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Abstract

Motivation: The MS2-MCP (MS2 coat protein) live imaging system allows for visualization of transcription dynamics
through the introduction of hairpin stem-loop sequences into a gene. A fluorescent signal at the site of nascent tran-
scription in the nucleus quantifies mRNA production. Computational modelling can be used to infer the promoter
states along with the kinetic parameters governing transcription, such as promoter switching frequency and poly-
merase loading rate. However, modelling of the fluorescent trace presents a challenge due its persistence; the
observed fluorescence at a given time point depends on both current and previous promoter states. A compound
state Hidden Markov Model (cpHMM) was recently introduced to allow inference of promoter activity from MS2-
MCP data. However, the computational time for inference scales exponentially with gene length and the cpHMM is
therefore not currently practical for application to many eukaryotic genes.

Results: We present a scalable implementation of the cpHMM for fast inference of promoter activity and transcrip-
tional kinetic parameters. This new method can model genes of arbitrary length through the use of a time-adaptive
truncated compound state space. The truncated state space provides a good approximation to the full state space
by retaining the most likely set of states at each time during the forward pass of the algorithm. Testing on MS2-MCP
fluorescent data collected from early Drosophila melanogaster embryos indicates that the method provides accurate
inference of kinetic parameters within a computationally feasible timeframe. The inferred promoter traces generated
by the model can also be used to infer single-cell transcriptional parameters.

Availability and implementation: Python implementation is available at https://github.com/ManchesterBioinference/
burstInfer, along with code to reproduce the examples presented here.

Contact: jonathan.bowles-3@postgrad.manchester.ac.uk or hilary.ashe@manchester.ac.uk or magnus.rattray@manchester
.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in in vivo live imaging technologies (Pichon et al.,
2018) have created a pressing need for algorithms capable of analy-
sing large, complex biological datasets. Live imaging techniques,
such as the MS2-MCP system, have been of particular interest to the
developmental biology community due to the ability to visualize
transcription at single-cell resolution in vivo. As correct spatial and
temporal control of gene expression is of fundamental importance
during both normal development and disease, the ability to analyse
the rich datasets generated by live imaging approaches is vital.

The MS2-MCP system allows for the quantification of transcrip-
tion in real-time through the introduction of hairpin structures into
a gene of interest (Pichon et al., 2018). Following the entry of the

promoter into an active state, elongation of RNA Polymerase II (Pol
II) along the gene body results in the production of nascent mRNA
transcripts containing hairpin stem-loops. Binding of the MCP fluor-
escent protein to this hairpin structure allows for detection of the
resulting fluorescent signal by fluorescence microscopy (Bertrand
et al., 1998; Garcia et al., 2013; Lucas et al., 2013). Quantification
of this fluorescent signal results in a fluorescent time series, which
acts as a proxy for transcriptional output at each transcription site
(Bertrand et al., 1998; Garcia et al., 2013; Lucas et al., 2013). The
ability to track the fluorescence of accumulated nascent mRNA at
transcription foci (and therefore levels of transcriptional activity)
over time and at single-cell resolution opens up the possibility of
investigating spatial and temporal transcriptional dynamics in model
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organisms, in addition to the response of tissue culture cells to exter-
nal stimuli (Pichon et al., 2018). The use of the MS2-MCP system
allows for the collection of temporal transcriptional data, an advan-
tage over the static ‘snapshots’ of transcription generated using tech-
niques such as single molecule fluorescent in situ hybridization
(smFISH) (Pichon et al., 2018).

Transcription is now understood to be a highly dynamic process,
with many genes producing transcripts in discrete pulses, or ‘bursts’, of
transcriptional activity (Chubb et al., 2006; Coulon et al., 2013;
Golding et al., 2005; Raj et al., 2008). Transcriptional bursting has
been observed in organisms ranging from Drosophila to vertebrates and
is implicated in both normal development and disease (Eldar et al.,
2010; Raj et al., 2008); bursting is of particular interest to the gene regu-
lation community, as many key developmental genes appear to exhibit
bursting-like behaviour (Lenstra et al., 2016). Mathematical modelling
of transcriptional bursting may be described by a set of kinetic parame-
ters which report the frequency, amplitude and duration of transcrip-
tional bursts (Corrigan et al., 2016; Dar et al., 2012; Fukaya et al.,
2016; Li et al., 2018; Raj et al., 2006; Zoller et al., 2018). Previous
work on mathematical modelling of transcriptional bursting has
focussed on inference of these transcriptional parameters through ana-
lysis of either static smFISH snapshots (Bahar Halpern et al., 2015;
Gómez-Schiavon et al., 2017; Mueller et al., 2013; So et al., 2011) or
MS2-MCP time series data (Berrocal et al., 2020; Bothma et al., 2014;
Corrigan et al., 2016; Fukaya et al., 2016; Garcia et al., 2013; Lammers
et al., 2020; Tantale et al., 2016). The ability to infer these kinetic
parameters opens up the possibility of providing a deeper insight into
the spatio-temporal regulation of bursting at single-cell resolution.

While MS2-MCP time series data allows for visualization of nas-
cent transcription at single-cell resolution in real-time, inference of
kinetic parameters from MS2-MCP data presents a number of unique
challenges (Gregor et al., 2014). Crucially, the presence of persistent
fluorescence within the signal complicates inference of transcriptional
kinetic parameters (Corrigan et al., 2016; Lammers et al., 2020).
Upon the promoter entering an active state, RNA Polymerase (Pol II)
commences elongation along the gene body, leading to a fluorescent
signal through MCP-fluorescent protein binding. When the promoter
becomes inactive, the fluorescent signal does not immediately cease.
Pol II molecules are still in transit along the gene body and the incom-
plete mRNA transcripts are bound by MCP-fluorescent proteins.
Inference of kinetic parameters therefore requires an algorithm cap-
able of taking this persistence into account.

Lammers et al. (2020) incorporated the persistence of the MS2
signal through implementing a compound state hidden Markov
model (cpHMM), building on an earlier hidden Markov model for
MS2-GCP parameter inference (Corrigan et al., 2016). The transi-
tion probabilities and emission values of the model correspond to
the promoter switching frequencies and Pol II loading rate, respect-
ively, which together are sufficient to describe the bursting dynamics
of the system. The promoter switches between active and inactive
states according to the transition matrix, loading polymerase onto
the gene while in the active state at a rate determined by the model
emission parameter (Fig. 1A). Persistence in the signal is dealt with
through the inclusion of a window parameter, W, that models the
dependence of the recorded fluorescence on the previous W pro-
moter states, each of which may take one of K (here 2) values. The
inclusion of the window parameter results in KW compound states
to fully describe the system. This exponential scaling becomes prob-
lematic when dealing with long genes, as the dependence of the win-
dow parameter on elongation time (and therefore gene length) may
lead to infeasible computational times.

In this article, we present a modified form of the cpHMM
referred to as burstInfer, for fast inference of kinetic parameters
from MS2-MCP data. This new method can model genes of arbi-
trary length through the use of a time-adaptive truncated compound
state space. The truncated state space provides a good approxima-
tion to the full state space by retaining the most likely set of states at
each time during the forward pass of the algorithm. The algorithm
represents a significant speed boost over the original cpHMM tech-
nique when applied to long genes, removing the exponential time-
scaling of the technique with gene length. Results indicate that the

use of a reduced compound state space is sufficient to accurately
infer kinetic parameters relative to the original model, while signifi-
cantly reducing computational time for longer genes, making infer-
ence of kinetic parameters for genes of all sizes feasible.

2 Materials and methods

2.1 Model formulation
Following insertion of the MS2 stem-loop sequences into the gene

of interest, elongation of Pol II along the length of the gene body
results in the generation of a fluorescent time series signal. We in-
tend to model the dynamics of these recorded fluorescent signals,
with the aim of extracting the kinetic parameters driving expression
of the target gene. Following the cpHMM formulation derived by
Lammers et al. (2020), whose method this article extends, we denote
an individual fluorescent signal (corresponding to one transcription
foci) as y ¼ fy1; y2 . . . ; yTg, with T denoting the number of time
points within the individual trace (Fig. 2). We assume that the pro-
moter may be in one of K¼2 effective states, i.e. active or inactive.
The promoter switches between hidden states z at time step t accord-
ing to the K 3 K transition matrix, A ¼ pðztjzt�1Þ. Akl represents the
probability of making the transition from hidden promoter state k
to hidden promoter state l during time step t. Transitions between
hidden promoter states zt are assumed to satisfy the Markov prop-
erty, i.e. the hidden promoter state at a given time point depends
only upon the hidden promoter state at the previous time point
(Lammers et al., 2020).

Each effective state zt is associated with a polymerase initiation
rate, r(k), representing the number of Pol II molecules loaded onto
the gene in a given minute. The fluorescence data presented here are
shown in terms of arbitrary units of fluorescence. Quantification of
the transcriptional output of cells using smFISH may be used to cali-
brate the signal in terms of Pol II number instead (Garcia et al.,
2013; Hoppe et al., 2020; Lammers et al., 2020). The fluorescence
emission per time step t for each effective state is defined as
vðkÞ ¼ FrðkÞ, where F is a calibration factor used to convert the
units of arbitrary fluorescence to units of Pol II (Lammers et al.,
2020).

The recorded fluorescence intensity at a given time point
(Fig. 1B) depends upon not only the fluorescence generated during
the previous time step, but also the cumulative fluorescence gener-
ated by Pol II in transit along the length of the gene during previous
time steps. To model this dependence upon previous time steps, the
concept of a sliding window, W, is introduced into the model. This
window, or memory, represents the dependence of the observation
yt at time point t on not only the hidden promoter state zt at the cur-
rent time point but also the previous W hidden promoter states
(depicted in Fig. 2). The value of W is gene-dependent and is calcu-
lated as W ¼ selong

Ds , where selong is the elongation time and Ds is the
size of an individual time step, i.e. the time resolution of the data.
Hidden promoter states falling outside the previous W time points
can be assumed not to contribute to the recorded fluorescence at
time point t, as Pol II initiated at that particular time point is no lon-
ger in transit along the gene.

To model this dependency of the observed fluorescence at time
point t on the previous W hidden promoter states zt, the concept of
a compound state st ¼ fzt; zt�1; . . . ; zt�Wþ1g is introduced. st, a 1
�W vector, encodes the sequence of W hidden promoter states up to
and including the current hidden promoter state at time point t. At
each given time point, the previous W - 1 promoter states are deter-
ministically passed to the new compound state, becoming the
1 . . . W � 1 elements of the new compound state vector, with the
Wth compound state at time point t being determined stochastically
by the state transition matrix A. In the original cpHMM model,
each compound state takes one of KW different values, as each of W
hidden promoter states may take one of K values (Lammers et al.,
2020). This exponential scaling with window size W imposes a sig-
nificant computational burden. How our model addresses this is
detailed in the following section. As in the original cpHMM model,
the emissions of the Hidden Markov Model are described by a
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Gaussian distribution with mean l and standard deviation r. The
initial hidden promoter states at time t¼0 are given by a 1� K vec-
tor p. The joint distribution of compound states and observed fluor-
escence values is given by:

pðy; sjhÞ ¼ pðs1jpÞ
YT

t¼1

pðytjst; l; rÞ
YT

t¼2

pðstjst�1;AÞ: (1)

Expectation Maximization is used to infer the Hidden Markov
Model parameters, ĥ ¼ fp̂; l̂; Â; r̂g. The use of an approximate in-
ference technique renders inference of the model parameters compu-
tationally tractable. However, the exponential scaling of
computation time with window size represents a significant problem
for longer genes.

2.2 Dynamic state space truncation
To circumvent the exponential scaling of the algorithm with win-
dow size, we propose a dynamic reduced state space variant of the
cpHMM, which uses a truncated state space to avoid exponential
scaling in computational time. We illustrate the advantages of this
approach using a specific example implementation of the cpHMM
model with K¼2 promoter states and a window size of 19, as
would be required to model the Drosophila melanogaster gene u-
shaped (ush), which is 16825 base pairs in length (isoform C).
Nascent transcription was captured at 20 s time resolution. This
results in a compound state which may take on KW ¼ 219 ¼ 524 288
values. Repeated manipulation of the resulting KW � t state matrix
while performing expectation maximization requires a significant
amount of computational time, which cannot be improved signifi-
cantly by increasing available computational power.

The required computational time may be reduced by observing
that although 524 288 possible compound state values are required
to fully specify the model, the majority of these compound states
will have very low (often negligible) associated probability values,
and can therefore be excluded from the model without impacting
predictive performance. For example, during portions of the fluores-
cence signal recorded during the initiation of a transcriptional burst,
compound states associated with inactive promoter states during the
initial part of the compound state and active promoter states during
the latter part of the compound state would be much more likely
than compound states with sequences of promoter states associated
with a very different observed fluorescence pattern, e.g. falling fluor-
escence levels or sustained inactivity.

Truncation in the model is enforced through the use of an
allowed memory, M, with M < Kw. M is selected so as to reduce
computational time without significantly impacting the performance
of the algorithm. The use of M results in a reduced promoter state
space, Ut, replacing s and reducing the scaling of the forward algo-
rithm with window size from exponential to linear scaling. To select
a set of M likely compound states at time tþ1 the forward algo-
rithm is used to rank the 2M next possible states starting from M at
time t. The forward algorithm computes the probability of the data
up to the current time and being in each state, therefore the most
likely states can be prioritized and the least likely are removed from
the model until M distinct compound states remain. In practice, it is
best to choose the maximum value of M that is computationally
feasible, given the size of the dataset and the resources available.
The state space will expand with Ut ¼ 2t until Ut ¼M. Testing the
model on synthetic data provides an indication of parameter estima-
tion accuracy for given M and gene size.

An example of model truncation using a single trace of ush MS2
data is shown in Figure 3, with an allowed memory of four states
specified for illustration purposes. Each box represents an individual
state, with the leftmost number giving the binary representation of
the promoter state (1 for on and 0 for off) and the rightmost number
giving the log forward variable associated with each state. The state
space expands during the forward algorithm until the allowed value
of M is reached at t¼1 (for this particular example with a very small
value of M). Forward variables are calculated for each allowed tran-
sition (the previous promoter state with either a 0 or 1 inserted at
the rightmost bit) and are ranked. The least likely forward variables
are eliminated (red outline), with the most likely states becoming the
new reduced state space (blue outline). The process is repeated until
the end of the trace (here t¼3).

2.3 Inferring single-cell transcriptional parameters
In addition to inferring ‘global’ model estimates for burst amplitude,
frequency and duration for a given dataset, our model can be used

Fig. 1. The model structure and basic principle behind burstInfer. (A) Dynamic compound state hidden Markov model state diagram. At the beginning of the time sequence,

the promoter is in either the active or inactive state (p). Over the course of the time series, the promoter switches stochastically between the active and inactive states according

to the kon and koff burst parameters. While in the active state, Pol II molecules are loaded onto the gene and mRNA transcripts are produced at a rate determined by the model

emission parameter. (B) Example MS2 fluorescence time series trace for a single nucleus in a Drosophila embryo showing nascent ush transcription. (C) The promoter sequence

inferred by the model corresponding to the fluorescent trace in B. These promoter traces can be used to generate single-cell parameters
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Fig. 2. Diagram illustrating the dependence of the measured fluorescent signal at
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the persistence in the MS2 signal caused by Pol II still being in transit down the gene

body following the promoter becoming inactive. The example shown here is for
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to infer single-cell transcriptional parameters, i.e. burst parameters
for each individual cell within the expression domain, rather than a
global estimate for the entire expression domain or region of inter-
est. Although single-cell parameter estimates are associated with
high levels of uncertainty, they can provide a useful view of how
bursting parameters vary across the spatial domain.

Training the model using the forward–backward algorithm
yields estimates of atðiÞ ¼ pðy1; . . . ; yt; st ¼ ijĥkÞ, the joint estimate
of the observed fluorescence up to time t and the compound hidden
promoter state at time t and btðiÞ ¼ pðytþ1; . . . ; yT jst ¼ i; ĥkÞ, the
conditional probability of the observations from ðt þ 1Þ to the end
of each trace, given the current hidden promoter state. Combining
these variables with the expression for the likelihood of the observed
fluorescence values given the model parameters, pðyjĥkÞ, gives the
following:

pðstjy; ĥkÞ ¼
atðstÞbtðstÞ

pðyjĥkÞ
; (2)

where pðstjy; ĥkÞ denotes the probability of the promoter being in an
active or inactive state at a given time point t, given the observed
fluorescence and inferred model parameters. Taking the argmax of
Equation (2) at each time point gives a sequence of the most likely
promoter states at each observed time step. As previously men-
tioned, the Drosophila gene ush is used here as an example. MS2
stem-loops were inserted into the endogenous ush gene 50UTR re-
gion, allowing us to visualize transcription in the form of nascent
MCP-GFP fluorescence (Fig. 1B). The inferred promoter trace cal-
culated using Equation (2) corresponding to this time series is shown
in Figure 1C.

In addition to providing a way of visualizing the model fit, these
inferred promoter traces may be used to calculate single-cell tran-
scriptional parameters, so that in addition to giving single maximum
likelihood parameters estimates for a given dataset, i.e. a kon; koff

and emission term for the set of traces used to train the model, each
cell in the expression domain is assigned each of these parameters.
An example of these parameters using Drosophila u-shaped data
from Hoppe et al., (2020) is shown in Figure 5 (details of the data-
set used are given in Section 3.3).

The calculation of the transition parameters is achieved through
a simple counting-based technique, where the number of normalized
on-to-off and off-to-on transitions is counted from the inferred pro-
moter traces. These counts are used to create transition matrices for
each trace, which are then converted to transition rates (in a similar
way to the calculation of the global parameters). The single-cell
emission term is a reduced form of the emission term from the global
model (see Lammers et al., 2020):

m̂ ¼M�1b; (3)

Mmn ¼
XN

h¼1

XTh

t¼1

XKw

i¼1

hsi
tðhÞiFinFim; (4)

bm ¼
XN

h¼1

XTh

t¼1

XKw

i¼1

hsi
tðhÞiytðhÞFim; (5)

where the hsi
tðhÞi term becomes a delta function due to the state

probabilities already being known.
Parameter estimates for single cells are much more uncertain

than global estimates for an entire dataset. The aim, however, is to
be able to visualize broad spatial trends across the expression do-
main. The Supplementary Material gives an example of inferred
single-cell parameters for the ush gene. LOESS smoothing was used
to smooth the data, allowing general spatial changes in expression
level to be shown—in this case, a more peaked distribution in the
probability of the promoter becoming active than inactive.
Calculating confidence intervals for a binomial proportion revealed
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Fig. 3. Example illustrating state-space truncation carried out as part of the HMM forward algorithm, using example data derived from the Drosophila ush gene. Each oblong

bubble represents a compound promoter state at a particular time point with the number on the left representing the binary representation of the promoter state and the num-

ber on the right showing the log probability associated with each forward variable. The promoter starts at time t¼0 in either the inactive (0000) or active (0001) state (the

rightmost bit indicates the current state). At time t¼1, the promoter can switch to either of two states from each of these two states, causing the state space to expand from 2

to 4 possible compound states (i.e. inactive to inactive, inactive to active, active to inactive, active to active). At time t¼2, the possible state space doubles again to 8 compound

states. At this point, truncation is carried out—the compound states are ranked according to probability and the least likely states are eliminated. The number of eliminated/

retained states is set to M=4 here so that elimination can be visualised. In practice, the highest number of allowed states that is computationally feasible is used instead. This

process of truncation and elimination is carried out until the end of each trace contained in the entire dataset. This truncated graph then becomes the state space for the entire

model
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that while there was high uncertainty associated with the parameter
estimates, particularly towards the edges of the expression domain,
the general spatial trend for the parameters could still be detected.

3 Results

3.1 Assessing the model fit
To demonstrate the ability of the truncated model to approximate
the results obtained using the full hidden Markov model, we created
synthetic fluorescent traces for a gene of window size 11 and tested
convergence between the truncated and full models for this dataset
(Fig. 4A). Fifty different initializations of the model were created
using random HMM parameters, selecting the EM run with the
highest likelihood as the most likely model. The relative error be-
tween the full and truncated models falls smoothly as the state space
of allowed states is increased, with the relative error falling to less
than 1% at M¼128 where the size of the full model here would be
211 ¼ 2048 compound states.

To test the model on experimental MS2-MCP data where is it
possible to fit the full model, both the full and truncated models
were trained on a dataset of MS2 fluorescent traces for the
Drosophila melanogaster gene hindsight (hnt). The hnt gene has
length of 7441 base pairs between the MS2 probe and the end of the
gene body, in conjunction with an MS2 cassette length of 1290 base
pairs, a window size of 9 was specified. The results of training the
model using both the full and truncated models can be seen in
Figure 4B, a plot of relative error between the truncated and full
(‘true’) model parameters as a function of increasing number of
allowed states. Each curve represents a separate parameter of the
model. The model was trained specifying 50 separate runs of expect-
ation-maximization for each value of M. The convergence of the
truncated model parameters to the full model parameters is apparent
from the diagram.

We then applied the model to datasets of MS2 traces recorded
from longer genes, using both synthetic and real data. The change in
model parameters as M is increased, compared with the parameter

values at M¼2048, can be seen in Figure 4C for the Drosophila
gene ush. Although 524 288 compound states would be required for
the full model, the parameters are converging with a much smaller
subset of allowed states. The relative error between the inferred and
true parameters as M is increased for a synthetic gene with window
size 20 are shown in Figure 4D. Although 1048576 compound
states would be used for the full model, with a subset of 2048 states

the relative errors for the noise, koff ; kon and emission parameters
are 0.064%, 3.208%, 6.029% and 0.579%, respectively, showing
that accurate parameter inference is still possible using the reduced
model.

3.2 Computation time
Next, we compared the scaling of computational time for a single
step of the expectation maximization algorithm for the truncated
model and the full, original model (Matlab implementation). The
dataset used in the comparison is a set of 50 MS2 fluorescence traces

of the ush gene in a Drosophila embryo, where active transcription
occurs during a 30-min time window. A window size of 19 is
required to model the fluorescence traces. The curve plotted in blue
shows the result of increasing the window size upon the computa-
tional time required for a single expectation-maximization step for
the full model; the exponential scaling of the algorithm with win-

dow size is apparent. The computational time for the truncated
model (red, M¼128 compound states, 90 s per step) is essentially
de-coupled from window size/gene length, allowing for application
of the truncated model to a much wider set of window sizes
(Fig. 4E). For short genes, the original version model is faster due to
less computational overhead associated with truncation, e.g. calcu-

lating and eliminating least likely states etc. The benefits of the trun-
cated version of the model become apparent at longer gene lengths,
where exponentially increasing computation time makes inference
impractical. A window size of 30þ may be needed for both much
longer Drosophila genes and vertebrate genes, making use of the full
model infeasible.
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Fig. 4. Assessing the model fit and running time on real and synthetic datasets. (A) Relative difference between the maximum likelihood parameter estimates for the truncated

ĥM and full model ĥ as a function of increasing M for data from the Drosophila gene hnt. This gene is short and only requires 512 compound states in the full model. (B)

Relative difference between the model parameters for the truncated and full model as a function of increasing M for synthetic data with window size 11. In this case, 211 ¼
2048 compound states are necessary for the full model. (C) Relative change in model parameters for the Drosophila ush gene as M is increased, compared with the value for

M¼ 2048. For this gene, 219 ¼ 524288 compound states are required to specify the full model. (D) Relative error in the model parameters between the truncated model and

true model as a function of increasing M for synthetic data with window size 20. In this case, 220 ¼ 1048576 compound states would be necessary for the full model. (E)

Running time for a single EM step for both models
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3.3 Application of the algorithm to real data
An example of using the model to infer single-cell parameters is
shown in Figure 5, using example data from Hoppe et al. (2020)
(different embryos to that highlighted in the original article). The
aim of the article was to use the parameters inferred by burstInfer to
investigate regulatory control of Bone Morphogenetic Protein
(BMP) target genes in the early Drosophila embryo, focussing on
dorsal–ventral patterning of the early embryo. MS2 imaging was
used to generate movies of transcriptional activity of one of the
BMP target genes studied in the article, ush, during nuclear cycle 14.
The expression domain of ush forms a broad stripe down the
anterior-posterior axis on the dorsal side of the embryo (Ashe et al.,
2000), which mirrors the expression levels of the BMP
Decapentaplegic (Dpp) (Fig. 5A) (Bier and De Robertis, 2015;
Deignan et al., 2016; Eldar et al., 2002; Umulis et al., 2010). Cells
falling within the Dpp gradient express Dpp target genes in a
concentration-dependent manner—intermediate levels of signalling
are sufficient to activate ush, for example.

To investigate spatial regulation of Dpp target genes, MS2 mov-
ies were recorded in the embryo during nuclear cycle 14. Each em-
bryo was divided into three separate regions corresponding to
different signalling levels, determined by either distance from the
midline or through the use of a clustering-based approach.
burstInfer was then trained on each of these three regions, giving
estimates of kon; koff and Pol II loading rate (emission) for each sec-
tion of the embryo. These regional parameters were then used to
infer single-cell parameters (Fig. 5B) and promoter traces (Fig. 5C)
for each cell within the expression domain. Figure 5B shows heat-
maps of mean expression and three example single-cell parameters
for ush—the region shown here represents a subset of the expression
domain shown in the cartoon in Figure 5A. Mean expression

corresponds to the mean recorded fluorescence for each cell, with
the arbitrary fluorescence signals converted into number of Pol II.
The single-cell occupancy, kon and koff parameters were calculated
using burstInfer. From these heatmaps, the strong similarity between
mean expression and occupancy is immediately apparent, along
with the slightly weaker similarity between expression levels and kon

(Fig. 5B). To quantify the dependency of expression levels on each
of these three parameters (along with other derived parameters, such
as burst duration and frequency), correlation analysis was carried
out on the single-cell expression data and inferred parameters.

This analysis revealed a very strong correlation between expres-
sion levels and occupancy, with effectively no correlation between
expression and koff (Hoppe et al., 2020). Pol II loading rate (the
HMM emission parameter) was flat across the expression domain
(Fig. 5B). As occupancy depends upon both kon (which did exhibit
strong correlation) and koff, the results indicated that expression lev-
els were regulated through modulation of kon, the promoter activa-
tion rate. Representative single-cell fluorescence and promoter
traces for each region show that nuclei experiencing high signalling
produce more transcriptional bursts compared with other regions
(Fig. 5C). The single-cell parameters extracted from quantification
of traces like these were used to create the heatmaps shown in
Figure 5B. Code to re-create these figures is included in the
burstInfer GitHub repository.

4 Discussion

We have presented an algorithm for efficient inference of transcrip-
tional kinetic parameters, with the aim of improving upon an existing
compound state Hidden Markov model (Lammers et al., 2020) by

0.40.20 0.6 0.75 420 6 10

Occupancy

0.80
Fraction of time active

0.40.2 0.6

Mean expression

300 20 40 50
Mean expr. (Pol II)
10

BA

C

koff

koff (min-1)

kon

kon (min-1)

A P

D

V

kon
Measuring
single-cell

parameters

Drosophila embryo

High expression

Promoter

Medium expression Low expression

Promoter Promoter

Fig. 5. Example inferred single-cell parameter using Drosophila ush data from Hoppe et al. (2020). (A) The expression domain of the ush gene shown in the cartoon was div-

ided into three separate regions, corresponding to high, medium and low levels of expression, with the model trained separately on each of these three regions. The inferred glo-

bal parameters for each region were used to infer the most likely promoter path corresponding to each fluorescent trace. (B) Heatmaps of the measured mean expression level,
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pression level. (C) Example fluorescent traces and corresponding inferred promoter paths for each of the three regions. See Hoppe et al. (2020) for further details
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reducing the computational time required for inference. We also pro-
vide methods for inferring the parameters of transcriptional dynamics
in single cells. The algorithm allows for the inference of burst ampli-
tude, duration and frequency from MS2 data, which we expect to be
of interest to researchers working on transcriptional regulation. The
MS2-MCP system has provided researchers with high-quality data
relating to transcriptional activity in individual cells, and has been
used to provide insight into the dynamics of transcription. However,
the persistence present within the MS2 signal presents a challenge
when attempting to infer kinetic parameters using these particular
datasets. Our algorithm allows efficient inference of kinetic parame-
ters for longer genes than is currently possible.

A comparison of the running time for a single step of the expect-
ation maximization algorithm for both the full and truncated mod-
els demonstrated the reduction in computational time while using
the truncated model on the Drosophila gene ush, which would re-
quire a window size of 19 for inference. The time taken for a single
expectation-maximization step at window size 19 (42 min) would
render inference using the full model for this particular gene compu-
tationally infeasible, particularly if repeated likelihood computa-
tions, e.g. for statistical approaches such as bootstrapping or
MCMC sampling, are required. The truncated model, in compari-
son, does not scale significantly with gene length and is instead pri-
marily limited by a linear dependence on the size of the training
dataset. This ability to model genes of arbitrary length should allow
the model to be applied to more complex organisms, with longer
genes, than Drosophila.

A demonstration of applying the model to infer transcriptional
parameters in Drosophila was outlined in Hoppe et al. (2020). In
that study, burstInfer was used to investigate regulation of BMP tar-
get genes in the early embryo through dividing embryos into regions
corresponding to different BMP signalling levels then training the
model on the MS2 datasets for each of these regions. The fitted
model was used to generate transcriptional parameters in single
cells, allowing the investigation of spatial changes in bursting dy-
namics. We expect that the method would be well suited for analysis
of similar datasets in other systems.

A limitation of the current implementation of the model is the re-
striction to K¼2 states. It has been observed in Drosophila that for
some genes, the transcriptional dynamics is better described by two
rate-limiting steps (Pimmett et al., 2021) resulting in a model with
three states. An additional limitation is that our model does not cur-
rently take into account the fact that the time series may be non-
stationary. In our MS2 time series datasets, typically, there is an ini-
tial silent period (which may be truncated), followed by a rapid
ramping up of fluorescence/transcriptional activity, followed by a
period of sustained bursting. A non-stationary model would better
capture these temporal dynamics. We are working on a non-
stationary approach that takes this into account by fitting separate
models to different sections of the time series. This requires sharing
the emission parameter between different time sections but allowing
the kinetic parameters to vary.
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