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Although it is thought that young children focus on the magnitude of the target
dimension across ratio sets during binary comparison of ratios, it is unknown whether
this is the default approach to ratio reasoning, or if such approach varies across
representation formats (discrete entities and continuous amounts) that naturally afford
different opportunities to process the dimensions in each ratio set. In the current study,
132 kindergarteners (Mage = 68 months, SD = 3.5, range = 62–75 months) performed
binary comparisons of ratios with discrete and continuous representations. Results
from a linear mixed model revealed that children followed an additive strategy to ratio
reasoning—i.e., they focused on the magnitude of the target dimension across ratio
sets as well as on the absolute magnitude of the ratio set. This approach did not
vary substantially across representation formats. Results also showed an association
between ratio reasoning and children’s math problem-solving abilities; children with
better math abilities performed better on ratio reasoning tasks and processed additional
dimensions across ratio sets. Findings are discussed in terms of the processes that
underlie ratio reasoning and add to the extant debate on whether true ratio reasoning is
observed in young children.

Keywords: ratio reasoning, preschool children, mathematics, non-symbolic, ANS

INTRODUCTION

Although rational numbers are usually introduced at late stages in elementary education, children
engage in ratio reasoning well before the onset of formal school. Deciding whether extra cheese
and pepperoni are needed to get the perfect pizza or choosing among different bowls of rice with
veggies are frequent instances of ratio reasoning in children. Nonetheless, it is not yet clear that such
instances reflect a true understanding of proportions and ratios as young children tend to confound
ratio and absolute magnitude. For instance, when presented with two different jars containing blue
and yellow beads (each jar reflecting different ratios of blue to yellow) and tasked to select the jar
for which the probability of getting a blue bead is higher, 6-year-old children usually select the
jar containing more blue beads, independently of the ratio blue to yellow in each jar (Falk et al.,
2012). It is thought that such an error is a “conceptual misunderstanding” that reflects children’s
inability to establish part–whole relations between the parts or dimensions of a ratio set (i.e., each
jar) and that they rely on unidimensional heuristics (e.g., comparing the absolute magnitude of the
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target dimension across ratio sets). In the current study,
we focus on how kindergarten children (6-year-olds) reason
about ratios with continuous and discrete representations (i.e.,
reasoning about second-order relations; Spinillo and Bryant,
1991). Specifically, we look at whether children rely on specific
unidimensional heuristics to reason about ratios and whether
this approach is consistent across different representation
formats (continuous vs. discrete) that naturally afford different
opportunities to establish part–part relations and part–whole
relations. Furthermore, we investigate the association between
kindergarteners’ ratio reasoning skills and their math abilities
because such reasoning skills are thought to function as a
scaffold for symbolic ratio reasoning once children enter formal
education (Szkudlarek and Brannon, 2021). Indeed, probability
(probabilistic reasoning) and data analysis are core mathematical
aspects to be developed from Pre-K2 to Grade 12 according to the
National Council of Teachers of Mathematics (2000).

Non-symbolic Ratio Reasoning in
Children: An Approximate and Intuitive
Ability
There is evidence that ratio sensitivity emerges early in
development. For instance, McCrink and Wynn (2007, see also
Téglás et al., 2007, 2011, Xu and Garcia, 2008) found that
even pre-verbal infants can detect changes in ratio. Using a
dishabituation paradigm with different ratios of arrays of blue
and yellow dots, they found that 6-month-old infants were able
to discriminate ratio differences between 2:1 and 4:1. In a series
of experiments, Denison and Xu (2014, see also, Denison et al.,
2013) found that 10–12-month-old infants were able to pick a cup
that contained a lollypop drawn from a jar with a more favorable
ratio of their preferred color.

Studies tackling the development of ratio reasoning1 in
preschool and school-age children—many of them inspired by
the seminal work of Piaget and Inhelder (1951) on probabilistic
reasoning— have contributed to that evidence of ratio reasoning
using a wide variety of paradigms and experimental contexts.
Children as young as 3–4-year-old can match ratio displays
that do not share representational or referential properties. For
instance, they understand shape analogies such as matching 1/3
of a triangle and 1/3 of a square (e.g., Goswami, 1989, 1995;
see also Spinillo and Bryant, 1991; Sophian, 2000). At about
that same age, children can also transcode or map proportions
across different formats. For instance, Möhring et al. (2016; see
also Möhring et al., 2018; Gouet et al., 2020), presented 4–5-
year-old children with different relative amounts of water and
cherry juice (represented as blue and red rectangles) and asked
them to rate the taste of these mixtures; children were able to
approximate the ratio represented by each display (the taste of
the mixture) on a non-labeled “number” line. Older children
can solve more complex ratio reasoning tasks. For instance,

1Note that we use the term ratio reasoning to refer to performance on tasks that
require either matching or comparing ratio sets under probabilistic or proportional
contexts. Despite the affinity of these terms, and that assessment of probabilities
and matching judgments start with comparing ratios, some authors have argued
that there are subtle differences (see Falk et al., 2012).

Boyer and Levine (2012, see also Spinillo and Bryant, 1991; Boyer
et al., 2008; Hurst and Cordes, 2018) found that school-age
children (9–10-year-olds) can scale up (and down) proportions2

(e.g., matching equivalent proportional relations such as two
stacked bar graphs of different lengths representing the same
ratio), which is relevant in scaffolding more formal (symbolic)
mathematical understanding. Note that whereas there is evidence
that younger children can perform above chance on similar
proportional reasoning tasks, there are multiple factors that
affect performance (e.g., scaling, format of representation, and
reasoning complexity). For instance, He et al. (2018, Experiment
1) found that 5–6-year-olds were not able to match equivalent
proportions when tasked to assess whether two different stacked
bars (representing the same proportion of juice and water) were
equivalent if bars differed in height; nonetheless, they performed
above chance when bars differed in width. Similarly, Yang and He
(2021) investigated ratio reasoning abilities in 4–6-year-olds and
found that younger children failed to reason about ratios when
three-dimensional pictures were shown.

True Ratio Reasoning vs. Unidimensional
Heuristics
Although the studies mentioned above show that preschool and
kindergarten children perform above chance in ratio reasoning
tasks, it is not clear whether young children engage in true
ratio reasoning (i.e., establishing part–whole relations between
dimensions of each ratio set), or they focus on unidimensional
aspects across ratio sets instead. That is, focusing on the target
dimension (i.e., preferred color, flavor, etc.) across ratio sets using
a “more-good strategy,” focusing on the non-target dimension
across ratio sets using a “less-good strategy,” or focusing on
differences in the absolute/total magnitude of ratio sets using
a “more items strategy.” This is because the target ratio and
the absolute magnitude of the target dimension across ratio sets
are not usually disentangled in experimental designs and data
analyses. For instance, early studies with infants and preschool
children have predominantly presented children with stimuli
in which the side of the target ratio corresponded to the side
showing the larger target dimension (for a review, see Falk
et al., 2012). Hence, children could respond to the target ratio
by simply focusing on the target dimension across ratio sets
(establishing part–part relations) rather than establishing part–
whole relations between the dimensions in each ratio set and
assessing the ratio of each ratio set (i.e., processing the ratio of
ratios rather than the ratio of the target dimension across ratio
sets). Indeed, this seems the default approach to ratio reasoning
in preschool and kindergarten children (e.g., Siegler, 1981; Falk
and Lann, 2008; Falk et al., 2012), which may be deemed as a
primitive approach in the sense that it is neglected that each
ratio set is determined by the relation between target and non-
target dimensions. Studies with older children have revealed that
they have a better understanding of that association between
dimensions in a ratio set. For instance, Falk et al. (2012, see
also Szkudlarek and Brannon, 2021) found that by the age of

2“Understanding the multiplicative relationships between rational quantities”
(Boyer et al., 2008, p. 1478).
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7 children focus on both the target and non-target dimensions
across ratio sets when tasked to choose among two different jars
containing blue and yellow beads.

Continuous vs. Discrete Representations
Whereas preschool children and kindergarteners (4–6-year-
olds) typically struggle with discrete representations such as
arrays of dots, beads, or marbles (in experiments that avoid
confounding target ratio and magnitude of the target dimension,
e.g., Falk et al., 2012), they perform above chance with continuous
representations such as comparing the ratio of a pair of stacked
bar graphs (e.g., Jeong et al., 2007). It has been suggested that
younger children struggle with discrete representations because
of difficulties in coding each of the relevant dimensions (Sophian
and Wood, 1997; see also Singer and Resnick, 1992). For instance,
assessing the ratio of blue to red beads in a jar is more
challenging than estimating the ratio of oil to water in a glass
because the absolute magnitude of each dimension in continuous
representations is defined by physical boundaries. It is thought
that the visual system extracts real or virtual axes of symmetry
and that, together with object’s boundaries, serve as points of
reference for proportional processing (Spence, 1990). Thus, the
boundary of both dimensions in continuous representations,
e.g., a stacked bar graph—would afford estimation of the
proportion of the target dimension (part–whole structures); in
contrast, discrete representation such as a random array of blue
and red dots would pose perceptual constraints to determine
adequate referential points and identify the parts and the whole
(Mix et al., 2002).

Relatedly, there is evidence that the cognitive systems involved
in processing visual properties that represent ratios develop
earlier for continuous magnitudes such as length and space than
for discrete quantities (note that it is out of the scope of this paper
whether these systems represent the same entity or not; for a
discussion, see Bueti and Walsh, 2009). For instance, Kucian et al.
(2018) presented school-age children (P3–P6) with two different
tasks in which children had to compare arrays of dots and angle
sizes (represented as a pair of Pac-Man with different mouth
angles) and found that angle processing was easier across the
entire age-range. Kucian et al. (2018) also found that performance
on both tasks decreased as a function of difficulty with the
ratio being processed, which aligns with findings from ratio
reasoning tasks (e.g., Szkudlarek and Brannon, 2021). These
studies underscore the role of the cognitive systems involved
in processing and representing ratios and how these systems’
limitations (or accuracy) may affect ratio reasoning. For instance,
the approximate number system (ANS), which is thought to afford
binary decisions involving magnitude comparison tasks when
discrete representations are used (for comprehensive reviews, see
Odic and Starr, 2018), is a predictor of ratio reasoning abilities
(Szkudlarek and Brannon, 2021).

Non-symbolic Ratio Reasoning and
Children’s Math Abilities
The fact that non-symbolic ratio representations are indeed
ratios that can be defined with symbol numbers naturally sets

the grounds for a plausible link between non-symbolic ratio
reasoning and symbolic ratio reasoning—fraction understanding.
Indeed, grasping the concept of fractions involves proportional
reasoning strategies (Fuchs et al., 2013). It has been underscored
that having an understanding of both probability reasoning and
data analysis is a mathematical goal in elementary education
(National Council of Teachers of Mathematics, 2000). Despite
this theoretical link and educational relevance, few studies have
provided empirical evidence of an association between ratio
reasoning and math abilities. For instance, Matthews et al.
(2016) found a moderate (positive) correlation between non-
symbolic ratio processing in the context of a ratio comparison
task and performance on a fraction magnitude comparison
task in college students. Jordan et al. (2017) found that non-
symbolic ratio reasoning in fifth grade was a predictor of
fraction understanding 1 year later (see also Möhring et al.,
2016). Evidence of that association with younger children is
very limited because fractions are only introduced in late
elementary school. Thus, studies with younger children have
reported links with other math aspects. For instance, Szkudlarek
and Brannon (2021) found that non-symbolic ratio reasoning
with discrete representations was related to performance on the
Key-Math-3 Numeration subtest in 6–7-year-olds (although this
association vanished after accounting for individual differences
in ANS acuity) and the Key-Math-3 Data Analysis and
Probability subtests—which is a test that includes proportional
reasoning aspects.

That link between ratio reasoning and fraction understanding
is also supported by studies that have specifically investigated
whether ratio reasoning can be harnessed and whether
improvements in ratio reasoning translate to improvements
in math and fraction understanding. For instance, Szkudlarek
and Brannon (2021) found that non-symbolic ratio reasoning
may function as a scaffold for symbolic ratio reasoning in
children who lack an understanding of fractions (see also Gouet
et al., 2020; Abreu-Mendoza et al., 2021). Other training studies
involving mapping non-symbolic continuous representations of
proportions with fractions have resulted in improvements in
fraction knowledge in older children (Fazio et al., 2016; Soni and
Okamoto, 2020).

The Current Study
Although it has been suggested that young children rely on
unidimensional heuristics to reason about ratios —specifically,
they tend to focus on the magnitude of the target dimension
across ratio sets (Jeong et al., 2007; Falk et al., 2012)—few
studies have investigated whether this is the default approach
to ratio reasoning when children are presented with discrete
entities and continuous amounts. The bulk of evidence with
young children is based on experimental designs in which
the possibility that unidimensional heuristics explain how
children behave has not been accounted for. Furthermore,
few studies have specifically contrasted young children’s ratio
reasoning performance on both discrete (with uncountable
representations) and continuous tasks. Indeed, the bulk of
evidence on children’s ratio reasoning skills with discrete
representations comes from studies that have investigated the
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so-called numerical interference in proportional reasoning or
whole number bias—i.e., children tend to count instead of
focusing on the relations between the dimensions of a ratio
set and across ratio sets when proportions are presented
discretely with distinct units that can be explicitly counted,
like a rectangle divided into quarters (Ni and Zhou, 2005;
Jeong et al., 2007; Boyer et al., 2008; Hurst and Cordes, 2018).
Thus, the first goal of the current study is twofold: first,
to determine whether kindergarteners’ ratio reasoning skills
are based on specific unidimensional heuristics, and second,
to examine whether children’s approach to ratio reasoning
varies as a function of representation format. The literature
review suggests that children’s approach to ratio reasoning
may vary across representation formats because continuous and
discrete representations naturally afford different opportunities
to estimate the absolute magnitude of each dimension within
each ratio set and across ratio sets. For instance, it is feasible
that continuous representations allow additive approaches (e.g.,
focusing on the magnitude of both target and non-target
dimension) since each dimension is perceptually more salient
than in discrete representations.

To test this hypothesis, children in the current study were
presented with pairs of continuous and discrete ratio sets—
reflecting two different mixtures—and tasked to select the most
favorable ratio set. In the continuous condition, two stacked bar
graphs representing two glasses containing a mix of milk and
chocolate were shown. In the discrete condition, two glasses
containing dots of different colors (representing chocolate and
banana chips) were presented. We manipulated the magnitude
of each dimension in each ratio set (and across ratio sets) to
minimize the association between the target ratio and each
unidimensional heuristic (i.e., the target dimension, the non-
target dimension, and the absolute or total magnitude of each
ratio set). Figure 1 shows examples of this manipulation.
Children were presented with an equal number of trials in
which: (i) the magnitude of the target dimension across ratio
sets was the same (type E in Figure 1, when brown color
corresponds to the target flavor), (ii) the magnitude of the non-
target dimension across ratio sets was the same (type D in
Figure 1, when brown color corresponds to the target flavor),
(iii) the total magnitude of the ratio sets was the same (type
A in Figure 1), and (iv) the magnitude of the target and
non-target dimension, as well as the total magnitude of the
ratio sets, were different across ratio sets (types B and C in
Figure 1).

This arrangement rendered two types of trials according to
whether the side of the target ratio (correct response) aligned
with that corresponding to each unidimensional heuristic or not.
For instance, when children were tasked to select the chocolaty
milkshake, the correct response was congruent with the side
showing more chocolate (i.e., more of the target dimension) in
trial types A, B, and D; it was congruent with the side showing
less milk (i.e., less of the non-target dimension) in trial types A,
C, and E; and it was congruent with the side of the larger total
(milk+chocolate) in trial types B and D. For simplicity, we will
label these congruent (aligned). Conversely, the magnitude of the
target dimension was not informative or did not align with the

side of the target ratio in trial types E and C, respectively (see
Figure 1 above); it was not informative or did not align with the
side of the smaller non-target dimension in trial types D and B,
respectively; and it was not informative (trial type A) or did not
align with the absolute magnitude of the ratio set in trial types
C and E. For simplicity, we can label these trials as incongruent
trials (not aligned).3

In the current study, we followed the analytical approach
described in Szkudlarek and Brannon (2021) to investigate
whether children’s approach to ratio reasoning is based on
specific unidimensional heuristics. Thus, we examined the
association between the pattern of errors and the Ratio Deviation
from Heuristic Model for each heuristic (whether a specific
unidimensional heuristic aligns with the target ratio or not;
i.e., congruent and incongruent trials, above). For instance,
if errors and incongruent trials for a given heuristic (those
that deviate from that heuristic) are both dummy-coded as 1,
then, a positive coefficient would indicate that children make
incorrect responses on trials where a given heuristic predicts
an incorrect response. Put differently, this approach investigates
whether the pattern of errors responds to the child’s tendency to
focus on specific aspects during ratio reasoning tasks. Table 1
shows the values of the Ratio Deviation from Heuristic Model
(RDHM) for each heuristic and type of trial, as depicted
in Figure 1, if children were tasked to select the chocolate
milkshake. Whereas having different types of trials (in which
the target ratio is associated with either the target dimension,
non-target dimension, or the absolute magnitude of the ratio
set) allows estimating more precisely the child’s ratio reasoning
abilities, this analytical approach takes into account that different
strategies may trigger a correct response (alignment heuristic-
ratio).

Another aim of the current study was to unravel the
association between children’s ratio reasoning and math abilities.
This is because it is not yet clear that ratio reasoning reflects math
abilities in children. For instance, both Gouet et al. (2020) and
Szkudlarek and Brannon (2021) found no association between
non-symbolic ratio reasoning (using discrete representations)
and children’s numeracy skills (as measured with the Key-
Math-3) after accounting for individual differences in ANS
acuity. In the current study, we expand this research and
investigate whether an association emerges between the child’s
ratio reasoning skills (and use of unidimensional heuristics) and
two math abilities that reflect different numerical knowledge:
math problem solving and number line estimation skills.
Given that there is evidence that preschool children can
communicate about proportions using a (non-labeled) number
line (Möhring et al., 2016, 2018), and that number line estimation
skills have been directly linked to proportional reasoning (for
rationale, see Barth and Paladino, 2011), a stronger association
between ratio reasoning skills and number line estimation skills
is expected.

3Note that children were asked to select one of two flavors, hence, the pattern of
incongruent trials for children who were tasked to select the milkier glass would
be the opposite; the side of the target ratio would not align with the larger target
dimension, smaller non-target dimension, and larger total in trial types B and D,
trial types C and E, and trial types A, B, and D, respectively.
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FIGURE 1 | Examples of trial types according to unidimensional heuristics that can be used.

MATERIALS AND METHODS

Sample
Data from the current study were drawn from a longitudinal
study examining the interplay between ratio reasoning,
numerical magnitude processing, and fractions understanding.
One-hundred and thirty-two children (Mage = 68 months,
range = 62–75, SD = 3.5; 48% females) participated in the
current study. Children were recruited from three government-
operated kindergartens in Singapore and were tested during the
first half of the second year in kindergarten (K2; the year children
turn 6 years old). We chose this age because there is evidence
that these children may operate with continuous representations
but fail to operate with discrete representations during ratio
reasoning (Jeong et al., 2007).

Children were tested in their preschools, either in a separate
room or a corner of their classroom. Testing per child took
approximately 1 h, split over two sessions with no more than
one session per day (children were assessed on other cognitive
and numerical aspects that are not included here such as WM
capacity, visuospatial WM, symbolic knowledge, and numerical
magnitude processing). The order in which the tasks were
administered was counterbalanced across children with the
following constraint, the ratio reasoning tasks (continuous and
discrete) were presented on different sessions. Parents provided
informed written consent prior to the child’s participation and
verbal assent from the child was required on the day of testing. All
children received a small token of appreciation after completing
the tasks. All recruitment and testing procedures were approved
by the Institutional Review Board at the university of the first
author (protocol number IRB 2019-09-046).

Materials and Methods
All tasks (with the exception of the Math Problem-Solving
subtest) were computerized and run with EPrime. The tasks were
implemented on 16” touch screen laptops.

TABLE 1 | RDHM for each heuristic and type of trial in Figure 1.

RDHM_target RDHM_non-target RDHM_absolute magnitude

A 0 0 1

B 0 1 0

C 1 0 1

D 0 1 0

E 1 0 1

Ratio Reasoning Skills (Continuous and Discrete
Ratio Reasoning)
Children were presented with both tasks. In the ratio reasoning
tasks, children were presented with a picture of two glasses—each
containing a mix of chocolate and milk (or chocolate and banana
chips in the discrete task)—and were asked to select the glass
corresponding to the chocolate (or milky) flavor in the task with
continuous representations, and chocolate (or banana) flavor in
the task with discrete representations. Children were randomly
assigned to a specific flavor in each task. In the continuous
condition, the glasses resembled two stacked bar graphs. In the
discrete conditions, the mix in the glasses corresponded to dots
of different colors (see Figure 2).

Regardless of the task, first, the child was presented with two
slides on how to make milkshakes by mixing two ingredients and
how milkshake flavors change as the amount of each ingredient
varies. Then, the child was presented with four practice trials
corresponding to each of the four types of trials described above
(same target dimension, same non-target dimension, same total,
and different target/non-target/total). Feedback (right or wrong)
was provided during the practice trials, and children were not
shown the experimental trials until they successfully responded
to three out of four practice trials. Then, children were presented
with 48 unique experimental trials. In one-fourth of stimuli, the
magnitude of the target dimension was the same across ratio
sets, one-fourth showed the same non-target dimension, one-
fourth the same total in each ratio set, and one-fourth differed in
terms of the magnitude of target/non-target dimension and total
magnitude across ratio sets. Half of the trials showed the target
ratio to the right.

Given that difficulty with the ratios being processed may
affect ratio reasoning, we manipulated the magnitude of each
dimension in each ratio set and across ratio sets to minimize
the correlation of the ratio comparison corresponding to each
unidimensional heuristic (e.g., ratio of the target dimension
across ratio sets) with the ratio of the ratio sets. In the
current study, the correlation of the ratio of ratios with the
ratio corresponding to each unidimensional heuristic was: target
dimension, r = 0.28, non-target dimension, r = 0.25, and ratio
total, r = 0.10. Thus, the range4 of the ratio of ratios in trials
showing the same-target dimension, same non-target dimension,
same total, and those showing different target/non-target and
total magnitude across ratio sets was similar (0.4 and 0.7, 0.3

4Note that the ranges corresponding to the same target dimension and same non-
target dimension correspond to the non-target dimension and target dimension,
respectively, for children assigned to the alternative milkshake flavor.
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FIGURE 2 | Illustration of one trial in the discrete (left) and continuous ratio reasoning task.

and 0.7, 0.4 and, 0.6, and 0.3 and 0.9, respectively). The ratio
of ratios ranged between 0.3 and 0.9 (e.g., 3:4 | 2:8 and 4:6 |
3:4, respectively). The ratio of target to non-target dimension
in each glass varied between 0.01 and 0.08 (e.g., 1:8 and 3:4,
respectively). In the discrete condition, the number of dots
representing chocolate or banana chips in any ratio set ranged
between 1 and 40. All dots had the same diameter and did not
vary in other physical properties. The location of dots in each
glass was varied randomly. Continuous representations were also
scaled. For instance, the area of the ratio set representing 1:2
(ratio 0.5) was half of that of 2:4 (ratio 0.5). We specifically
avoided cross-half trials depicting either the target or non-target
dimension as more than 0.5 in one ratio set and less than 0.5 in
the other one (e.g., 1:3 vs. 5:2) as these trials would be too easy
in the continuous version for 6-year-olds. The list of stimuli that
were used may be found in Supplementary Material.

In the discrete task, children were instructed not to count the
dots. In each trial (both continuous and discrete conditions), a
fixation point (3 stars) was shown for 1,000 ms, then, the stimulus
was shown for 4,000 ms (or until the child’s input). If no input
was received (touch screen), a response screen with two question
marks on each side of the screen was shown. Then, children
were encouraged to touch the side of the screen corresponding
to the assigned target dimension. The order in which trials
were presented was pseudorandomized across participants: trials
were arranged in four blocks to achieve an equal number of
right and left responses as well as a balanced distribution of
trials corresponding to the four types described above. The
order in which blocks were presented was randomized. In the
current sample, Spearman-Brown split-half reliability coefficients
were= 0.70 and 0.85 for discrete and continuous ratio reasoning
tasks, respectively.

Non-symbolic Magnitude Processing Skills
(Approximate Number System)
We included a measure of the child’s ANS acuity because the ANS
is associated with ratio reasoning skills (Szkudlarek and Brannon,
2021) and may affect the association between math abilities and
ratio reasoning abilities. We used a non-symbolic magnitude
comparison task. Each trial consisted of the presentation of two
arrays of dots which were described to the children as coins
to be collected. The arrays were presented for 2 s, after which
a screen appeared showing two question marks. The child was
asked to indicate which display showed more coins by touching

the side of the screen corresponding to the array showing more
coins. Feedback was provided after each trial, and after every
25 trials a feedback screen was presented to motivate the child,
which indicated they had collected enough treasure for part of
the “captain’s boat.” The number of dots of each color in the array
varied from 5 to 30, with each pair depicting a ratio difference of
0.91 (e.g., 10:11), 0.83 (e.g., 5:6), 0.77 (e.g., 7:9), 0.71 (e.g., 5:7), or
0.67 (e.g., 6:9). At each ratio level, the absolute difference between
the stimulus pairings differed (e.g., at ratio 0.67, stimulus pairings
were 6:9, 10:15, 12:18, 18:27, 20:30). Five pairs at each ratio level
were presented (50 experimental trials). Half the trials presented
the highest number on the left side of the screen. All trials were
area controlled, and to ensure children were responding on the
basis of quantity and not dot size, individual item size was varied
to ensure that items in the less numerous arrays were not always
larger than those in the more numerous arrays. Accuracy (%
of correct trials) was the measure of non-symbolic magnitude
processing. In the current sample, Spearman-Brown split-half
reliability coefficient= 0.67.

Math Abilities
We used two different measures capturing two aspects that differ
in terms of complexity—math problem solving and number line
estimation skills.

Math Problem-Solving Skills
Children completed the Math Problem Solving subtest from
the Wechsler Individual Achievement Test—III (WIAT-III;
Wechsler, 2009). This subtest is a verbal problem-solving test
that (for this age group) measures the ability to count, identify
geometric shapes, and solve single and multi-step word problems
with the aid of visual cues. Testing was discontinued after the
child made 6 consecutive incorrect responses. Raw scores were
used as the measure of math achievement. Cronbach’s alpha in
the current study was 0.89.

Number Line Estimation Skills
Children were tasked to indicate on a line where a number at
the top should go. On each problem, a number between 1 and
9 was presented along with a horizontal number line in the
middle of a computer screen with 0 at the left end and 10 at the
right end. Children completed four practice trials, after which
the remaining numbers were presented, one at a time without
feedback. All the numbers from 1 to 9 were presented. Each
number was presented twice to calculate an average positioning.
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Number line estimation proficiency was based on the percentage
of absolute error (PAE). The PAE was calculated as [(actual
number estimated—target number presented)/scale of number
line] × 100. A lower PAE indicates better estimation skills.
Spearman-Brown split-half reliability coefficient in the current
study was= 0.75.

Analytical Approach
We used a hierarchical linear model (cross-classified model).
This is because the data have a hierarchical structure and
some relatedness between responses of the same respondent
is expected, as well as some relatedness between observations
for the same item. The cross-classified approach correctly and
reliably partitions the variance in ratio reasoning to differences
across items and differences across children. For consistency with
previous research, we first examined the role of representation
format on the child’s ratio reasoning skills, as well as the
association between ratio reasoning and children’s math abilities.
To this end, we formulated a probit model in which the
probability of ratio reasoning (1= correct; responses correspond
to level 1 in the model) was a linear function of item-level and
subject-level variables (see Supplementary Material). At the item
level (level 2a), we used task format (1 = discrete) to predict
the child’s responses. At this level, we also included the ratio
of the ratios to account for difficulties with the ratios being
processed. At the subject-level (level 2b), we regressed the child’s
responses onto ANS acuity. Furthermore, both math abilities
were regressed onto ANS acuity and the child’s ratio reasoning
ability to investigate whether ratio reasoning is a meaningful
predictor of the child’s math skills after accounting for other skills
that can affect ratio reasoning.

In a second set of analyses, we examined children’s use of
unidimensional heuristics, whether such use varied as a function
of the representation format, and the association with math
abilities. We used a similar probit model; however, we considered
a level-1 (response-level) variable—the Ratio Deviation from
Heuristic Model, as in Szkudlarek and Brannon (2021). For each
participant and trial, we indicated whether the side of the target
ratio corresponded with that of each unidimensional heuristic
(heuristic-ratio congruency). We indicated “1” for incongruent
trials in which the side of the target ratio did not correspond with
a specific heuristic—deviation from heuristic.

A separate model was conducted for each unidimensional
heuristic. In these analyses, we reversed the scores of the ratio
reasoning task (1 = incorrect). At the response level (level 1),
the child’s responses were regressed onto the variable RDHM
(1= incongruent). This effect was allowed to vary at the item- and
subject-level (i.e., random slopes). Subsequently, we included the
ratio of the ratios and task format as predictors of both the child’s
responses and the association between RDHM and the child’s
responses at the item level (level 2a). At the subject level, we
investigated whether there was an association between the child’s
approach to ratio reasoning and the child’s math ability and ANS
acuity (as specified in the model described above). Note that this
approach is similar to that described in Szkudlarek and Brannon
(2021) and that, in each model, we are testing whether children’s
errors respond to a specific unidimensional approach. However,

in contrast to Szkudlarek and Brannon (2021), we model item-
and subject-level data simultaneously rather than relying on two
different sets of analyses in which data are aggregated and the
possibility of type I and type II error increases.

All inferential statistical analyses were estimated using
the option cross-classified in Mplus (Version 8.6; Muthén
and Muthén, 1998–2017) and Bayes estimation with diffuse
priors (non-informative). Estimates were adjusted based on all
available data and corresponded to the median of the posterior
distribution. Bayes does not rely on large-sample theory and
provides the whole distribution not assuming that it is normal.
Each model was run twice to check convergence. The number
of iterations in the second run was increased by at least a
factor of two (and a minimum of 5,000 iterations). The default
convergence criterion was that the Proportional Scale Reduction
(PSR) factor was close to 1 for each parameter. We also assessed
model convergence by visual inspection of the Bayes posterior
distribution, autocorrelation, and trace plots. We report the 95%
Bayesian CI to determine the “significance” of the estimates (a
95% CI that does not include zero is an indication that the
estimate is significant).

RESULTS

Descriptive statistics and zero-order correlations are shown in
Table 2.

The pattern of associations between ratio reasoning skills,
math problem solving skills, ANS acuity, and number line
estimation skills did not differ across task formats. Figure 3
depicts the three-way association between ratio reasoning,
math problem solving, and ANS acuity. It can be observed
that children’s math problem-solving skills are more strongly
associated with ratio reasoning with continuous representations
in children with higher ANS acuity.

TABLE 2 | Descriptive statistics and zero-order correlations.

RR
continuous
(Accuracy)

RR
discrete

(Accuracy)

ANS
(Accuracy)

Math problem
solving

(Raw scores)

Number
line (PAE)

Mean 0.69 0.68 0.64 26.52 11.92

SD 0.14 0.12 0.13 4.35 6.31

Skewness −0.32 −0.37 0.19 −0.27 1.78

Min 0.23 0.35 0.40 16 3

Max 0.98 0.98 0.96 35 47

RR
continuous

—

RR discrete 0.345*** —

ANS 0.268** 0.275** —

Math
problem
solving

0.283** 0.22* 0.223* —

Number
line

−0.161 −0.163 −0.37*** −0.253** —

*p < 0.05, **p < 0.01, ***p < 0.001; RR denotes ratio reasoning.
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FIGURE 3 | Scatterplots depicting three-way association between ratio
reasoning skills (y-axis) by task format (colored lines), math problem-solving
skills (x-axis), and ANS acuity (paneled: high and low correspond to above
and below the sample mean, respectively).

Ratio Reasoning and Task Format
Children performed above chance in both continuous [69%;
t(131) = 15.63 p < 0.001, Cohen’s d = 1.36] and discrete [67%;
t(131) = 16.58 p < 0.001, Cohen’s d = 1.45] ratio reasoning
tasks. The hierarchical model that was estimated converged well.
The overall mean probability of correct ratio reasoning across
tasks was 0.70 (at the mean-centered ratio of ratios and ANS
acuity). The model did not reveal a main effect of task format
(β = −0.06, [−0.210, 0.081]). The ratio of ratios explained
variance in the probability of ratio reasoning; the likelihood that
more challenging items (those with a ratio of ratios closer to one)
were correctly scored was smaller (β=−1.81, [−2.28,−1.32]).

Ratio Reasoning, Approximate Number
System, and Math Abilities
The model revealed an association between ANS acuity and the
child’s ratio reasoning skills (β = 0.91, [0.452, 1.38]). Children
with higher ANS acuity had better ratio reasoning skills. ANS
acuity was also associated with the child’s number line estimation
skills (β = −16.84, [−25.67, −8.55]). The negative coefficient
indicates that children with better number line estimation skills
(lower PAE) had better ANS acuity. Ratio reasoning skills were
only associated with math problem solving after accounting for
individual differences in ANS acuity (β = 3.90, [1.27, 6.58]).
Children with better ratio reasoning skills also had better math
problem-solving skills.

Children’s Approach to Ratio Reasoning
and Representation Format
The models that were specified for the various unidimensional
heuristics converged well. The parameter estimates of each model
are shown in Table 3. In line with the results from the model that
was presented above, none of the models revealed a format effect.
A ratio effect emerged across models; the probability of error

increased as the ratio of ratios approached 1 (more challenging).
Note that these were probit models in which the dependent
variable reflected probability of error, so the coefficients regarding
the effects of difficulty with the ratios being processed and task
format show the opposite sign (with respect to those shown in
the previous analysis).

The models revealed that the association between RDHM
and the pattern of errors was substantially different from zero.
That is, children’s errors responded to specific unidimensional
approaches. Nonetheless, this effect was qualitatively different
across models. The positive coefficients indicate that children’s
patterns of errors reflected an approach based on the magnitude
of the target dimension across ratio sets and the absolute
magnitude of a ratio set. This is also confirmed by the negative
coefficient regarding the model non-target dimension—children’s
approach was the opposite to focusing on the non-target
dimension across ratio sets. The association between RDHM
and the pattern of errors was moderated by the format of
presentation in the model absolute magnitude. The negative
coefficient regarding this cross-level interaction indicates that
such an approach to ratio reasoning was less evident when it
comes to discrete representations (coded as 1).

Children’s Approach to Ratio Reasoning,
Approximate Number System Acuity, and
Children’s Math Abilities
The associations between children’s ratio reasoning skills and
both math abilities (after accounting for ANS disparities) were
similar to those reported above (for clarity, these coefficients are
not included in Table 3). The models revealed no association
between the approach to ratio reasoning and both ANS acuity
and number line estimation skills. That is, difficulty with the
ratios being processed and the child’s ability to represent ratios do
not affect whether children focus on one or another dimension
during ratio reasoning. Similarly, no association between
children’s number line estimation skills and the approach to
ratio reasoning was found. Nonetheless, the models revealed that
the child’s math problem-solving skills are associated with the
approach to ratio reasoning. Children with better math skills
approach ratio reasoning focusing on the magnitude of the non-
target dimension to a larger extent than those with poorer math
skills. Furthermore, the negative coefficient for the model that
tested whether the pattern of errors reflected children’s focus
on the absolute magnitude of the ratio set indicates that this
approach is less likely in children with better math skills.

DISCUSSION

Kindergarteners’ Approach to Ratio
Reasoning
In the current study, we investigated kindergarteners’ ability to
reason about ratios that involve discrete entities and continuous
amounts. Specifically, we looked at whether the representation
format, which can affect the likelihood of encoding the magnitude
of each dimension in a ratio set, affected how children
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TABLE 3 | Unstandardized parameter estimates (and 95% Bayesian CI) of the unidimensional models.

Target dimension Non-target dimension Absolute magnitude

Threshold 0.435 (0.311, 0.630) 0.761 (0.616, 0.932) 0.505 (0.396, 0.603)

RDHM 0.771 (0.432, 1.05) −0.770 (−1.08, −0.481) 0.633 (0.424, 0.844)

RatioR effect 1.65 (0.882, 2.41) 2.54 (1.73, 3.31) 1.83 (1.20, 2.47)

Format effect 0.091 (−0.126, 0.319) 0.043 (−0.193, 0.284) 0.017 (−0.186, 0.221)
aRatioR→ RDHM 0.208 (−1.09, 1.53) 0.636 (−0.556, 1.79) 0.042 (−0.594, 0.660)
aFormat→ RDHM −0.132 (−0.497, 0.253) 0.089 (−0.248, 0.440) −0.306 (−0.507, −0.107)
aANS→ RDHM −0.07 (−1.52, 1.37) 1.21 (−0.215, 0.261) −0.584 (−2.12, 0.971)
aRDHM→ Nline 0.558 (−0.695, 1.79) −0.978 (−2.21, 0.252) 0.970 (−0.059, 1.99)
aRDHM→ MPS −0.02 (−0.904, 0.824) 1.24 (0.387, 2.09) −0.861 (−1.57, −0.096)

Top and bottom panels refer to item-level and subject-level effects, respectively. Parameters in bold indicate that the 95% CI does not cross zero. Ratio R refers to the
ratio of ratios. MPS, Math problem solving; NLine, Number line estimation skills. The threshold in the probit regression is estimated at the mean-centered ratio of ratios
and subject-level variables. Contrast coding is used to code RDHM (i.e., −0.5 and + 0.5 for congruent and incongruent trials, respectively) and format (i.e., −0.5 and +
0.5 for continuous and discrete representations, respectively) so the threshold corresponds to the overall mean probit.
a Indicates a cross-level interaction.

approach ratio reasoning. We found that kindergarteners already
performed above chance when they were tasked to make
ratio judgments between two ratio sets. Interestingly, we did
not observe performance differences between continuous and
discrete representations. Indeed, accuracy estimates in the
discrete task were in line with those reported in other studies that
have used a similar task with slightly older children (between 60
and 70%; e.g., Szkudlarek and Brannon, 2021). Note that some
studies that have found similar-age children performing below
chance when ratio reasoning involves discrete entities (e.g., Jeong
et al., 2007; Boyer et al., 2008; Hurst and Cordes, 2018) have used
ratio representations that may trigger other cognitive processes
such as counting, which may negatively affect ratio reasoning
performance (the whole number bias or numerical interference;
Ni and Zhou, 2005).

The fact that children performed similarly with continuous
and discrete ratio displays is not congruent with findings that
suggest that ratio reasoning with continuous ratio displays would
be easier as the cognitive systems involved in processing visual
properties that represent ratios develop earlier for continuous
magnitudes than for discrete quantities (Kucian et al., 2018). It
is also incongruent with the idea that discrete and continuous
representations afford different opportunities to establish part–
part and part–whole relations. It has been argued that discrete
representations pose visual constraints to defining the boundaries
of each dimension in a ratio set and to establishing part–part
and part–whole relations that are necessary for successful ratio
reasoning. In contrast, continuous representations are thought
to afford more opportunities to identify the parts/dimensions
and the whole and to establish part–whole relations (Mix
et al., 2002). Thus, a feasible explanation is that the advantage
of continuous representations emerges when children engage
in true ratio reasoning and they are able to establish part–
whole relations. Indeed, there is evidence that performance
with continuous representations improves when the whole is
depicted. For instance, Huttenlocher et al. (2002) showed that
2- and 4-year-old children were able to match the size of a
target dowel when it was presented in a container but not
when it was presented alone. Similarly, Boyer et al. (2008)

presented children from kindergarten to Grade 4 with two
alternatives of a target proportion (juice-mixture) where the
non-proportional alternative showed either the same absolute
magnitude as the juice part (i.e., part foil-type) or the same
absolute magnitude as the target proportion (i.e., juice + water;
whole foil-type); this is equivalent to presenting same-numerator
and same-denominator fractions (part foil-type and whole foil-
type, respectively). They found that selection of the proportional
match when the foil matched the target’s juice part did not
exceed chance until third-grade whereas it exceeded chance by
kindergarten when the foil matched the target’s total juice+water
(i.e., same-denominator fractions were more easily rejected).

In this context, we can assume that children in the current
study did not take advantage of the fact that continuous
representations provide more visual referents to establish
part–whole relations. Put differently, they relied on part–
part relations—unidimensional heuristics—that afford similar
behavior with continuous and discrete representations. It is
worth mentioning that although Boyer et al.’s (2008) findings
were interpreted as evidence that children can establish part–
whole relations, it is not clear whether children just focused on
the magnitude of the target dimension across ratio sets rather
than establishing part–whole relations. This is because the non-
matching alternatives that were correctly rejected (whole foil-
type—same-denominator fractions) do indeed show different
denominators and different numerators. For instance, when
fractions such as 1/5 and 3/5 (same denominator) are represented
visually as stacked bar graphs, we have 1 part of water and 4 parts
of juice (ratio 1:4) and 3 parts of water and 2 parts of juice (ratio
3:2), respectively.

Notably, performing above chance does not mean that
children engage in true ratio reasoning and establish part–whole
relations. The possibility that children engage in unidimensional
heuristics during ratio reasoning cannot be completely ruled
out because correct responses in ratio reasoning tasks may be
because the child either engages in true ratio reasoning or
adopts a unidimensional approach. In other words, the target
ratio cannot be completely disentangled from any potential
unidimensional heuristic (i.e., there are no instances in which the
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target ratio does not correspond to the ratio set showing either
the larger target dimension, the smaller non-target dimension,
the larger absolute magnitude, or a combination of these
unidimensional approaches). Thus, even if different types of
trials are presented and the congruency between the target
ratio and each unidimensional heuristic is minimized, children
could rely on unidimensional heuristics. For instance, in an
attempt to disentangle the child’s behavior during ratio reasoning
tasks—unidimensional heuristics vs. true ratio reasoning—,
Szkudlarek and Brannon (2021) presented children with a
binary discrimination task similar to the discrete condition
in the current study. These authors analyzed the strength of
the association between the Ratio Deviation from Heuristic
Model (as defined above; for instance, a 1 indicated that
a specific heuristic did not align with the correct ratio for
a particular trial) and the so-called “Child Deviation from
Heuristic Model” (which reflected how each child’s actual
choices deviated from a specific unidimensional heuristic; for
instance, a 1 indicated that the child’s choice in a trial did
not reflect that a specific heuristic was being used to solve
that trial). With this setting in mind, a perfect correlation
(r = 1) would indicate perfect accuracy and correlations closer
to zero would suggest that the child relied on unidimensional
heuristics. Although the authors argued that children engaged
in true ratio reasoning since the Pearson correlation coefficients
were substantially different from zero, such coefficients were
part of a continuum reflecting different degrees of true ratio
reasoning and use of unidimensional heuristics, hence, it
cannot be concluded that children’s behavior reflected true
ratio reasoning. Indeed, those correlation coefficients (Pearson
r range = 0.35, −0.44) are likely different from one, which
reflects that children engaged in unidimensional heuristics to
some extent. In other words, only correlations closer to 1 would
reflect that children are able to inhibit primitive approaches such
as focusing on specific dimensions across ratio sets during ratio
reasoning tasks.

In the current study, we found that children relied to a larger
extent on the magnitude of the target dimension and the absolute
magnitude of the ratio set. This finding aligns with those of
studies that have considered children of a similar age range. For
instance, Falk et al. (2012) found that children from 4 to 7 years
focused on the magnitude of the target dimension whilst older
children used additional heuristics—the magnitude of the non-
target dimension—to determine the best outcome. Indeed, our
findings also align (indirectly) with that possibility as we found
that children with better math problem-solving abilities tended
to rely more on the magnitude of the non-target dimension than
those with poorer math abilities. Note that, Falk et al. (2012) used
a discrete task and did not consider whether children focused on
the absolute magnitude of the ratio sets.

We also found some support for our hypothesis that the
representation format may affect the child’s approach to ratio
reasoning as there were some differences between continuous
and discrete representations. The interaction between task format
and the strategy of focusing on the absolute magnitude of
the ratio set suggests that children focused to a larger extent
on the absolute magnitude of the ratio set with continuous

representations than with discrete representations. However, we
are hesitant to suggest that this finding confirms our prediction.
In fact, we hypothesized that continuous representations would
allow focusing on the magnitude of both target and non-
target dimensions since each dimension is perceptually more
salient than in discrete representations. One possibility is
that such a dual approach to ratio reasoning only emerges
at later stages in development when children enter formal
education and are exposed to depictions that represent part–
whole relations in the context of arithmetic problem solving.
It is also argued that focusing on the magnitude on the non-
target dimension may be an intermediate but necessary step
before children engage in true ratio reasoning and establish
part–whole relations (Siegler, 1981). Regarding the interaction
that was found, it is feasible that the absolute magnitude of
the ratio set was perceptually less salient in the discrete task
since the arrays of dots in our study were randomly spaced
and the ratio set displaying the larger absolute magnitude
(i.e., more dots) did not necessarily represent the larger
overall area.

Kindergarteners’ Ratio Reasoning and
Math Abilities
In the current study, we also found that ratio reasoning abilities
in kindergarteners are already associated with their math abilities
even after accounting for differences in ANS acuity, which
is a key explanatory variable associated with ratio reasoning
abilities and the development of math abilities (Szkudlarek and
Brannon, 2021; for a meta-analysis, see Schneider et al., 2017).
We found that math problem solving was related to the child’s
ratio reasoning skills. This association is probably reflecting
higher-level processing since the Math Problem Solving subtest
does not only include single and multi-step problems but tackles
other abilities such as the ability to identify geometric shapes.
Indeed, Szkudlarek and Brannon (2021) found no association
between ratio reasoning and a measure of basic numerical
processing. Similarly, we did not find evidence of an association
between ratio reasoning and the child’s number line estimation
skills, which reflect knowledge of number magnitude and order.
Note that this null effect was not expected as there is evidence
that children may engage in proportional reasoning during
number line estimation (Barth and Paladino, 2011; but see Kim
and Opfer, 2017, for a different rationale) and some studies
have found that children can efficiently communicate about
proportions using a (non-labeled) number line (e.g., Möhring
et al., 2016, 2018; Gouet et al., 2020). Thus, as mentioned above,
it is feasible that the skills that were measured with the ratio
reasoning tasks in the current study reflect another type of
higher-order processing.

CONCLUSION AND FUTURE STUDIES

Our findings suggest that kindergarteners already follow an
additive strategy to ratio reasoning and tend to focus on the
magnitude of the target dimension across ratio sets as well
as on the absolute magnitude of the ratio set. We found
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that this approach does not vary substantially across different
types of representations that naturally afford different
opportunities to estimate the absolute magnitude of each
dimension within each ratio set and across ratio sets. Our
study also underscores the association between ratio reasoning
skills and the child’s math abilities even before children enter
formal school and supports children’s stimulation of ratio
reasoning abilities early in development. This is in line with
educational recommendations that probabilistic reasoning and
data analysis are core mathematical aspects that children must
develop starting from Pre-K2 (National Council of Teachers of
Mathematics, 2010).

Although our findings suggest that kindergarteners rely
on specific unidimensional heuristics to reason about ratios,
we acknowledge that we cannot address the question of
whether they engage in true ratio reasoning. As mentioned
above, only perfect accuracy or finding that children can
inhibit unidimensional approaches to ratio reasoning would
support the possibility that young children engage in true
ratio reasoning. Other methodological approaches such as
sequential presentation of ratio sets and evidence from eye-
tracking may provide clearer insight into that question. More
research is also needed to fully understand how non-symbolic
ratio reasoning abilities in children contribute to fractions’
understanding later in development. For instance, it has
been suggested that a non-symbolic ratio magnitude system
might provide support for an understanding of symbolic
fractions (Matthews et al., 2016). Nevertheless, that thesis
remains barely explored. Similarly, more research is needed to
determine how ratio reasoning abilities in young children can
be supported and whether specific pedagogies are needed to
provide these children with an understanding of proportions
and probabilities. Although many studies have investigated
this core aspect of the child’s math abilities since the early
60s, few studies have specifically focused on how to support
children’s ratio reasoning skills and whether these skills may
be incorporated into the suite of diagnostic measures that are
frequently used to screen children at risk of mathematics early
in development.
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