
Neuroimmune Interactions in Chronic Pain

Review

Role of microglia and P2X4 receptors in
chronic pain
Keita Kohnoa,b, Makoto Tsudaa,b,*

Abstract
Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating
pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after
injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently
available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous
system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal
within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the
development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial
activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic
receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we
describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their
involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
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1. Introduction

Nociception is a sensory process caused by noxious stimuli in the
nervous system. Nociceptive signals from peripheral tissues are
conveyed to the brain through primary afferents and spinal dorsal
horn (SDH) neurons and are frequently perceived as pain. Such
acute nociceptive pain functions as an important defense system
to protect the organisms from injury or potentially dangerous
stimuli. By contrast, chronic pain often persists for a long time even
in the absence of any dangers or even after the primary tissue
damage has already been repaired. Neuropathic pain, a de-
bilitating chronic pain, is caused by damage to the nervous system
after diabetes, cancer, chemotherapy, infection, and trauma.

Symptoms of neuropathic pain are characterized by spontaneous
pain, hyperalgesia, and tactile allodynia, the last of which is a pain
caused by innocuous stimuli.29 In this condition, pain no longer
functions as a defense system and becomes simply an unpleasant
sensation.Moreover, neuropathic pain is often refractory to current
available analgesics.43 Malfunctions in the pain transmission
pathway caused by injury within the peripheral or central nervous
system (CNS) characterize this debilitating disorder.

Somatosensory stimuli from the periphery are converted to
electrical excitation at the endings of primary afferents. Primary
afferents are broadly divided into 2 classes: nociceptive and non-
nociceptive, which respond to noxious and innocuous stimuli,
respectively.9 The nociceptive afferents consist mainly of thin,
myelinated Ad fibers and unmyelinated C fibers, which transmit to
the superficial SDH (laminae I and II). The non-nociceptive afferents,
such as large-diameter, thick, myelinated Ab fibers, detect
innocuous mechanical stimuli and transmit to the deeper laminae
of the SDH. Spinal neural circuit consists of projection neurons,
which convey sensory information to higher brain regions, and a
large number of excitatory and inhibitory interneurons.9,105,127 The
electrical excitation in nociceptors caused by nociceptive stimuli is
conveyed to the SDH, where it excites the projection neurons
through complex circuits. This excitation is further conveyed into
various brain regions. Although Ab fibers convey innocuous stimuli
such as touch to the skin and anatomically connect to the
nociceptive projection neurons, the excitation of Ab fibers does
not cause pain sensation. This can be explained by the gate-control
theory.94 As per this theory, feed-forward inhibition prevents the
pain-projection neurons to be fired by innocuous stimuli through
g-aminobutyric acid (GABA) or glycine-containing inhibitory
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interneurons which are also excited by Ab fibers. In short, a balance
between synaptic excitation and inhibition determines the output of
pain-projection neurons.15 It should be properly coordinated for the
normal pain transmission.

When the nervous system is injured, the inhibitory inputs within
the SDH are reduced (disinhibition), altering the excitatory and
inhibitory balance, and shifting the balance towards excita-
tion.95,117 Artificial disinhibition of inhibitory interneurons causes
nocifensive behavior or mechanical hypersensitivity in which the
innocuous stimuli can elicit abnormal pain.40,75,82,106,108 The
excitatory shift of the balance is alsomediated by enhancement of
the excitatory inputs. In pathological conditions, glutamatergic
excitatory inputs are potentiated through activation of glutamate
receptors including N-methyl-D-aspartate receptors (NMDARs) or
a-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid recep-
tors.14,55,150 These synaptic alterations have been extensively
studied using rodent models of peripheral nerve injury (PNI). In the
SDH of these models, not only neuronal cells but also microglia,
which are resident immune cells in the CNS, undergo functional
alterations.

Microglia are originally derived from erythromyeloid progenitors in
the embryonic yolk sac.47–49 These erythromyeloid progenitors
migrate into theCNSand differentiate to formmicroglia in a stepwise
manner, after which the microglia persist to stay in the CNS
throughout life.49,92,110 Microglia are necessary for the proper
development of neural circuits or myelin sheaths during their
developmental stages52,104 and are also used for surveying the
surrounding environment using their ramified and motile processes
during adulthood.35,99 In pathological conditions, there is activation
ofmicroglia characterized by increase in their number and change in
their morphology and transcriptional activity.20,61,114 Microglia in the
SDH also become activated in response to PNI.38,76 Although PNI-
induced activation of SDH microglia was described in 1970s46 and
later confirmed by several other studies,27,28,33,45 the role of the
activated microglia had not been elucidated for long.60 In 2003, 2
studies demonstrated a causal link between activatedmicroglia and
neuropathic pain by showing the role of P2X4 receptors (P2X4Rs), a
subtype of ionotropic purinergic receptors, and p38 mitogen-
activated protein kinases (p38MAPKs) which are upregulated and
activated specifically inmicroglia afterPNI.65,135 Thereafter, activated
microglia andP2X4R have been recognized as critical players for the
pathogenesis of neuropathic pain.61,134

In this review article, we summarize our current insights into the
mechanism by which microglial P2X4Rs cause neuropathic pain,
focusing on their downstream signaling leading to neuronal
hyperexcitability and upstream factors increasing P2X4Rs on
microglia. In addition, we also describe the role of microglia and
P2X4R in several pathological conditions and their therapeutic
potential, based on recent advances in the development of new
drugs targeting microglia.

2. Activation of P2X4Rs on activated microglia
causes neuropathic pain

Since Burnstock proposed new roles of nucleotides as neurotrans-
mitters,18 there is an increasing body of evidence for important and
interesting roles of extracellular adenosine-59-triphosphate (ATP) in
cell-to-cell signaling through purinergic receptors in health and
disease.58,112 ATP activates P2 receptors, which are divided into
ionotropic (P2XRs) and metabotropic receptors (P2YRs). Seven
subunits of P2XRs (P2X1R–P2X7R) have been identified, and these
are assembled as trimeric channels. P2XRs are cation-selective
channels with almost equal permeability to Na1, K1 and, in some
including P2X4R, Ca21. The flow of ions through P2XRs, altering

transmembrane potential and intracellular ion concentrations, is a key
machinery for the cell-to-cell signaling.72,73 P2X4Rs are expressed by
various tissues in thebody12,44,145 including thenervoussystems16,151

and have been implicated in physiological role and disease.19,73 In the
context of PNI, a selective upregulation of P2X4Rs in microglia
activated in the SDH was seen.135 Furthermore, it was found that
pharmacological blockade or antisense-oligonucleotide knockdown
of P2X4Rs suppresses the PNI-induced mechanical pain hypersen-
sitivity without any effects on acute nociceptive behavioral responses.
Further research showed thatP2X4R-knockoutmice failed todevelop
the PNI-induced mechanical hypersensitivity.133,139 These reports
indicate the role of P2X4R in neuropathic pain. Moreover, intrathecal
administration of ATP-stimulated cultured microglia, but not unstimu-
lated microglia, evoked mechanical hypersensitivity in naive ani-
mals,128,135 indicating a sufficient role ofmicroglial P2X4Ractivation in
neuropathic pain development.

3. Downstream signaling of P2X4R activation

Findings that non-neuronal cells cause pain hypersensitivity had
indicated a possible interaction between microglia and neurons in
the SDH. Brain-derived neurotrophic factor (BDNF) was identified as
a signaling molecule that is released from microglia stimulated by
activation of P2X4Rs. Brain-derived neurotrophic factor acts on
tropomyosin-related kinase B (TrkB) expressed on nociceptive
projection neurons located in lamina I31,71,139 and decreases
expression of K1-Cl– cotransporter 2 (KCC2) that maintains
transmembrane Cl– gradient required for GABA or glycine-induced
hyperpolarization. The BDNF-induced downregulation of KCC2 led
to a depolarizing shift in the anion reversal potential and rendered
lamina I neurons excitatory by GABA or glycine.31,32,71 In addition,
BDNF also induces potentiation of NMDAR responses through
phosphorylation of the NMDAR subunit GluN2B.55 Importantly, this
phenomenon can be observed not only in rodents but also in human
SDH neurons.36 These changes might collectively contribute to the
abnormal excitation of lamina I neurons and subsequently to
hypersensitive pain behaviors (Fig. 1). ATP stimulation of microglia
through P2X4Rs evokes release of BDNF followed by de novo
synthesis and further release of BDNF.129 These are released by
exocytosis depending on extracellular Ca21 and phosphorylation of
p38MAPK. Although BDNF is also upregulated in dorsal root
ganglion (DRG) neurons after PNI,100 a conditional knockout of
BDNF in Nav1.8-positive primary afferent neurons does not affect
pain hypersensitivity induced by PNI.160 However, a recent study
demonstrated a significant contribution of BDNF derived from DRG
neurons, for processing of chronic pain120 This study also found that
mice lacking BDNF in all DRG neurons showed a normal
development of pain hypersensitivity after PNI.However, a significant
recovery of the hypersensitivity was observed only in the conditional
BDNF-knockout mice 5 days after PNI, indicating the contribution of
DRG-derived BDNF to the chronification of neuropathic pain.120 The
critical role of microglial BDNF has also been confirmed by using
microglia-selective BDNF-knockout mice.121

Besides BDNF, activated microglia after PNI also release
proinflammatory cytokines such as interleukin-1b (IL-1b) and
tumor necrosis factor-a, which contribute to neuropathic pain by
modulating neuronal excitability.61,64 Released IL-1b acted on
SDH neurons and rapidly enhanced the strength of excitatory
synaptic transmission through NMDAR phosphorylation and
decreased GABA- and glycine-mediated synaptic inhibi-
tion.24,70,113,144 Tumor necrosis factor-a rapidly increased gluta-
matergic transmission within the SDH through tumor necrosis
factor-a receptors without changing GABA- or glycine-evoked
responses.70 P2X7Rs, fractalkine receptors (CX3CR1), or toll-like
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receptors on microglia have been extensively studied as key
regulators of production and release of the proinflammatory
cytokines.25,74,125,132 P2X4R has been reported to regulate
inflammation in cultured microglia79,141 and other cell types
(macrophages or kidney cells),22,69 but there is so far no direct
evidence, indicating that microglial P2X4Rs are necessary for the
production of proinflammatory cytokines in the SDH after PNI.
Although a recent study reported that CORM-2 (carbon
monoxide–releasing molecule), a compound that was used as a
P2X4R antagonist in this study, reduces the production of
proinflammatory cytokines in the SDH and pain hypersensitivity
after PNI,67 another study indicated that antinociceptive effects of
CORM-2 are independent of the blockade of P2X4Rs.54 P2X4R
has been shown to interact with P2X7R5,13 and to augment the
P2X7R-mediated IL-1b release,69 raising thepossibility that P2X4R
may participate in microglial inflammatory responses through an
interaction with P2X7R. Thus, P2X4Rs on activated microglia
enhance neuronal excitability and pain transmission primarily
through BDNF-TRKB-KCC2 axis-mediated disinhibition61 and
also presumably through P2X7R-mediated proinflammatory
cytokine production (Fig. 2).

4. Mechanisms underlying P2X4R upregulation
and activation

As mentioned above, microglia proliferate and increase their cell
number in response to PNI. The expression of P2X4Rs per cell
was upregulated in activated microglia.135 Thus, the number of
microglia that have high levels of P2X4Rs increases in the SDH
after PNI. Several extracellular factors, intracellular signaling, and
transcriptional factors, which are involved in the increase of cell
number, upregulation P2X4R, and subsequent pain hypersensi-
tivity, have been identified (Fig. 2).

4.1. Extracellular factors

Chemokine (C-C motif) ligand 21 (CCL21) was found to be
induced in the injured DRG neurons and transported to central
terminals of the SDH.11 CCL21 increased the expression of
P2X4Rs in microglia both under in vitro and in vivo conditions.

Peripheral nerve injury–induced upregulation of P2X4Rs was
blunted in mice lacking CCL21. CCL21-deficient mice also
showed no development of mechanical hypersensitivity after PNI,
indicating that CCL21 in DRG neurons contributes to neuropathic
pain by upregulating microglial P2X4Rs. On the other hand,
CCL21 deficiency did not affect microglial proliferation and
morphological changes.11

Recent studies revealed that colony stimulating factor 1 (CSF1) is
also a crucial factor for inducing microglial activation.51,102 Like
CCL21, CSF1 is also upregulated in DRG neurons after PNI and
transported to the SDH, where its receptor (CSF1R) is specifically
expressed in microglia. Conditional deletion of CSF1 from DRG
neurons suppressed the increase of microglial cell number and
development of pain hypersensitivity.51 Moreover, intrathecal
administration of CSF1 induced microglial activation (microgliosis
and upregulation of pain-related gene expression) and pain
hypersensitivity. These results indicate that CSF1 is necessary and
sufficient for activation of spinal microglia after PNI. Colony
stimulating factor 1was also found to increase P2X4R expression,51

assuming a possible involvement of CSF1 in producing P2X4R-
expressing activated microglia. Although P2X4R deficiency did not
suppressCSF1-inducedmechanical hypersensitivity at 2 hours after
administration, it is conceivable that a P2X4R-independent mech-
anismmay be involved in acutemechanical pain behavior caused by
CSF1 at that time point.51

Fibronectinwas also shown tobeconsidered as a key regulator of
P2X4R expression.98 Fibronectin levels were elevated in the
ipsilateral side of the SDH after PNI.98 Exogenous treatment with
fibronectin induced the upregulation ofmicroglial P2X4Rboth in vitro
and in vivo.136 Inhibition of fibronectin binding with b1 integrins by
echistatin or genetic knockout of Lyn (one of the Src family kinases)
resulted in reduced expression of P2X4Rs and impaired pain
hypersensitivity,136,137 suggesting the contribution of fibronectin to
neuropathic pain through microglial P2X4R upregulation.

4.2. Transcriptional factors

Microglia alter their gene expression pattern along with
development of disease processes in the nervous system.90

The profile of gene expression is controlled by transcriptional

Figure 1.Activatedmicroglia cause an aberrant neuronal excitability that underlies mechanical pain hypersensitivity. The excitability of SDH neurons is determined
by a balance between excitatory and inhibitory inputs. After PNI, BDNF released from activated microglia act on TrkB expressed by the neurons, causing down
regulation of KCC2 and phosphorylation of NMDA. The alterations result in an aberrant neuronal excitation and mechanical pain hypersensitivity (allodynia). PNI,
peripheral nerve injury; [Cl2]i, intracellular Cl

2 concentration; [Cl2]o, extracellular Cl
2 concentration, NMDAR, N-methyl-D-aspartate receptor.
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factors in a context-dependent manner.56 After PNI, interferon
regulatory factor (IRF) 8, IRF5, and v-maf avian musculoaponeur-
otic fibrosarcoma oncogene homolog B (MAFB) critically con-
tribute to the regulation of P2X4R expression inmicroglia.61 It was
found that IRF8 is upregulated in the SDH after PNI, and its
expression is restricted to microglia.91 Forced expression of IRF8
in culturedmicroglia promoted P2X4R expression aswell as other
pain-related molecules including TLR2, P2Y12R, cathepsin S
(CTSS), and CX3CR1. Interferon regulatory factor 8 deficiency
blunted pain hypersensitivity and P2X4R upregulation after PNI.
Finally, intrathecal administration of microglia overexpressing
IRF8, but not mutant IRF8, was sufficient to produce pain
hypersensitivity. These results indicate that IRF8 is a critical
transcriptional factor to regulate pain-evoking microglia. In-
terferon regulatory factor 8 was also shown to regulate IRF5
expression by directly binding to its promoter regions.87

Thereafter, it was identified that IRF5 binds to putative promoter
region of P2X4R and promotes its expression.87 In this process,
fibronectin stimulation of microglia mediated the translocation of
IRF5 into the nucleus, which could be involved in the fibronectin-
induced P2X4R upregulation. Consistently, genetic ablation of
IRF5 dampened the upregulation of P2X4R and development of
mechanical pain hypersensitivity.87 In addition to IRF5, IRF1 was
also controlled by IRF8. IRF1 regulated the expression of IL-1b,86

which led to pain hypersensitivity by enhancing excitatory
synaptic transmission of SDH neurons.70 As the mRNA level of
IRF1 was increased in the SDH as well as IL-1b levels after PNI,
IRF1 may also be involved in neuropathic pain by enhancing
inflammatory responses. Musculoaponeurotic fibrosarcoma on-
cogene homolog B has been implicated as a critical regulator to
maintain the transcriptional profile of homeostatic microglia in
adulthood.92 Although MAFB expression was not specific to
microglia, PNI-induced upregulation of MAFB protein was
selectively observed in microglia.128 Musculoaponeurotic fibro-
sarcoma oncogene homolog B knockdown by intrathecal
treatment with its small interfering RNA prevented the

development of mechanical pain behavior and the upregulation
of P2X4R expression. Furthermore, conditional knockout of
microglial MAFB demonstrated suppression of neuropathic pain
development, indicating its contribution to P2X4R-dependent
neuropathic pain.128

4.3. Extracellular adenosine-59-triphosphate

Activation of P2X4Rs (and other purinergic receptors) expressed
on the plasma membrane of microglia would need extracellular
ATP. Adenosine-59-triphosphate can be released from a broad
range of cell types in the CNS through vesicular release- and/or
pannexin or connexin hemichannel-dependent mechanisms.23

By focusing on the role of vesicular nucleotide transporter (VNUT)
that was identified as being crucial for ATP exocytosis,116 its
essential role in neuropathic pain was revealed.88 Extracellular
ATP content was increased in supernatant of spinal cord slices
from PNI mice. The ATP increase was suppressed in VNUT-
deficient mice. These mice also exhibited reduction of PNI-
induced pain. Moreover, these attenuations of biochemical and
behavioral alterations observed in VNUT global knockout mice
were also observed in mice whose VNUT was selectively deleted
from the SDH neurons, but not from astrocytes, microglia, or
DRG neurons. Thus, VNUT expressed in the SDH neurons are
involved in the increased levels of the extracellular ATP and
subsequent pain hypersensitivity.88

5. Role of P2X4R and microglia in other models of
chronic pain

Other than PNI models in which peripheral nerves are directly
constricted or transected, a variety of other neuropathic painmodels
has been developed. Although the mechanisms underlying micro-
glial P2X4R-dependent neuropathic pain (described in above
sections) have been mainly studied in PNI models, the role of
microglial P2X4Rs has also been investigated in other models.

Figure 2. Molecular mechanisms of P2X4R activation leading BDNF and other factor secretion. Extracellular factors (CCL21, CSF1, and fibronectin) and
transcriptional factors (IRF8, IRF5, and MAFB) contribute to P2X4R upregulation. ATP released by SDH interneurons activate P2X4Rs and result in BDNF
exocytosis. P2X4Rmay also have a role in production or release of proinflammatory cytokines (eg, IL-1b) through an interaction with P2X7R. IL-1b, interleukin-1b;
BDNF, brain-derived neurotrophic factor; DRG, dorsal root ganglion; SDH, spinal dorsal horn.
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Herpes zoster is a viral disease whose symptoms are clustered
blisters and mechanical allodynia. In a model of herpetic pain in
which herpes simplex virus-1 is inoculated on the skin of mice,
mechanical allodynia was developed after the inoculation, and the
time course of allodynia was found to correlate with that of P2X4R
upregulation in microglia.93 Intrathecal administration of NP-1815-
PX, a P2X4R-selective antagonist developed in the study, attenu-
ated the herpetic mechanical allodynia.

Chronic migraine is a disabling headache defined as having
more than 15 days of headache per month over a 3-month
period. Repeated dural infusions with inflammatory soups induce
trigeminal allodynia (decreased periorbital withdrawal threshold
to von Frey filaments), which is used as a migraine model, and
describes underlying neuronal hyperexcitability in the trigeminal
nucleus caudalis.39 In this region, expression of P2X4Rs was
upregulated inmicroglia, and blocking P2X4Rs by 29,39-O-(2,4,6-
Trinitrophenyl)ATP (TNP-ATP), a nonselective P2X4R antagonist,
repressed the BDNF protein upregulation and trigeminal allody-
nia.80 The P2X4R upregulation was also observed in a model of
bone cancer pain, where P2X4R knockdown by its small
interfering RNA attenuated pain behavior and reduced expres-
sion of BDNF.66

An increase of P2X4R expression was also observed in an
experimental autoimmune neuritis model,159 which mirrors
pathologies such as mechanical allodynia of acute inflammatory
demyelinating polyradiculoneuropathy. The increased P2X4R
expression was mainly localized in CD681 microglia and
temporally correlated with the development of pain hypersensi-
tivity, suggesting an involvement of microglial P2X4Rs in
mechanical allodynia induced by experimental autoimmune
neuritis. A similar correlation between P2X4R expression and
pain hypersensitivity has been also reported in a spinal cord injury
model118 or an experimental autoimmune encephalomyelitis
model.141,156 Thus, P2X4Rs in activated microglia might contrib-
ute to neuropathic pain in diverse models.

An important role of microglial P2X4R-BDNF-TrkB-KCC2 path-
waywas alsodemonstrated inmorphine hyperalgesia, a paradoxical
increase in pain sensitivity which hampers an efficient pain control
and leads to dose escalation of morphine. Repeated administration
of morphine caused a decrease in pain threshold to thermal and
mechanical stimuli, increase of nocifensive behavior and microglial
activation in the SDH. Ferrini et al. showed that chronic morphine
treatment also caused an upregulation of P2X4R expression in vivo
and in cultured microglia.42 Furthermore, morphine induced a
depolarizing shift in lamina I neurons, which was prevented by
coincubation of a TrkB-blocking antibody. These observations
indicate that morphine hyperalgesia is attributed to microglial
P2X4R-BDNF-TrkB-KCC2 pathway. Indeed, P2X4R-deficient mice
did not show morphine hyperalgesia, and pharmacological block-
ade of P2X4Rs attenuated morphine-induced BDNF release from
microglia. Consistently, microglia-selective BDNF knockout abol-
ished morphine hyperalgesia without affecting an antinociceptive
response to a single dose of morphine.42 Moreover, it was
demonstrated that spinal microglia activated by repeated morphine
treatment also play a crucial role for morphine withdrawal.17

Although morphine directly affects microglial activation status and
pain transmission, the pathway how it activates microglia remains
unclear. A study demonstrated that microglia do not express
m-opioid receptors.30 In addition, the chronic morphine-induced
microglial activation (increased cell number and hypertrophic
morphology) was evident even in m-opioid receptor–knockout
mice, suggesting that an unidentified receptor is responsible for their
activation.30 This is an important question that should be clarified by
further investigations.

Besides P2X4R, many molecules expressed by activated
microglia have been implicated in pain hypersensitivity caused by
some neuropathic pain models. Diabetes mellitus is one of the
primary causes of neuropathic pain, and a considerable portion of
diabetic patients describemechanical allodynia. In animal models
of diabetes that are developed by streptozotocin (type 1) or by
obese (type 2), painful behaviors including allodynia are accom-
panied by microglia activation which is characterized by the
increased cell number and the upregulated marker gene
expression in the spinal cord.131 Treatment with minocycline (a
tetracycline antibiotic),96 gabapentin (an anticonvulsant drug),149

or inhibitors of an intracellular kinase, which are selectively
activated in microglia,138 attenuated allodynia as well as micro-
glial activation, suggesting microglial contribution to diabetic pain
hypersensitivity. Spinal activation of microglia was also shown to
occur in other neuropathic pain models such as fibromyalgia,3

chemotherapy,101 and chronic fatigue syndrome.153 Pain hyper-
sensitivity observed in thesemodels was attenuated by interfering
with microglial activation. In summary, spinal microglia undergo
activation in a variety of neuropathic pain models and may
contribute to their pathologies.

6. Sex differences

In rodent models of neuropathic pain, it is still under debate that
whether there is a sex difference in the role of microglia in pain
hypersensitivity or not. Reports have shown that minocycline (a
microglial inhibitor),8 by deletion of microglia (and macrophages),107

or genetic removal of microglia-selective molecules (including
P2Y12R,50 CX3CR1,122 and transmembrane protein 16F
[TMEM16F]10) can suppress PNI-induced pain hypersensitivity in
both females and males. In other rodent models of chronic pain, it
has demonstrated that there is no obvious sexual dimorphism in the
analgesic effects of microglia targeted treatments.61 On the other
hand, sex difference in the contribution of spinalmicroglia to pain has
also been shown.53 It was found that although PNI produces
microglial activation and pain behaviors to the same extent between
the female and male in rodents, the suppressive effect of genetic or
pharmacological inhibition of microglial P2X4Rs or its downstream
molecules (BDNF and TrkB) in the PNI-induced pain hypersensitivity
was observed only in male mice but not in female mice.121 A similar
sex difference has also been reported in rats.84 The sexual
dimorphism might be dependent on a failure of the PNI-induced
upregulation of P2X4R expression in female microglia.84,121 A
difference in chromatin accessibility may underlie the transcriptional
differenceof P2X4R. Interferon regulatory factor 5 and transcriptional
factors, which drive microglial P2X4Rs,87 were increased to an
equivalent degree in both female and male; however, IRF5 silencing
prevented P2X4R upregulation only in male-derived microglial
culture. Chromatin immunoprecipitation-quantitative polymerase
chain reaction revealed that IRF5 binding affinities at the P2X4R
region were increased by PNI only in males but not in females.84

Instead ofmicroglia, adaptive immune cells, such as T cells, function
in females to inducepainhypersensitivity at a comparable level that in
males.121 However, in a model of herpetic pain, microglial P2X4Rs
were found to be increased in female mice,93 suggesting that the
sexual dimorphism seems to be dependent on pathological
contexts.

7. Pain modulation by P2X4R on other cells

Beside microglia, P2X4R has been reported to be expressed by
Schwann cells, peripheral macrophages, and DRG neurons
which contribute to chronic pain induced by tissue inflammation.
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Global knockout of P2X4Rs attenuated pain behavior after
intraplantar injection with complete Freund’s adjuvant (CFA) is a
well-established model of inflammatory pain.133,140 It was also
reported that CFA-induced neuronal plasticity within the SDH is a
P2X4R-dependent manner.2 Wide-dynamic-range (WDR) neu-
rons located in deeper laminae of the SDH, which respond to
both noxious and innocuous stimuli, are known to project into
brain. Wide-dynamic-range neurons display a form of sensitiza-
tion after repetitive inputs from primary afferents, referred as
wind-up.115 Complete Freund’s adjuvant injection to wild-type
mice decreased the threshold for C-fiber-evoked responses and
enhanced wind-up amplitude in wide-dynamic-range neurons,
which caused facilitated pain transmission. These alterations
were absent in P2X4R-deficientmice, andCFA-induced painwas
blunted in these mice, suggesting the role of P2X4R in
inflammatory pain.2

In the context of inflammatory pain, P2X4Rs on peripheral
macrophages also participate in the pathology.140 Macrophages
stimulated by ATP released prostaglandin E2 (PGE2), a potent
mediator of inflammation triggering pain hypersensitivity and
enhancing neuronal excitability, through P2X4Rs and their
downstream intracellular Ca21- and p38MAPK-dependent
mechanisms. P2X4Rs were expressed by macrophages in the
inflamed hind paw, and an increase in PGE2 contents in the hind
paw was suppressed in mice lacking P2X4Rs. Thus, macro-
phage in inflammatory peripheral tissue may drive sensitization of
nociceptors and subsequent pain hypersensitivity by releasing
PGE2.

140 Macrophage P2X4R in the muscle was shown to be
involved in activity-induced muscle pain.103 In PNI models of
neuropathic pain, a pharmacological ablation of peripheral
macrophages, which accumulated in the DRG or the site of
injured nerve, was found to attenuate pain development.26,119,155

Thus, P2X4Rs in macrophages may have a role in PNI-induced
pain hypersensitivity, but this remains to be determined.

On the other hand, P2X4Rs on Schwann cells play a beneficial
role in remyelination of the sciatic nerve after crush injury.
Overexpression of P2X4Rs in Schwann cells resulted in an
enhanced recovery of injured nerves. In contrast, pharmacolog-
ical blockade of P2X4Rs hampered the functional recovery.123

Putting these reports together, P2X4Rs play various functions in a
cell-type and context-dependent manner. Further characteriza-
tion of the role of P2X4R in other cell types will be an important
issue for clinical application of drugs targeting P2X4R.

8. Discovery of drug for P2X4R and its signaling

Based on the basic studies described above, microglia and
P2X4R have been getting attention as potential therapeutic
targets of chronic pain.61 Although there are so far no drugs
selectively targetingmicroglia and their expressingmolecules that
have been approved for treating neuropathic pain, microglia-
selective drug discovery research is in progress.

Several P2X4R antagonists have been developed and are used
in basic research.1,158 NP-1815-PX was shown to be a potent
selective inhibitor of functioning of P2X4Rs in rodents and human
and to attenuate pain hypersensitivity induced by PNI or herpes
inoculation.93 More recently, a new antagonist, BAY-1797, was
also found to inhibit P2X4R.147 This compound when given orally
produced anti-inflammatory and antinociceptive effect in CFA-
induced pain. Unfortunately, the development of BAY-1797 was
stopped because of its non-negligible effect on CYP3A4
induction.147

In terms of the specificity and selectivity, antibody drugs which
bind to target antigen are superior to conventional small molecule

drugs. A series of various monoclonal antibodies to mouse and
human P2X4R has also been developed.148 Several antibodies
inhibited the function of P2X4R channels, while the others
potentiated it. Among them, IgG#151-LO inhibited ATP-induced
responses through human P2X4Rs expressed on HEK293 cells,
and a similar inhibition was observed in native P2X4Rs expressed
in human monocytes. Intrathecal administration of IgG#191 that
inhibitedmouse P2X4Rs reduced pain hypersensitivity caused by
PNI in mice. Moreover, systemic administration of IgG#191-
Bbbt0626, a CNS-permeable antibody, produced dose-
dependent and long-lasting analgesia. However, the CNS-
impermeable antibody IgG#191 did not produce any analgesic
effects, suggesting that central, but not peripheral, P2X4Rs could
be a primary target for its analgesic effect on neuropathic pain.148

As another strategy to discover drugs for chronic pain, much
effort has been made to seek new effects of existing drugs.
Antidepressants are frequently used to alleviate chronic pain43

presumably through their inhibitory effects on serotonin and/or
noradrenaline transporters, which potentiate endogenous
descending pain inhibition. However, it was found that paroxetine
and duloxetine have an inhibitory effect on P2X4R and that their
analgesic effect on the PNI-induced pain hypersensitivity
persisted even after serotonin and/or noradrenaline signaling
was inhibited by its receptor antagonists or spinal depletion of
these neurotransmitters.97,152 Thus, it is possible that these
antidepressants produce pain relieving effect, at least in part,
through inhibiting microglial P2X4Rs.

More recently, a first-generation bisphosphonate clodronate
was shown to have analgesic effects through a mechanism
inhibiting VNUT,68 which are responsible for ATP release required
for activation of purinergic receptors such as P2X4R and
neuropathic pain.88 Clodronate reversed pain hypersensitivity in
models of inflammatory and neuropathic pain. The analgesic
effect was dependent on inhibition of VNUT because it was
occluded in VNUT-deficient mice.68

Preclinical studies have shown that ablating microglia or
inhibiting their activation attenuate pain hypersensitivity. For
instance, minocycline was used to suppress activated micro-
glia.109,154 Although it can also affect other types of cells including
neurons,83 preemptive administrations of minocycline prevented
neuropathic pain and microglial activation after perturba-
tion.77,111 Although some clinical studies reported that perioper-
ative administration of minocycline does not improve pain
resolution after surgery,34,85 other smaller trials reported slight
efficacy of minocycline.124,142 However, further large-scale trials
will be needed. Chronic treatments of CSF1R inhibitor, which
specifically depletes microglia from the CNS,41 can also alleviate
tactile allodynia.78,126 Because clinical trials to evaluate the
efficacy of CSF1R inhibitors in cancer are currently underway,
depleting activated microglia by such CSF1R inhibitors can be a
new treatment for neuropathic pain in the future.

It is also particularly important to determine whether microglia
are indeed activated in patients with neuropathic pain. A
histological study using the postmortem spinal cord from a
patient with long-standing complex regional pain syndrome
reported an increased number of CD68-immunoreactive micro-
glia in the posterior horn compared with healthy subjects.37

Positron emission tomography (PET) imaging targeting 18-kD
translocator protein (TSPO), which can be expressed by activated
microglia, has been used as a technique to detect microglia in the
CNS.62 A study using rats with PNI clearly showed the availability
of PET imaging with [11C] PK11195, a radiolabeled ligand to
TSPO, to quantify glial activation in the spinal cord.59 Accumu-
lation of TSPO was observed in some brain regions of patients
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with limb denervation,7 complex regional pain syndrome,63 and
chronic low back pain.81 One limitation of PET imaging using
TSPO is its low specificity to microglia.62 However, a recent study
showed that cortical microglia, but not astrocytes, were activated
in the brain of patients with fibromyalgia by combining 2 PET
tracers, [11C] PBR28 and [11C]-L-deprenyl-D24: the former binds
to TSPO, which is expressed on both of microglia and astrocytes,
and the latter is considered to reflect astrocytic signals. [11C]
PBR28 signal was elevated within some cortical regions in
fibromyalgia patients compared with healthy control subjects,
whereas no difference between the 2 groups was observed in
[11C]-L-deprenyl-D2 signals. These studies suggest that micro-
glia are activated in the CNS of patients with chronic pain.

Several new radiotracers targeting molecules expressed on
microglia other than TSPO have been developed for the purpose
of conquering the shortcomings of TSPO ligands.62,130,157 There
is an article reporting a radiolabeled P2X4R antagonist as a
candidate PET tracer, but it did not show adequate selectivity and
affinity to P2X4Rs.146 More recently, [11C] CPPC, a radiolabeled
ligand that specifically binds to CSF1R, was developed.57 Further
investigations using these tracers or development of new tracers
are needed to characterize microglial activation in patients with
neuropathic pain. Moreover, the improvement of PET imaging
technique may allow us to use it as a new diagnostic tool.

9. Conclusion

In 2003, the critical role of P2X4R on microglia was identified as
being necessary and sufficient for neuropathic pain. Since then, a
large number of studies have revealed the mechanisms un-
derlying P2X4R upregulation and the downstream pathway that
leads the hyperexcitability of neurons in the pain transmission
pathway.21,61 Furthermore, the P2X4R-BDNF-TrkB-KCC2 path-
way has been implicated in several pain models. Because
pharmacological or genetical inhibition of these molecules and
other microglial genes that are implicated to neuropathic pain
result in attenuation of pain hypersensitivity without any major
effects in normal nociception in animals, targeting microglia may
be a promising strategy for refractory chronic pain. A role of
P2X4Rs expressed by DRG neurons or peripheral macrophages
in inflammatory pain extends its therapeutic application. On the
other hand, microglial P2X4Rs also plays a beneficial role as
antidepressants and remyelination associated with a late phase
of ischemic stroke and multiple sclerosis, respectively.143,156 A
longer term analysis of neuropathic pain pathology and potential
involvement of activated microglia in later phase is needed.
Recent studies using a single-cell RNA sequencing technique
have identified heterogenous subpopulations of microglia in the
rodent and human brain.6,89,90 A heterogeneity of activated
microglia in the SDH and its transcriptome signature in PNI
models and patients with neuropathic pain will help us to develop
new therapeutics or diagnostic criteria for neuropathic pain.
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