properly analyzing it, and ensuring its safety, as well as 
safeguarding this new power grid from attacks [16,17] produced in both the physical and digital realms founds to be an important task. 
This work can serve as a foundation for upcoming academic and industrial researchers by highlighting current constraints and out-
lining potential remedies along with their efficacy. In last few decades, security is evolved as one of the major concern as the con-
ventional power grids are advanced into smart grids. Due to complex network infrastructure and handling large volume of data, smart 
grid encounters many security challenges. Fig. 4 shows an overall idea of security threats involved for integrated smart grid system 
such as data management threats, network threats and physical threads [1]. 

Data management threats includes data breaches, unauthorized access and integrity of data [2]. Smart grid generally collects vital 
information of the customer which includes their personal details, energy consumption pattern and operational data. A data breach 
may lead to disclosing of important information about the smart grid and customers which can be understand by the attackers and used 
to harm the smart grid system. Unauthorized access to smart grid system allow attackers to modify readings, alter operational data, 
block communications and even it may cause temporary or permanent service disruptions. Guaranteeing data integrity is highly 
pivotal in smart grid since tampered data may produce improper energy/load distribution, incorrect analysis of the grid’s status which 
further affect the safe and reliable operation of the smart grid system. Various network threads involved in smart grid are Network 
Communication Protocol Vulnerabilities, Denial of Service (DoS) attacks, malware attacks. Vulnerabilities in network communication 
protocol enable the unauthorized access to smart grid [20] system to manipulate its data. Especially, wireless communication protocol 
used in smart meters can be easily accessed by attackers if proper security protocol is not implemented on it. DoS attack on smart grid is 
aimed to degrade its performance or making it completely inaccessible causing service disruptions or outages. By installing malicious 
software on the smart grid system, the malware can easily penetrate into grid’s control system and disturb the grid operations 
significantly [3]. Some of the security concerns involved in physical threats are Infrastructure Sabotage, Theft and Vandalism, 
Component Tampering and Legacy Systems [4]. By making Infrastructure Sabotage i.e physical attack on the smart grid infrastructures 
such as substations, transformers, and power lines, the attackers can make major impact on the overall grid’s functionality. Data 
breaches and service interruptions may result from physical theft or vandalism of grid components, such as smart metre and control 
systems. Vulnerabilities may be introduced into the grid by component tampering via suppliers’ compromised hardware or software 
components. This includes the potential for viruses or backdoors to be installed on equipment that has been acquired. Since many 
smart grid systems are using obsolete technologies without latest security features, they are easily prone to cyberattacks today because 
these system upgrades can be expensive and complicated. 

The rest of the work is organized as follows. Section 2 exhibits the smart grid as cyber physical system model considering various 
important features of demand response modelling. Section 3 gives the glimpse of two aspects it exhibits the overall analysis of machine 
learning perspective in smart grid and later shows the in-depth machine learning approaches to demand response modelling for 
consumer and utility perspective. Section 4 exhibits security aspects in smart grid which portrays an overall impact of the challenges 
involved in building machine learning models in these modernize grid globally. Section 5 excerpt from this comprehensive study 
includes recommendations for future research topics with conclusion. 

2. Demand response modelling in smart grid – a cyber physical system perspective 

Smart grid creates a holistic infrastructure of integrating IoT [18] devices with the ability to communication to many devices and 

S.S. Reka et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e35683

3

control center more effectively. Fig. 1 gives a general smart grid infrastructure where the communication interface between the 
consumers and the control center carrying large amount of data places founds to be a crucial role. In this analysis of smart grid, demand 
response modelling is an important model involved by the electrical resources [1–7] for the energy reduction by the consumption made 
by the users in the peak hours. At a cyber physical perspective demand response modelling results in reduction of several parameters 
including operation and installation costs and also reduces larger amount which involves various potential failures. Fig. 2 represents 
the various demand response modelling in smart grid. The utility-based companies in this aspect encourages demand response 
modelling for the consumers [19] by offering lesser prices during the required non peak hours depending whether the users are in 
residential, commercial and industrial sectors. 

The dynamic pricing involved for demand response modelling involves an important analysis in all the end use consumers like 
industrial, commercial and the domestic needs. The users tend to change their scheduling pattern based on the consumption of 
electricity usage from various periods in a day and based on the information as a dual aspect from the aggregator. 

Demand response in smart grid [20] is on a major concern and a broader vision on electrical power systems. As the important 
section in smart grid demand response modelling [21] portrays an important aspect of cyber-physical modelling in smart grid with 
computing analysis. There are price-based demand response programmes which are based on electricity prices where there are changes 
in period and users can make productive scheduling for proper patterns which can be based on the time of use, real time pricing scheme 
and also the critical peaks. In connection to the incentive-based demand response schemes where the consumers reduce the electricity 
prices which are based on the incentives from the utility providers. As electricity markets exhibits a director relationship with demand 
response. There are different stakeholders involving with the electricity markets and related to the demand response modelling. The 
electricity market stakeholders can hold from the grid operators, suppliers including the retailers, the end users and the suppliers 
involved for the service with aggregators [22]. There are various challenges involved in a smart grid starting from the load forecasting 
in the peak time, demand response-based balancing which involves both peak and non-peak period. Demand response products 
globally can participate in the different electricity markets in their zone and artificial intelligence tools are very much important for 
this purpose. In smart grid, each of the different demand response strategies require different machine learning based solutions for the 
successful attributes towards in demand response solutions. Demand response management for interruptible load usage creates an 
importance towards the response of the users with reliability of the models. The important analysis in the other features of the smart 
grid concern different monitoring networks which can be accomplished by the models. The usage of the models involving real time 
monitoring, early warning considering transmission side. Other important components also involves the in case of conductor galloping 
as such as monitoring tower collapse and also there can be checks for possible discharge in the conductor. 

3. Role of machine learning applications in smart grid 

Artificial intelligence (AI) paves an important role with its multidisciplinary feature at larger aspects in the energy domain with the 
smart grid. The intelligent agents involved in AI provides an environment in smart grid which analyses larger amount of data with data 
driven paradigm. AI approaches involved can be considered both for single and multi-agent requirements in smart grid portfolio. As we 

Fig. 1. Smart grid infrastructure.  
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are in the era of wireless devices and huge data there is greater need for AI approaches and machine learning models at the subset of AI. 
This larger approach of AI is involved to identify patterns in automatic fashion and thereby using this automated data to predict, 
analyze and also understand the decision making process in a very uncertain environments also. Machine learning models in general 
brings in concepts from various domains of statistics, computing, mathematics and engineering aspects. In terms of models there are 
different models which includes supervised, unsupervised and the reinforcement learning process. The need of these models is mainly 
focused in demand response modelling in smart grid in literature. Considering in demand response model, supervised learning 
techniques are involved to focus on the forecasting strategy in demand and electricity prices. Fig. 3 represents various machine 
learning aspects in smart grid. By transforming the inputs into a comparatively higher dimension of features, it unravels the re-
lationships between demand, pricing and other attributes. Their main application is involved in non-aggregated load modelling where 
they provide a good understanding of DR dynamics. These can be analyzed by models of kernel based, tree based and also the linear 
regression models. In kernel-based methods the input data are considered in feature space and they are involved by different process 
for non-aggregated load modelling. In work [23] the attributes are considered based on the flexibility of data with power prices 
models. In work [24] the kernel based model are done based on the aggregated power received from the time and the type of price 
involved considering daily peak load estimation process. There is slight drawback where the resulting performance can be very 
computationally intensive for large datasets due to the input parameter. As in this work the DR space is the kernel structure which gives 
the load balancing of the data. There are few works in literature [21,22] which illustrates the prediction of electric vehicle charging 
based on demand response day ahead estimation. Table 1 and 2 depicts the importance of machine learning models in smart grid. 

Demand response [1–10] modelling are also considered in tree based methods where extensive works has been done on the price 
forecasting [23] and load forecasting process. In work [25,26] the DR models are analyzed based on tree based methods where the 
usage of multiple regression trees [24] are involved to predict the consumption of power from different parameters and also use 
classification and regression trees for the process of load forecasting [25]. Regression trees [26] are used when the process of handling 
missing data which promotes the process of overfitting and founds to be unstable in DR process. Thereby regression trees are involved 
to provide prediction tasks at complex level and also prediction in hourly basis [22–25], but over usage and training of regression trees 
and classification models can leads to overfitting of the models and newer data and nodes will be affected in prediction with respect to 
the training set of the models. The Linear Regression Models, as mentioned in Ref. [21], are useful in scenarios like predicting electric 
vehicle charging patterns where the inputs and outputs are linear. They are very efficient and interoperable but they are not useful with 
non-linear data. To deal with this, the Tree-based methods, as discussed in Ref. [24], come into play, which are very viable in situations 
that require aggregation of power data for predicting daily power loads. They can understand complex decision rules, find hidden 
patterns, can handle non-linear data but there is always a problem of overfitting causing inaccurate predictions [22]. which is based on 
predicting EV charging patterns with the context of DR. For effective load management, a fusion of strengths of the above prediction 

Fig. 2. Various Categories involved in Demand Response modelling for Smart Grid analysis.  

Fig. 3. Machine Learning Models involved in Demand response for Smart Grid objectives.  
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Table 1 
Analysis of Machine Learning Modelling in Demand response with security analysis and big data perspective.  

Research Objective DSM method/Technique Results/outcome Ref. 

Analysis of different data driven methodologies 
of AI in Demand Response (DR) applications 

various machine learning, ANN, multi agent 
systems 

specific AI methods required for DR applications [1] 

Detailed comparison study on various techniques 
used in DSM optimization problem is 
performed 

Genetic Algorithm, The particle swarm 
optimization (PSO), ant colony optimization 
(ACO), game theory algorithm (GTA), linear 
programming (LP), non-LP (NLP), and dynamic 
programming 

There are many drawbacks in the single 
algorithm approach hence it is recommended to 
use hybrid algorithms-based optimization 
models 

[4] 

To ensure secure and efficient energy utilization 
in IoT-enabled smart grid environments by 
addressing potential security threats 

Resilient Agent Model to detect and control 
intrusions, Advanced Energy Management Agent 
(AEMA) for optimizing energy utilization, 
interface Control Agent (ICA) component 
manages the communication interfaces 

The simulation results validated under various 
scenario showcasing reduced vulnerability to 
intrusions and optimal energy utilization 

[6] 

To enhance the theoretical framework for 
quantifying network flexibility potential in 
smart grids. 

k-means clustering to identify energy 
consumption patterns, CNN architectures to 
assess their effectiveness in classifying the 
substations 

The proposed CNN model with multiple 
convolutional layers (CNN2) showed mean 
accuracy exceeding 88.8 % across different 
clusters and scenarios. 

[7] 

To evaluate the performance of control 
algorithms for implementing DR strategies 
in residential area. 

Rule-Based Algorithm to minimize energy 
expenditure, Machine learning for predictive 
modelling and an optimization algorithm. 

Predictive controls for residential buildings 
reduced heating system costs by up to 40 % and 
resulted in a lower carbon footprint by up to 39 
%. 

[8] 

A dynamic pricing DR algorithm proposed for 
energy management in smart grids 

The dynamic pricing problem was formulated as 
a discrete finite Markov decision process (MDP) 
and Q-learning, a type of reinforcement learning 
(RL), was adopted to solve the decision-making 
problem. 

The proposed DR algorithm effective in 
managing the energy supply-demand balance in 
the electricity market and enhancing the 
reliability of electric power systems. 

[9] 

To develop a privacy-centric DR model to 
address the need for efficient energy 
management while ensuring user privacy in 
the smart grid system. 

demand response model developed which 
combines machine learning with cloud–fog 
computing. To address privacy concerns, a 
Generative Adversarial Network (GAN) 
combined with Q-learning model is proposed. 

The model demonstrated effective scheduling of 
appliances, leading to efficient energy 
management in residential settings and 
addressed the privacy concerns. 

[12] 

Development of a comprehensive consumer 
behavior learning model for real-time DR in 
smart grids to enhance the accuracy and 
effectiveness of appliance-level power 
forecasting 

An ensemble approach employs a hybrid 
Convolutional Neural Network-Long Short-Term 
Memory (CNN-LSTM) and eXtreme Gradient 
Boosting (XG-Boost) model to capture the 
stochastic nature of appliance power usage at 
fine-grained intervals, dynamic itemset counting 
(DIC) algorithm utilized to identifies patterns in 
appliance usage 

The ensemble model outperformed reference 
models in terms of RMSE and MAE, 
demonstrating superior predictive accuracy for 
appliance-level power usage. 

[13]  

Table 2 
Comparison analysis ML approaches with smart grid security.  

Type of security 
threats 

Traditional Security Measures Machine Learning 
Approaches 

Comparison Analysis Ref. 

Data breaches  • Firewalls and Intrusion 
Detection Systems (IDS)  

• Encryption  
• Access Control 

Anomaly Detection 
Behavioral Analysis 
Predictive Analytics 

Adaptability: ML models adapt to new and evolving threats 
more effectively than static rules in traditional systems. 
Real-time Detection: ML provides more effective real-time 
detection compared to signature-based IDS, which may miss 
zero-day attacks. 
Complexity Handling: ML can handle and analyze large 
volumes of complex data more efficiently than traditional 
methods. 

[95–100] 

Unauthorized 
Access 

Password Protection and 
Multi-Factor Authentication 
(MFA) 
Access Control Lists 
Role-Based Access Control 
(RBAC) 

User Behavior 
Analytics (UBA) 
Adaptive 
Authentication 
Risk-Based Access 
Control 

Dynamic Security: ML provides adaptive and dynamic security 
measures that traditional static controls cannot match. 
Insider Threat Detection: ML is more effective at detecting 
insider threats by analyzing subtle behavioral changes that 
traditional methods may overlook. 
Automation: ML automates the detection and response to 
unauthorized access, reducing reliance on manual 
intervention. 

[102], [103], 
[104], [105] 

Integrity of Data Checksums and Hashing 
Digital Signatures 

Real-time Data 
Validation 
False Data Injection 
Detection  

F0B7 Proactive Detection: ML can detect integrity issues 
proactively, often before they cause significant harm.  

F0B7 Scalability: ML scales more effectively with the growing 
amount of data in smart grids, providing continuous and 
real-time validation. 

[110–115]  
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techniques could be the most beneficial in capturing all the interactions between EV charging, electricity demand and pricing 
dynamics. 

Ensemble learning also are considered at larger aspects presently [27] for load forecasting. In Ref. [28] temporal ensemble learning 
process are involved for forecasting data based on the demand on a specific time period. Ensemble learning is a process of developing a 
model based on the weak learning nodes. In work [29,30] gradient models are involved for the forecasting accuracy comparing with 
the based models for a short term. The concept of Temporal Ensemble Learning, featured in Ref. [27], introduces a paradigm where 
models are created from interconnected weak learning nodes. They give accurate data forecasting within specific time-frames 
improving robustness. In contrast, their efficacy for short-term predictions is spotlighted in Refs. [29,30] which outperform their 
traditional counterparts in terms of accuracy. Other than the load forecasting, supervised learning is involved for other requirements in 
demand response. In approach of unsupervised learning models [30], the attempts to analyses pattern in the data are found to be not a 
well-structured problem. In this process the data to be analyzed are not well know prior, this creates the approach with error matric. In 
this process environment which requires unlabeled data can be considered. This aspect can be very well suited for demand response 
modelling in smart grid. As in DR model unlabeled data is an advantage where unsupervised [30] learning can be used such as 
clustering, as the data can be done by the format of latent factors, graph structure and also the completion of matrix [28]. However, 
unsupervised learning models [30], which, while attempting to decipher patterns in data, grapple with the challenge of structuring 
uncharted data patterns. This approach leads to error matrices and uncertainties, primarily due to the unpredictable nature of the 
analyzed data. Nonetheless, its utilization is apt for scenarios necessitating the analysis of unlabeled data, thus offering a fitting 
approach for demand response modelling within the intricate landscape of the smart grid. Main analysis where the usage of unsu-
pervised algorithms can be used in demand response modelling in smart grid should be on clustering methods. In clustering methods in 
this context, the load profiles with scheduling can form groups such that the clusters are made dissimilar with the profiles. Grouping 
can be made to positively identify the households for scheduling patterns based on the demand response events and the 
incentive-based programmes can be given to the consumers for their participation. The main area of focus comes under the clustering 
of load profiles coupled with scheduling information to identify each household. Many clustering algorithms are in practice [29] 
considering the K means algorithm [31,32] can be used where the prediction of K cluster are based on the data point in each cluster 
[32]. This data point in the k cluster is based on the centroid distance and the k-based centroid has to be the smallest considering all 
other centroids in this algorithm. So, K means clustering methods can be used mainly to group in residential environment based on the 
requirement based on the load data considered in a period of several weeks. This features are mainly done based on self-organizing 
map [33] in this case the load shapes are made based on the 24 h monitoring in a day profile and also based on the peak with 
average consumption of load. 

In work [34] this has been analyzed based on the dataset which helps to group the entire process based on the cluster households. In 
this process real time pricing schemes are considered and it requires to exhibit the load profile clustering process based on the dynamic 
pricing schemes. However, some critical concerns [61] with K-means algorithm are (1) defining number of clusters in advance, which 
is not practical when a smart grid is a dynamic entity; (2) doesn’t provide a global optimum solution but focuses on local optimum, 
which is not ideal in most scenarios. Other involvement in unsupervised learning for demand response modelling in smart grid are the 
challenges involved in the user profile segmentation considering different load patterns. This helps gives a great advantage for the 
aggregators for the flexibility of the asset involved and for the interaction between consumers and the utility. Considering the process 
of reinforcement learning [31] where learning is done based on the interaction. This learning process are based on the agent approach 
where it completely focusses on goal-oriented learning process which are considered in an uncertain environment. The main aspect of 
reinforcement learning is based on the exploration done with the reward process from the agent at a delayed aspect and also 
considering the process of trial-and-error strategy. The concept of this learning process is based on the Markov decision process [35] 
which data considered to be sequential and the information receives based on the reward from the agent. 

In this regard for the approach of demand response modelling in smart grid using reinforcement learning [36] can be analyzed 
based on scheduling patterns and taking in control of various account from the interaction with the users which are completely data 
driven. In work [37,38] the approach of demand response pricing analysis can be made for the utility and also analysis of elasticity 
model can be created at a larger extent by dynamically adjusting price schemes in response to grid conditions and consumer behavior, 
fostering effective energy management and incentivizing DR participation. In perspective of DR, the most important of reinforcement 
learning used are the Q learning [39,40] process. This process is found to be independent of policy and helps to create an optimal action 
plan and the learning is profited by discounted reward by the execution of the action and the agent sets the policy with a learning 
factor. The agent learns through a cycle of action execution, reward feedback, and policy adjustment. There are methods used for DR 
purposes for the purpose of multi agent mechanisms in the literature [41] where the workload distribution for data privacy is effi-
ciently managed through collaborative agents. This learning methods are mainly used in the purpose of distributing the workload 
parameter for the data privacy considered for the users. Multi agent approaches are used. For the process of handling complex and 
better computational algorithms for DR approaches are made which results them in better DR scenario in smart grid environment. 
Previous approaches to reinforcement learning lacked scalability due to complexity issues of the algorithms. However, using deep 
learning in reinforcement learning has enabled RL algorithms to scale to decision-making problems, introducing the field of Deep 
Reinforcement Learning (DRL) [47]. The work [48] proposes an approach for demand response modelling using reinforcement 
learning methods by exploring Q-learning with eligibility traces and importance-weighting. 

Let us look at an example about Reinforcement Learning for DR in a Smart Grid. In the context of a smart grid, let us consider a 
residential area where multiple households are connected to the grid. The utility company aims to optimize energy consumption [49] 
during peak hours by implementing a demand response strategy. The goal is to encourage residents to reduce their electricity con-
sumption during high-demand periods, thereby ensuring grid stability and minimizing the need for additional power generation. 
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Starting with the environment setup, each household’s state comprises its current energy consumption, time of day, weather condi-
tions, and historical consumption pat-terns. The available actions include reducing energy usage, maintaining the current con-
sumption, or increasing energy usage. The utility provides rewards based on the energy reduction achieved by each household during 
peak hours. Higher rewards are given for substantial reductions. The utility deploys a reinforcement learning agent to each household. 
The agent’s goal is to learn an optimal policy that maximizes the cumulative rewards over time. The policy guides the agent’s actions in 
response to different states. Initially, the agents explore different actions to learn the rewards associated with each action in various 
states. Over time, the agents shift towards exploiting the learned knowledge to make decisions that lead to higher rewards. The 
Q-learning algorithm is employed by each agent to determine the best actions in different states. The Q-values represent the expected 
cumulative rewards from taking a specific action in a particular state. The agents update these Q-values based on the rewards received 
and the potential rewards of future actions. Through iterative episodes of interactions with the environment, the agents refine their 
policies. They gradually learn to reduce energy consumption during peak hours to maximize rewards while considering factors like 
weather conditions and time of day. During peak hours, the agents dynamically adjust household appliances, such as thermostats, 
water heaters, and lighting systems, based on the optimal policy learned through reinforcement learning. The actions could involve 
setting thermostats to lower temperatures, turning off non-essential lights, and delaying energy-intensive tasks like laundry or dish-
washing. Over time, as agents continue to interact with the environment and receive feedback, they fine-tune their actions. The utility 
monitors the grid’s stability and the collective reduction in energy consumption achieved during peak hours. If successful, this demand 
response strategy helps prevent overloading the grid and potentially reduces the need for additional power generation, resulting in cost 
savings and environmental benefits. Considering another branch of machine learning methods which involves the learning process of 
different levels of representation and considering the raw data, which are the deep learning models [42] which are discovered for the 
best representation models. 

Deep learning models are well versed in considering for more hidden layers of complexity. There are different architectures 
considering the feed forward neural network [43], convolutional neural [43] autoencoders [43] and also nowadays the architecture of 
deep reinforcement learning process [44] are also involved. The analysis made for deep learning models in demand response modelling 
can be done in different attributes of the user’s behavior, controlling of events, consumers analysis can be made on a personalized 
approach for the utility services at every multilevel hidden layers. There are different models like long term short term memory ar-
chitecture [45], convolutional neural network [45] which are involved for processing data with feed forward architecture. Deep 
learning models have the capacity for learning nonlinear data analysis, complex based correlations in such the prediction accuracy 
model are made in the process. These models, characterized by multiple layers of representation, excel in extracting intricate patterns 
from raw data. Deep learning architectures involves huge data which have computational analysis to train and found to be more 
complex based systems. In general, for smart grid and the requirement in residential buildings there is a great requirement of 
implementing prediction model. Considering this work [46] a deep recurrent neural network is considered in residential buildings 
which frameworks demand-supply for a small duration of time. In this process there forms a five layered model which considers the 
first layer moved on to the daily consumption pattern. The subsequent second layer involves the output at a particular instance of time. 
The state of art of deep learning approaches are made can be involved for many aspects in demand response for modelling starting from 
electric load forecasting to the prediction model, state estimation factor, involvement of energy sharing followed by energy theft 
detection. Machine learning models are highly data driven and the models work on complex algorithms, which are also vulnerabilities 
that can be exploited either via incorporating calculated falsified data or altering the behavior of the model [53,54]. There are multiple 
security concerns for machine learning models in recent times, some of which are: Poisoning of data [50,51], which is injected into 
training data to manipulate and control the models. This displays the vulnerabilities in all types of models and affect the accuracy and 
working. Feature collision attacks [50] are further built on poisoned data sets to misclassify a specific target. As detailed in work [57], 
defense strategies against data poisoning such as reject on negative impact to remove malicious samples and method using bagging 
ensemble construction have been proposed over the last decade to improve the validity of the model affected. 

Backdoor attacks, dynamic [52] and/or static, which is typically exploited by inputting a certain trigger, and that attacks a 
particular behavior of the model, thus altering the output [50]. Defense methods for backdoor attacks proposed such as spectral 
signatures [62], NEO, which is an agnostic model framework to identify and mitigate backdoor [63]. Adversarial attacks [55], are 
smaller and imperceptible attacks that feed calculated erroneous inputs to the model, which fools the model into making incorrect 
classifications and/or predictions. This affects the learning of the model and is difficult to resolve as the inputs can camouflage as 
anomalies within the dataset. A most common occurrence of adversarial attacks is in image processing and identification models [56]. 
Evasion attacks, work similar to data poisoning but these attacks are carried out on test data. The main goal is to alter the model via the 
test data, so that classifier makes a wrong classification for the input given. In work [57], strategies to work for the protection of the 
model against evasion attacks such as distillation [58] and adversarial training and ensemble adversarial training [59] and 
Multi-strength adversarial training (MAT) [60] to mitigate evasion attacks have been detailed towards their effectiveness and usage 
concerns to fight evasion attacks. 

Comparison with Traditional Methods: It would be beneficial to include a comparison of ML approaches [90–94] with traditional 
security measures used in smart grids. This comparison could highlight the advancements ML provides over conventional methods.The 
efficacy of these advanced methodologies underscores their pivotal role in reshaping demand response modelling in the smart grid era. 
As technology evolves, their implementation opens doors to dynamic energy management, accurate load forecasting, and the efficient 
utilization of resources within the intricate fabric of the modern energy landscape. Integrating various modelling approaches is a 
multidimensional approach for exact demand response in the context of smart grid architecture. A complete toolkit for efficient 
decision-making in dynamic energy domains is created by the combination of tree-based methods, ensemble learning, and supervised 
procedures. Unsupervised learning discovers latent patterns in data using clustering techniques like K-means and self-organizing maps, 
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boosting understanding of energy usage. Energy use is optimized through demand response reinforcement learning, demonstrating 
AI’s transformational impact in changing energy management techniques. 

4. Security aspects and big data analytics in smart grid – cyber physical system approach 

Security concerns with the application of machine learning models creates a path of overall structure of cyber-physical system 
modelling. Fig. 4 shows an overall idea of security threats involved for integrated smart grid system. Handling large amount of data 
based on machine learning model, proper depiction of cyber-attacks to the smart grid should be carried out with much concern. The 
system targeted can be affected with large amount of data leakage which disrupts the entire model considering the interaction between 
the users and the utility. At the aspect the available information in a smart grid system starting from the name of the user, account 
details, meter requirement, billing history and also the home network [105–110]. Considering the component of billing and debt 
collection, there can be loss to the customers and expose of personal information. At the consumer level the security and privacy 
involved with the communication infrastructure creates a possibility of attacks. Home gateway at this situation creates a communi-
cation structure for deployment of smart grid infrastructure. The configuration is controlled by the suppliers. Network attack also can 
be more important concern for home energy management. Every component involves the cryptography key measures the different 
involvement of protocols starting for key exchange and generation. There should be different protection levels made at every aspect of 
the protocol concerned. 

In general, for suitable security concerned with smart proper communication infrastructure in smart grid is an important aspect 
which involves the characteristics of communication in smart homes or offices considering home area network [106] and involves 
smart meter readings for effective local energy management [115]. In this aspect relatively lower transmission rate, furthermore 
neighborhood area networks and wide area networks [108] are involved in accordance with the communication deployed in the aspect 
within certain kilometers which requires transmission up to some Gbps [114,115]. With respect to increased researchers on big data 
analytics in smart grid there are found to be lot of open issues. The data usage in most of information and database structures are still 
with respect to the ideal data founds to be increasing the barrier for data sharing among different applications. Moreover, the complete 
lack of vision in this analysis, where the majority of the utility companies are still looking for investments on from the data side of the 
utility. The analysis of big data prospects in smart grid. 

Because of their great efficacy, accuracy, and precision, machine learning (ML) techniques have been widely applied in a variety of 
SG applications, including power system control and monitoring, abnormal diagnosis, and attack detection [5]. In order to mitigates 
various security challenges of the smart grid system as discussed above, various ML methods can be used. For data management related 
threats, system is required to continuously analyze the data pattern and user behavior to identify any unusual access patterns or user 
behavior and indicating potential breaches [6]. A machine learning algorithm which support anomaly detection and user behavior 
analysis can be used for detecting data management related threats. Similarly, for network threats, ML model can be used to analyze 
network traffic in real-time to detect anomalies, suspicious patterns, and potential attacks, enhancing overall network security. To 
predict potential physical security threats, a ML model can be used by analysing data from sensors and other monitoring devices, 
enabling proactive measures. Therefore, by employing an appropriate machine learning algorithm related to anomaly detection and 

Fig. 4. Security aspects for integrated smart grid system for effective cyber physical system model.  
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behavioral analysis major of the security concerns in smart grid system can be addressed. 
Cyber security strategies can be done at two levels of protection and also the detection. The protection aspects involve different 

strategy both at the hardware and also at the administrative aspects. The detection processes can be done effectively by many machine 
learning models. The models are applicable for exhibiting a suitable solution for the protection and detection. Cyber vulnerabilities 
[75–81] in a high form at the prospect of handling huge data and the preserving the data forms to be a preliminary task for machine 
learning models. On a general aspect, security aspect to be considered for the smart meter where the end point of handling data 
between the consumer and the utility. The framework had to be made with the concept of assessing different types of risks and top 
security measures had to be concerned for the same. As for this approach layered security framework can be done for securing the 
smart grid. Involvement with layered security structure creates the data and the security requirements to be made where each layer can 
be considered starting from strategy, requirements, application security, privacy consideration, tamper management which involves at 
the physical layer aspect.With the rise of machine learning and AI’s presence in almost every domain across the world, many recent 
developments have been seen and proposed with respect to the incorporation of machine learning into the future of smart grids. In 
current scenarios, the huge influx of data in large expansive smart grids are not handled well. Issues with the volume, velocity and 
complexity of the data obtained is not being handled smoothly, thus self-sustaining and operating smart grids will be the next step to 
move forward towards. The work [64] has proposed a novel belief propagation-based algorithm to identify False Data Injection Attacks 
(FDIAs) in smart grids to enhance the security and reliability of the smart grids. Defense mechanisms against white-box and black-box 
attacks like these are highly required as machine learning models are very vulnerable to data-based attacks and behavioral attacks. 
Further areas of scope in academic interest include power flow optimization [65], energy management [66], integration of microgrid 
[67,68], cybersecurity with focus on the machine learning models, demand response optimization [69] and more. 

Sanju Kumari et al. [70], explores demand response management within smart grids through big data analytics. The study spe-
cifically evaluates the utility of the Prophet model, a forecasting tool, against the traditional ARIMA model for predicting electricity 
demand. The approach involves a process of filtering and processing vast datasets to remove outside values and noise, thereby 
extracting relevant data for analysis. The processed data is then modeled using the Prophet model to generate forecasts that are 
instrumental in demand response management. The methodology addresses time-series forecasting challenges, such as data with 
irregular intervals, missing data points, and complex seasonality patterns without the need for manual parameter tuning. The 
comparative analysis of the ARIMA and Prophet models for forecasting electricity consumption yielded quantifiable results. The 
research forecast 2016’s energy consumption based on data from 2014 to 2015 which consists of 10,00,000 records. The mean square 
error (MSE) for the Prophet model was significantly lower at 0.67546 compared to the ARIMA model’s 1.06877. Similarly, the mean 
absolute error (MAE) for the Prophet model was 0.5308, less than the ARIMA model’s 0.6239, indicating a closer match to the actual 
data points. The thesis by James Timilehin Oyedokun [71] focuses on enhancing demand response (DR) in smart grids using big data 
analytics techniques on smart meter data.It addresses the challenges of identifying customers with DR potential and estimating 
customer demand baselines for more efficient DR programs. The author prepares the data by normalizing the smart meter data from 
customers. This method introduces a clustering technique based on k-medoids, combined with dynamic time warping (DTW) as the 
distance metric, to organize the analyzed smart meter data [82–89]. This methodology is based on long short-term memory (LSTM) 
recurrent neural networks for estimating customer baselines, utilizing data from similar previous days during demand response (DR) 
event periods for training the model. A novel aspect of this methodology is its consideration of the demand rebound effect, which refers 
to the increase in energy consumption following a DR event as customers return to their usual consumption patterns. This method is 
tested on the publicly available Irish smart meter data. This work contributes to the smart grid field by offering data-driven strategies to 
improve DR program targeting and effectiveness, leveraging the increasing availability of smart meter data. 

The study conducted by Ioannis Antonopoulos et al. [72], aims to analyze residential demand response (DR) behavior using data 
from the Smart Grid Smart City (SGSC) trial. The methodology is the identification of important features that influence demand 
response behavior. This involves analyzing the data to understand which household characteristics significantly affect energy usage 
patterns during demand response events. The research employs a variety of machine learning models, including linear models, 
gradient boosting regression, random forest regression, and dense neural networks, to predict the impact of household characteristics 
on demand response behavior. The study trains the selected models on the SGSC dataset, followed by a validation process. The result 
gives minimum RMSE values range from 18.711 ± 0.714 for Gradient Boosting regression to maximum of 19.721 ± 1.611 for Random 
Forest regression. The MAE ranges from 15.246 ± 0.631 for Gradient Boosting regression to 16.107 ± 1.389 for Random Forest 
regression, showing similar performance levels across models. The R2 values range from − 0.108 ± 0.240 for Random Forest regression 
to 0.015 ± 0.018 for Gradient Boosting regression, indicating varying degrees of model fit to the data. This ensures the models’ ac-
curacy and their ability to predict demand response behavior effectively. Broeer et al. [73] proposes a smart grid modelling framework 
that integrates wind power, emphasizing demand response’s role in managing wind’s variability. The paper employs an agent-based 
modelling approach using the GridLAB-D simulation platform, enabling the detailed representation of smart grid components. 

The model includes a detailed representation of generators, transmission and distribution systems, loads (both thermostatic and 
non-thermostatic), and market dynamics. A key aspect of the modelling is the simulation of a real-time pricing (RTP) electricity 
market, where suppliers and demanders can bid into the market. The model is extended to include wind power generation, assessing 
the impact of its variability on the smart grid and exploring the mitigating role of demand response. The model’s validation against the 
Olympic Peninsula demonstration project provides empirical support for its effectiveness in capturing the dynamics of a smart grid 
system.The study demonstrates that DR can effectively reduce peak loads and manage distribution congestion by allowing loads to 
interact within a market clearing process. The simulation results reveal that introducing 35 MW of wind power into a system with 
10,000 residential houses can significantly impact the electricity market dynamics, highlighting the necessity for diverse load 
participation to maintain system reliability and efficiency. This work reveals that the high wind power scenarios led to lower market 
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prices, prompting loads to become unresponsive when prices fell below a certain threshold and vice versa. These dynamics were 
captured through detailed simulations, providing insights into the potential for smart grids [105] to enhance the integration of 
renewable energy sources. 

In this work [100] the main focus on exhibit two way-based communication which shows the process of implementing real time 
portable based load forecasting device which shows better degree of accuracy and the process develops the basic understanding 
machine learning models. Furthermore, this exhibits execution analysis based on better performance with this analysis. Considering 
the work [101] which shows two main issues where the work involves offloading based on IoT cloud infrastructure [116–120] with 
data transmission [121–123]. The other section of the work involves the process of enhancing the noise and faulty models using deep 
learning architecture. This shows the need of the proposed model using edge-based computing platforms. In work [103] the main 
objective aims on creating a hardware testbed which is done in accordance with the enhancement of MQTT which uses edge computing 
perspective. 

Simmhan Y et al. [74],developed advanced data analytics and scalable machine learning models to address the complexities and 
dynamic requirements of smart grid systems. The research introduces a sophisticated information integration pipeline to streamline 
the collection, processing, and analysis of diverse smart grid data. It employs scalable machine learning models to predict demand, 
optimize grid performance, and enhance decision-making processes. The real-world smart grid data from the Los Angeles Smart Grid 
Project, encompassing various data points related to energy consumption, generation, and distribution are used for testing purposes. 
The proposed platform significantly improves the capability to forecast energy demand with high accuracy, employing scalable 
machine learning models. From the findings it is evident that cloud-based platforms can effectively support the complex analytics 
required for modern smart grids, paving the way for more sustainable and efficient energy systems. Fog Computing (FC) [75] is in-
tegrated into Smart Grids (SG) to enhance Big Data Analytics capabilities. The authors propose PPFG mathematical framework aiming 
at optimizing the location, capacity, and number of Fog Computing Nodes (FCNs) to minimize average response delay and energy 
consumption in network elements. 

5. Conclusion 

This work projects the growing interest of AI solutions in smart grid at a larger perspective. The study gives an understanding about 
machine learning model visibility at smart grid perspective with security concerns as a holistic cyber physical model. This work enables 
more understanding towards the most important section of demand response modelling in smart grid with machine learning aspects. 
This work details on the different security attacks that cause concern in usage of machine learning models and details on the supporting 
and weakening points regarding their use. This study shows the growing interest of research community of machine learning in de-
mand response which identifies suitable solutions. This work gives a path for AI/ML modelling to establish as a mainstream as aspect 
looking forward as model for energy-based demand response modelling in smart grid. At the future perspective security aspects in 
smart grid at the different aspects of modelling in deep learning aspects in end point and network security. The research analysis can 
also be done on the basis of advanced smart metering process with 5G and 6G aspects at the communication layer. Many advancements 
in related to cryptography, differential privacy is involved with the practical concerns of false data injection, data theft and also insider 
cyber-attacks with the integration of cloud fog can be analyzed with future directons. environment. 
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