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Purpose: Antibiotic resistance issues associated with microbial pathogenesis are considered 
to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive 
semiconductor, was proven to have antibacterial activity and is being widely utilized. 
However, its use is limited to the short range of absorption wavelength.
Methods: In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were success
fully prepared by a facile solution approach to enhance light-induced antibacterial activity 
over a broader absorption range.
Results: In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light 
absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial 
activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 

nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also 
showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2- 
FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer 
than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 

NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS 
generation, including ⋅O2

− and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate 
photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation.
Conclusion: TiO2-FeS2 NCs with superior light-induced antibacterial activity could be 
a promising antibacterial agent against bacterial infections.
Keywords: antibacterial agent, antibacterial mechanism, reactive oxygen species, light 
harvester, light-induced antibacterial activity

Introduction
The vigor and resistance of bacterial pestilences are growing day-by-day, and microbial 
infections are on the rise, creating serious hazards to human health worldwide. 
Antibiotic-resistant pathogenic infections can soon increase the mortality rate to mil
lions each year.1–5 A photoactive semiconductor, titanium dioxide (TiO2), with eco
nomically feasible and biocompatible properties has shown unique antibacterial activity 
and has been in use for the past few decades.6–8 TiO2 was shown to be an effective 
antibacterial agent under ultraviolet (UV) light irradiation, by generating reactive 
oxygen species (ROS) which can cause irreparable damage to the cell envelope of 
microbes.9–11 The effective generation of radicals such as H2O2, ⋅OH, and ⋅O2

− by TiO2 

is attributable to its reactivity to light, and it seems to be more efficient when doped or 
conjugated with other transition elements, noble metals, polymers, carbon, nitrogen, 
sulfur, or boron to form TiO2 nanocomposites (NCs). TiO2 NCs showed superior 
antibacterial activities to multidrug-resistant bacteria because of their ability to 
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efficiently absorb light and generation ROS.12–20 The effi
cient light absorption of TiO2 NCs can be ascribed to con
tracted bandgaps of TiO2 due to the conjugation of inorganic 
and organic materials to TiO2.21–32

To extend the absorption range, the NCs of iron disulfide 
(FeS2) nanoparticles (NPs) conjugated with TiO2 NPs (FeS2- 
TiO2 NCs) were synthesized. Recently, FeS2-TiO2 NCs were 
explored as a novel photocatalyst to harvest the light in the 
region from UV to near-infrared (NIR) for application in 
energy storage and conversion.33 FeS2 NPs with a small 
bandgap (~0.95 eV) have been utilized as efficient light 
harvesters to enhance the absorption from UV to NIR.34 

FeS2-TiO2 NCs also exhibited high photoelectric cell (PEC) 
performance for reducing CO2 to methanol because the 
bandgap energy of FeS2-TiO2 NCs is narrowed to 1.70 eV 
for significant enhancement of the photocatalytic perfor
mance with visible (Vis) light irradiation.35 Furthermore, 
TiO2-FeS2 NCs with photocatalytic applications in the UV- 
Vis-NIR region have shown great potential to be TiO2-based 
photocatalysts in practical applications for highly active 
photocatalytic hydrogen evolution.36 However, antibacterial 
applications with the use of photoactive, biocompatible, and 
low-cost TiO2-FeS2 NCs are still limited. The most pressing 
need is to combat wide bacterial infections in fields such as 
medicine, food, and water quality with the light-activated 
antibacterial agent of TiO2-FeS2 NCs.

In this work, light-driven catalysts of TiO2-FeS2 NCs 
were synthesized by a hydrothermal process and annealing 
method. Characterization studies were carried out to validate 
the structure and optics of TiO2-FeS2 NCs using scanning 
electron microscopy (SEM), transmission electron micro
scopy (TEM), powder x-ray diffraction (XRD), Raman spec
troscopy, and UV-Vis-NIR spectrophotometry. Furthermore, 
antibacterial activities of TiO2-FeS2 NCs were investigated 
against Escherichia coli (E. coli) under illumination of simu
lated AM1.5 sunlight and in the dark. To study light- 
harvesting properties of FeS2 NPs, the antibacterial 
efficiencies of TiO2-FeS2 NCs were also examined against 
E. coli under light irradiation with a 515-nm longpass filter. 
Moreover, to investigate details of the antibacterial mechan
ism, ROS generation of TiO2-FeS2 NCs against E. coli was 
measured before and after light irradiation.

Materials and Methods
Chemicals
Titanium dioxide (P25) (Acros), iron(III) nitrate nonahydrate 
(Fe((NO3))3) (Acros), sulfur (Acros), thioacetamide (TAA) 

(Acros), N,N-dimethylformamide (DMF) (JT/Macron), 
ampicillin (Bioshop), glycerol (Honeywell), lysogeny broth 
(LB) broth miller (Bioshop), LB agar miller (Bioshop), agar- 
A (Biobasic), 2′,7′-dichlorofluorescin diacetate (DCFH-DA) 
(Sigma-Aldrich), and Hoechst 33342 (Biotium) were com
mercially acquired.

Preparation of TiO2-FeS2 NCs Onto 
Carbon Fiber Paper (CFP)
Fe((NO3))3·9H2O (8 mmol), thioacetamide (100 mmol), 
and TiO2 (8 mmol, P25) were dissolved in 10 mL DMF 
and then transferred to a Teflon container. The Teflon 
container was fixed in an autoclave reactor and placed 
in a hot-air oven (JOV-40) at 180°C for 18 h. After 
cooling to room temperature, the solution was centri
fuged (Heraeus multifuge X1R, Thermo Scientific) at 
4000 rpm for 10 min and washed with ethanol to 
remove excess organic residues. Afterward, the primary 
product of FeS2-NCs was collected and dried in the 
oven. A mixture of the primary product of FeS2-NCs 
(0.1 g) and sulfur powder (0.3 g) was placed in 
a furnace (Thermofisher Lindberg Blue M) at 500°C 
for 1 h to obtain the final product of TiO2-FeS2 NCs. 
For antibacterial tests, TiO2 NPs (0.4 mg), FeS2 NPs 
(0.4 mg), and TiO2-FeS2 NCs (0.8 mg) were, respec
tively, drop-cast onto CFP (CeTech) with dimensions of 
1 x 2 cm.

Structural and Optical Characterizations
SEM (JEOL JSM-7800F) and TEM (Hitachi HT-7700) 
were carried out to characterize the structures of the mate
rials used in the work such as TiO2 NPs, FeS2 NPs, and 
TiO2-FeS2 NCs. To prepare TEM samples, TiO2 NPs, 
FeS2 NPs, and TiO2-FeS2 NCs were dispersed in ethanol 
and then drop-cast onto a copper mesh. After being air- 
dried, the copper mesh with the materials was used for 
TEM characterization. XRD studies were carried out using 
A Rigaku Miniflex 600 with Cu Kα radiation generated at 
30 mA and 30 KeV. Scans for XRD were operated from 
20° to 70°. Raman data were measured using an Olympus 
objective Plan N lens at 16 mW. SEM images, TEM 
images, XRD data, and surface-enhanced Raman spectro
scopic (SERS) measurements were used to validate the 
structural properties of the TiO2 NPs, FeS2 NPs and TiO2- 
FeS2 NCs. A UV-Vis-NIR absorption spectrometer (Jasco 
V-770) was used to detect and validate the optical proper
ties of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs.
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Antibacterial Activity Test
To culture E. coli, LB medium was prepared by mixing 5 
g of LB broth (Miller) and 1000 mL of sterilized water. 
Escherichia coli (150 µL) was cultured in medium con
taining of 3 mL of LB medium and 300 µL ampicillin (100 
µg/mL) in a shaker at 160 rpm under 37°C for 3 h. The 
colony-forming unit (CFU) value of the E. coli solution 
was evaluated by the optical density (OD) at a wavelength 
of 600 nm (OD600). For E. coli, OD600 of 1.0 is calcu
lated to be 8 × 108 CFU/mL. In this study, a solution of 
E. coli with an OD600 of 0.1 was utilized for the anti
bacterial test. For the light-induced antibacterial test, 
a solar simulator (Enlitech) was used to simulate AM1.5 
sunlight. TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs drop- 
cast onto CFP were immersed in E. coli solutions and then 
TiO2 NPs, FeS2 NPs and TiO2-FeS2 NCs were irradiated 
for 3 min with simulated AM1.5 sunlight. After light 
irradiation, E. coli solutions were cultured in a shaker at 
160 rpm and 37°C. During culture, the OD600 values of 
E. coli solutions were measured every 30 min. Bacterial 
growth curves were used to evaluate the antibacterial 
activities of TiO2 NPs and TiO2-FeS2 NCs under light 
irradiation.

Analysis of ROS Generation
ROS generation was measured and validated using a 2ʹ,7ʹ- 
dichlorodihydrofluorescein diacetate (H2DCFDA) assay. 
For the H2DCFDA assay, H2DCFDA can be oxidized by 
ROS into 2ʹ,7ʹ-dichlorofluorescein (DCF). DCF is highly 
fluorescent and can be measured by fluorescence spectro
scopy with excitation/emission at 488/525 nm. The fluor
escence intensity of DCF revealed the total amount of 
ROS production. Furthermore, the dye of Hoechst 33,342 
was applied to measure the total amount of bacteria. The 
fluorescence intensity of Hoechst 33,342 with excitation/ 
emission at 350/461 nm wavelengths showed the total 
amount of bacteria. For the analysis of ROS generation, 
in brief, 10 µM of DCFH-DA and 1 µg/mL of Hoechst 
33,342 were separately added to E. coli culture medium in 
a 96-well plate. Afterward, E. coli solutions were incu
bated at 37°C and 200 rpm for 20 min. After incubation, 
E. coli solutions were centrifuged at 104 g for 2 min, and 
the supernatants were removed. Precipitates were sus
pended in sterilized water. The washing procedures were 
repeated once. The fluorescence intensities of DCF (exci
tation/emission wavelength at 488/525 nm) and Hoechst 
33342 (excitation/emission wavelength at 350/461 nm) 

were measured on a microplate reader (Thermo 
Varioskan Flash). For the different numbers of E. coli in 
different experiments, the total amount of ROS was nor
malized to the total bacterial number. The relative ROS 
level was calculated by normalizing the ROS level 
between the experimental group and the control group.

Results and Discussion
Morphological Characterization
The morphologies of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 

NCs were first characterized by SEM as shown in Figure 
1A-C, respectively. In the SEM image of Figure 1A, TiO2 

NPs (P25) exhibited a spherical shape and revealed the 
formation of aggregates. For FeS2 NPs and TiO2-FeS2 

NCs, globular aggregates were observed as shown in 
Figure 1B and C. To further characterize their structures, 
TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs were examined 
by TEM as, respectively, shown in Figure 1D-F. As shown 
in the TEM image of Figure 1D, TiO2 NPs clearly 
revealed a spherical shape with an average size of 25 
nm. In Figure 1E, FeS2 NPs exhibited slight aggregates. 
The blue arrow indicates FeS2 NPs in Figure 1E. Most 
importantly, as shown in the TEM image of Figure 1F, 
TiO2-FeS2 NCs exhibited heterostructures composed by 
TiO2 NPs (red arrow) and FeS2 NPs (blue arrow). High- 
resolution transmission electron microscopy image of het
erostructured TiO2-FeS2 NCs was shown in the supporting 
information of Figure S1. Moreover, the energy-dispersive 
X-ray spectroscopy (EDS) was applied to measure weight 
percentages of FeS2 and TiO2 in TiO2-FeS2 NCs. In the 
supporting information of Figure S2, EDS spectra showed 
that weight percentages of FeS2 and TiO2 in TiO2-FeS2 

NCs were, respectively, 49.47% and 50.53%. Overall, 
SEM images, TEM images, and EDS spectra demon
strated the successful preparation of TiO2 NPs, FeS2 NPs 
and TiO2-FeS2 NCs for subsequent antibacterial 
applications.

Structural Analysis of TiO2-FeS2 NCs
XRD was utilized to investigate the crystal structure of TiO2- 
FeS2 NCs. In Figure 2, clear XRD peaks at 25.4°, 37.8°, 
48.0°, and 54.5° were accordingly cataloged to the (101), 
(004), (200) and, (211) planes of the anatase phase of TiO2 

(JCPDS 21–1272), and XRD peaks at 27.5° and, 54.4° were 
accordingly cataloged to the (110) and (211) planes of the 
rutile phase of TiO2 (JCPDS 21–1276). XRD peaks of FeS2 

NPs were matched with approved pyrite FeS2 (JCPDS 
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42–1340). The principal peaks of FeS2 NPs at 28.5°, 33.1°, 
37.1°, 40.8°, 47.4°, and 56.3° were accordingly cataloged to 
the (111), (200), (210), (211), (220), and (311) planes of 
pyrite FeS2 as shown in Figure 2. Results of XRD studies 
also revealed the crystalline nature of TiO2-FeS2 NCs. To 
sum up, TiO2-FeS2 NCs were composed of TiO2 NPs and 
FeS2 NPs according to SEM and TEM measurements.

Furthermore, Raman spectra of TiO2 NPs, FeS2 NPs, and 
TiO2-FeS2 NCs were studied to evaluate and validate their 
structural properties and confirm the formation of TiO2-FeS2 

NCs. As shown in Figure 3, Raman frequencies of TiO2 NPs 
were 143 (Eg), 395 (B1g), 513 (B1g), and 633 cm−1 (Eg) for 
the TiO2 anatase phase. For FeS2 NPs, there were two strong 
peaks located at 338 (Eg) and 377 cm−1 (Ag) corresponding 
to pyrite FeS2.37 The two weak Raman signals of 220 and 
283 cm−1 were attributed to the presence of FeS due to sulfur 
insufficiency and sulfur vacancies.38,39 For Raman spectra of 
TiO2-FeS2 NCs, the peak at 143 cm−1 was attributed to the 
Raman signal of TiO2 NPs (Eg), and the two peaks at 338 
and 373 cm−1 were, respectively, attributed to Raman signals 
of Eg and Ag of FeS2 NPs. Based on the results of Raman 
spectra, TiO2-FeS2 NCs were composed of TiO2 NPs and 
FeS2 NPs. Based on examination of SEM images, TEM 
images, XRD spectra, and Raman spectra, TiO2-FeS2 NCs 
were successfully prepared by a simple solution process.

Optical Properties of TiO2-FeS2 NCs
UV-Vis-NIR spectra were used to investigate the optical 
properties of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs. 
In UV-Vis-NIR spectra of Figure 4, absorption curves of 
TiO2 NPs, FeS2 NPs and TiO2-FeS2 NCs are depicted. 
Photoactivitiesof TiO2 NPs were only found in the UV 
region of the electromagnetic spectrum. Bandgaps of 

Figure 1 SEM images of (A) TiO2 NPs, (B) FeS2 NPs and (C) TiO2-FeS2 NCs. TEM Images of (D) TiO2 NPs, (E) FeS2 NPs and (F) TiO2-FeS2 NCs. The blue arrow indicated 
FeS2 NPs and the red arrow indicated TiO2 NPs. 
Abbreviations: SEM, scanning electron microscopy; TiO2, titanium dioxide; FeS2, iron disulfide; NPs, nanoparticles; NCs, nanocomposites; TEM, transmission electron 
microscopy.

Figure 2 XRD spectra of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs. (A: anatase; R: 
rutile). 
Abbreviations: XRD, powder x-ray diffraction; TiO2, titanium dioxide; NPs, 
nanoparticles; FeS2, iron disulfide; NCs, nanocomposites.
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TiO2 (anatase) and TiO2 (rutile) were, respectively, 
found to be 3.2 and 3.0 eV according to their absorption 
wavelengths at 388 and 413 nm. Therefore, the absorp
tion spectra of TiO2 NPs suddenly decreased after 413 
nm.40 FeS2 NPs were seen to have absorption in a wide 
range from Vis to NIR due to their band gap of 0.95 eV. 
The absorption of TiO2-FeS2 NCs was clearly observed 
from UV to NIR because of the combination of the 
absorption curves of TiO2 NPs and FeS2 NPs.41 

Results of UV-Vis-NIR spectra indicated that the 
absorption of TiO2-FeS2 NCs was extended from UV 
to NIR compared to that of TiO2 NPs.

Light-Induced Antibacterial Activity of  
TiO2-FeS2 NCs
To investigate light-induced antibacterial activities, TiO2 

NPs, FeS2 NPs, and TiO2-FeS2 NCs incubated with E. coli 
solutions were irradiated with simulated AM1.5 sunlight 
and not irradiated. After light irradiation for 3 min, the 
OD600 value of the E. coli solution was found to be 0.85 
after culturing for 150 min as shown in the growth curve 
(green line) of Figure 5A. Without light irradiation, the 
growth curve of E. coli showed no significant change 
compared to that of E. coli with light irradiation for 3 
min. To investigate the light-induced antibacterial activity, 
TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs were incubated 
with E. coli solutions and then irradiated with light for 3 
min. As shown in the growth curves of Figure 5A, after 
light irradiation for 3 min, OD600 values of E. coli solu
tions incubated with TiO2 NPs (red line), FeS2 NPs (blue 
line), and TiO2-FeS2 NCs (black line) were, respectively, 
0.52, 0.58, and 0.49 after culturing for 150 min. Bacterial 
growth results indicated that light-induced antibacterial 
activities increased in the order of FeS2 NPs, TiO2 NPs, 
and TiO2-FeS2 NCs. To further examine the light- 
harvesting capability of FeS2 NPs in TiO2-FeS2 NCs, 
a 515-nm longpass filter was applied to exclude light 
wavelengths shorter than 515 nm. As shown in Figure 
5A and B, under light irradiation, growth curves of 
E. coli revealed no changes with and without the 515-nm 
longpass filter. However, with the 515-nm longpass filter, 
light-induced antibacterial activities of TiO2 NPs, FeS2 

NPs, and TiO2-FeS2 NCs all decreased, as shown in 
Figure 5B. After light irradiation for 3 min with the 515- 
nm longpass filter, OD600 values of E. coli solutions 
incubated with TiO2 NPs (red line), FeS2 NPs (blue 
line), and TiO2-FeS2 NCs (black line) were, respectively, 
0.85, 0.79, and 0.67 after culturing for 150 min. 
Obviously, with the 515-nm longpass filter, light absorp
tion by TiO2 NPs was cut off, resulting in no light-induced 
antibacterial activity. For FeS2 NPs, the light-induced anti
bacterial activity was still exhibited because FeS2 NPs can 
absorb light wavelengths longer than 515 nm. Moreover, 
with the light harvester of FeS2 NPs, the light-induced 
antibacterial activity of TiO2-FeS2 NCs was retained with 
the use of the 515-nm longpass filter. When using the filter 
to restrict light wavelengths shorter than 515 nm, the light- 
induced antibacterial activity of TiO2-FeS2 NCs could be 
attributed to that the light harvester of FeS2 NPs in the 
TiO2-FeS2 NCs, which could absorb light wavelengths 

Figure 3 Raman spectra of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs. 
Abbreviations: TiO2, titanium dioxide; NPs, nanoparticles; FeS2, iron disulfide; 
NCs, nanocomposites.

Figure 4 UV-Vis-NIR spectra of TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs. 
Abbreviations: UV-Vis-NIR, ultraviolet-visible-near-infrared; TiO2, titanium diox
ide; NPs, nanoparticles; FeS2, iron disulfide; NCs, nanocomposites.
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longer than 515 nm to generate photoinduced electrons, 
and then those photoelectrons were transferred to TiO2 

NPs to generate ROS. Furthermore, after light irradiation 
for 30 min with the 515-nm longpass filter, the final 
OD600 value of E. coli incubated with TiO2-FeS2 NCs 
was found to be 0.39 as shown in Figure 5C. Without light 
irradiation, the final OD600 value of E. coli incubated with 
TiO2-FeS2 NCs was 0.83. Most importantly, after light 
irradiation for 30 min, there was no growth of E. coli in 
the presence of TiO2-FeS2 NCs as a light-activated anti
bacterial agent. Overall, results of light-induced antibac
terial activity suggested that with TiO2-FeS2 NCs, FeS2 

NPs acted as a superior light harvester to absorb light in 
the Vis and NIR regions to generate photoelectrons, and 
then the photoelectrons were delivered from FeS2 NPs to 
TiO2 NPs for improved ROS generation.

Investigation of ROS Generation
TiO2-based materials were found to possess remarkable 
antibacterial activities due to ROS generation under UV 
light irradiation.42–44 Therefore, to investigate antibacterial 
activities, ROS generation activities of TiO2 NPs, FeS2 NPs, 
and TiO2-FeS2 NCs incubated with E. coli were measured 
by an H2DCFDA assay with and without light irradiation. In 
Figure 6, for the control experiment, the ROS level of E. coli 
without light irradiation was set to 1.0. Compared to E. coli 
with light irradiation for 3 min, the relative ROS level 
revealed no significant change due to no light-induced anti
bacterial agent being produced. Moreover, without light 
irradiation, neither TiO2 NPs, FeS2 NPs, nor TiO2-FeS2 

NCs showed any obvious increases in ROS. With light 
irradiation for 3 min, relative ROS levels of TiO2 NPs, 
FeS2 NPs, and TiO2-FeS2 NCs were, respectively, 2.51-, 

1.88-, and 3.34-fold higher compared to that of the control 
experiment. However, under light irradiation with a 515-nm 
longpass filter, relative ROS levels of TiO2 NPs, FeS2 NPs, 
and TiO2-FeS2 NCs were, respectively, 1.13-, 1.43-, and 
1.63-fold higher compared to that of the control experiment. 
For TiO2 NPs with light irradiation, relative ROS levels 
dramatically decreased from 2.51-fold (without the filter) 
to 1.13-fold (with the filter) because the light absorption of 
TiO2 NPs was reduced by the filter. For FeS2 NPs under 
light irradiation, relative ROS levels only dropped from 
1.88-fold (without) to 1.13-fold (with the filter). The reason 

Figure 5 Growth curves of E. coli (optical density, OD 600 nm) of (A) E. coli only and with TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs under light irradiation for 3 min, (B) 
E. coli only and with TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs under light irradiation for 3 min with a 515-nm longpass filter, (C) TiO2-FeS2 NCs without light irradiation 
(black line), TiO2-FeS2 NCs under light irradiation for 30 min with a 515-nm longpass filter (red line), and TiO2-FeS2 NCs under light irradiation for 30 min (blue line). All 
data presented as means ± SD, n=3 per group. 
Abbreviations: E. coli, Escherichia coli; TiO2, titanium dioxide; NPs, nanoparticles; FeS2, iron disulfide; NCs, nanocomposites.

Figure 6 ROS levels of E. coli without light irradiation was set to 1.0. Relative ROS 
levels of E. coli after incubation with TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs with 
and without light irradiation and a 515-nm filter, respectively. All data presented as 
means ± SD, n=3 per group. 
Abbreviations: ROS, reactive oxygen species; E. coli, Escherichia coli; TiO2, titanium 
dioxide; NPs, nanoparticles; FeS2, iron disulfide; NCs, nanocomposites.
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can be attributed to FeS2 NPs still being able to absorb light 
at wavelengths longer than 515 nm to produce photoelec
trons for ROS generation. For TiO2-FeS2 NCs, relative ROS 
levels decreased from 3.34- (with light irradiation) to 1.64- 
fold (with light irradiation and the filter). Under light irra
diation with the 515-nm filter, the light-induced antibacterial 
activity of TiO2-FeS2 NCs suggested that photoelectrons 
generated by FeS2 NPs in TiO2-FeS2 NCs were transferred 
to the conduction band of TiO2 NPs to generate more ROS 
(1.63-fold) compared to that of only FeS2 NPs (1.43-fold). 
For TiO2 NPs, FeS2 NPs, and TiO2-FeS2 NCs, results of the 
ROS tests were consistent with measurements of antibacter
ial activities.

To further examine the effect of ROS, the morphologies of 
E. coli incubated with TiO2-FeS2 NCs before and after light 
irradiation were characterized by SEM. As shown in Figure 
7A, after incubation with TiO2-FeS2 NCs, E. coli revealed 
compact membrane structure without light irradiation. 
However, with light irradiation for 3 min, E. coli incubation 
with TiO2-FeS2 NCs appeared slight membrane rupture as 
indicated by the yellow arrows in Figure 7B. Furthermore, 
the complete rupture of E. coli membrane was observed as 
indicated by the white arrows. In high-resolution SEM image 
of Figure 7C, the slight membrane rupture and complete rup
ture of E. coli membrane were respectively indicated by the 
yellow arrow and the white arrows. The results indicated that in 
the system of TiO2-FeS2 NCs, under light irradiation, the 
increases of ROS generation enhanced for the destruction of 
bacterial membrane.45–47

Mechanism of Light-Induced Antibacterial 
Activity of TiO2-FeS2 NCs
Bandgaps of TiO2 NPs and FeS2 NPs were, respectively, 
found to be 3.2 and 0.95 eV in the UV-Vis-NIR region of the 
electromagnetic spectrum. The combination of TiO2 NPs 

and FeS2 NPs was demonstrated to have increased photo
activity. Herein, TiO2-FeS2 NCs were also demonstrated to 
have superior light-induced antibacterial activity compared 
to that of only TiO2 NPs or only FeS2 NPs. A schematic of 
the mechanism of light-induced antibacterial activity of 
TiO2-FeS2 NCs is shown in Figure 8. With reference to the 
normal hydrogen electrode (NHE), values of the conduction 
band (CB) and valence band (VB) of TiO2 NPs were −0.2 
and 3 eV, respectively. Therefore, TiO2 NPs can absorb UV 
light to generate photoinduced electrons and holes for ROS 
production, including ⋅O2

− (−0.16 eV) and ⋅OH (2.32 eV). 
For FeS2 NPs, CB and VB were, respectively, −0.5 and 0.45 
eV. In TiO2-FeS2 NCs, FeS2 NPs acted as light harvesters to 
absorb light from Vis to NIR to produce photoinduced 
electrons and holes. Furthermore, the photoinduced elec
trons in the CB of FeS2 NPs were transferred to the CB of 
TiO2 NPs to facilitate ROS generation. Overall, the light- 
induced antibacterial activity of TiO2-FeS2 NCs was 
enhanced by the light harvesters of FeS2 NPs due to the 
broad range of light absorption from UV to NIR.

Conclusions
TiO2-FeS2 NCs were successfully synthesized by a simple 
solution process, and their structural and optical properties 
were validated by SEM, TEM, XRD, Raman spectroscopy, 
and UV-Vis-NIR spectroscopy. TiO2-FeS2 NCs exhibited 
a broad range of light absorption from UV to NIR, because 
of the combination of the absorptions of TiO2 NPs and FeS2 

NPs. In TiO2-FeS2 NCs, FeS2 NPs acted as a superior light 
harvester to increase light absorption from the Vis and NIR 
ranges. With light irradiation for 3 min, OD600 values of 
E. coli solutions incubated with TiO2 NPs, FeS2 NPs, and 
TiO2-FeS2 NCs were, respectively, 0.52, 0.58, and 0.49 after 
culturing for 150 min, indicating that the best antibacterial 
activity was with TiO2-FeS2 NCs. Light-induced antibacterial 

Figure 7 SEM images of (A) E. coli incubated with TiO2-FeS2 NCs before light irradiation and (B) E. coli incubated with TiO2-FeS2 NCs after light irradiation. (C) High- 
resolution SEM image of E. coli with clear membrane rupture. The yellow arrows indicated the membrane rupture of E. coli. The white arrows indicated the complete rupture 
of E. coli membrane. 
Abbreviations: SEM, scanning electron microscopy; E. coli, Escherichia coli; TiO2, titanium dioxide; FeS2, iron disulfide; NCs, nanocomposites.

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
8917

Dovepress                                                                                                                                                          Mutalik et al

http://www.dovepress.com
http://www.dovepress.com


activities of FeS2 NPs, TiO2 NPs, and TiO2-FeS2 NCs can be 
attributed to ROS generation. Under light irradiation, relative 
ROS levels increased in the decreasing order of FeS2 NPs 
(1.88-fold), TiO2 NPs (2.51-fold), and TiO2-FeS2 NCs (3.34- 
fold). In TiO2-FeS2 NCs, TiO2 NPs absorbed UV light to 
generate photoinduced electrons and holes for ROS genera
tion, including ⋅O2

− and ⋅OH. Furthermore, FeS2 NPs in TiO2- 
FeS2 NCs harvested the light from Vis to NIR to produce 
photoinduced electrons, and then the photoinduced electrons 
from FeS2 NPs were transferred to TiO2 NPs to facilitate ROS 
generation. Our work demonstrated that TiO2-FeS2 NCs with 
superior light-induced antibacterial activity could be 
a potential antibacterial agent for future antibacterial applica
tions in fields such as medicine, food, and water quality.
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