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Beyond targeting amplified
MDM2 and CDK4 in well
differentiated and
dedifferentiated liposarcomas:
From promise and clinical
applications towards
identification of
progression drivers

Giuliana Cassinelli 1, Sandro Pasquali 1,2 and Cinzia Lanzi1*

1Molecular Pharmacology Unit, Department of Applied Research and Technological Development,
Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori,
Milan, Italy, 2Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are

tumors of the adipose tissue poorly responsive to conventional cytotoxic

chemotherapy which currently remains the standard-of-care. The dismal

prognosis of the DDLPS subtype indicates an urgent need to identify new

therapeutic targets to improve the patient outcome. The amplification of the

two driver genesMDM2 andCDK4, shared byWDLPD and DDLPS, has provided

the rationale to explore targeting the encoded ubiquitin-protein ligase and cell

cycle regulating kinase as a therapeutic approach. Investigation of the genomic

landscape of WD/DDLPS and preclinical studies have revealed additional

potential targets such as receptor tyrosine kinases, the cell cycle kinase

Aurora A, and the nuclear exporter XPO1. While the therapeutic significance

of these targets is being investigated in clinical trials, insights into the molecular

characteristics associated with dedifferentiation and progression from WDLPS

to DDLPS highlighted additional genetic alterations including fusion transcripts

generated by chromosomal rearrangements potentially providing new

druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the

increasing use of patient-derived cell and tumor xenograft models which

offer valuable tools to accelerate drug repurposing and combination studies.

Implementation of integrated “multi-omics” investigations applied to models

recapitulating WD/DDLPS genetics, histologic differentiation and biology, will

hopefully lead to a better understanding of molecular alterations driving
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liposarcomagenesis and DDLPS progression, as well as to the identification of

new therapies tailored on tumor histology and molecular profile.
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Introduction

Well differentiated (WD) and dedifferentiated (DD)

liposarcomas (LPS) represent the most frequent adipose tissue

tumors occurring preferably in adults, particularly in the

retroperitoneum and extremities (1). WDLPS and DDLPS

exhibit different aggressive potential reflecting their

morphologic diversity. WDLPS, a low-grade tumor

characterized by malignant adipocytes, may recur locally after

surgery, a condition potentially lethal when presenting in the

retroperitoneum. DDLPS is a high-grade non-lipogenic

malignancy with propensity to both recur locally and

metastasize, particularly when located in the retroperitoneum

compared to extremity and trunk wall (2–4). WD and DD

components often coexist, suggesting that WDLPS and DDLPS

represent evolution states of one disease. Indeed, they share

peculiar supernumerary ring and giant marker chromosomes

including amplified sequences of 12q13-15 (5), which cause

overexpression of genes that act as oncogenic drivers (i.e.

MDM2 and CDK4) and represent adipocytic differentiation/

diagnostic markers (i.e. HMGA2 and CPM) (6–8). In

comparison to WDLPS, DDLPS generally harbor additional

epigenetic and genetic alterations (6–8). DDLPS may undergo

heterologous differentiation associated with a more aggressive

phenotype mainly evident when rhabdomyoblastic traits are

acquired (9–12).

Surgery represents the curative treatment for localized

WDLPS/DDLPS. Neoadjuvant radiation therapy has been

suggested to reduce the risk of local recurrence (13) occurring

in about one in three-four patients (2, 3). LPS-specific

therapeutic options for patients who develop local recurrence

and distant metastasis are lacking and both WDLPS and DDLPS

are poorly responsive to either conventional cytotoxic

chemotherapy or clinically tested targeted therapies (14, 15).

These issues underline the need to identify new actionable

targets and biology-driven LPS-specific therapeutic approaches

to impact patient outcomes (8, 16, 17).

Herein, after briefly summarizing the current standard-of-

care and recent findings from clinical investigations on new

therapeutic strategies for WD/DDLPS, we focus on the rationale
02
behind emerging treatment options exploiting potential

vulnerabilities based on LPS biology. We do not address here

immunotherapeutic approaches, which are summarized in other

reviews (8, 18).
Conventional systemic and
histotype-specific therapies

Therapies used in most soft tissue sarcomas (STS) derive

from studies that investigated a general STS patient population.

Mirroring STS, anthracycline-based therapies remain the first-

line treatment for advanced DDLPS (19). However, Phase II/III

trials showed that the low tumor response to doxorubicin

(<10%) was enhanced when combined with high-dose

ifosfamide (22%) (15). High-dose ifosfamide has shown

effectiveness in recurrent WD/DDLPS even after previous

treatment with anthracyclines plus ifosfamide. Gemcitabine or

docetaxel monotherapies are also commonly used second-line

treatments (14, 20, 21). The addition of docetaxel to gemcitabine

improved treatment efficacy compared to gemcitabine alone but,

due to the increased toxicity, this option needs a careful patient

selection (22). An increasing knowledge about drug sensitivities

of STS histologies and results from several retrospective and

prospective clinical trials have prompted histology-driven

treatments (19, 23). Two marine-derived cytotoxic drugs,

trabectedin and eribulin, have been approved by FDA and

EMA for the treatment of metastatic WDLPS/DDLPS

following phase II studies and further comparative phase III

trials showing improved benefit over dacarbazine (24, 25).

However, trabectedin impact on progression-free survival did

not translate into a survival benefit (26), while eribulin produced

only a limited improvement of overall survival without

improving progression-free survival (27). Retrospective

evidence suggested that low grade DDLPS may benefit from

trabectedin while ifosfamide may be more active for high grade

DDLPS (28). Nevertheless, clinical, histological and molecular

features, as well as predictive biomarkers guiding the selection of

patients for these treatments and improving their therapeutic

index are lacking (29).
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Overexpressed biomarkers as
therapeutic targets:
MDM2 AND CDK4

MDM2 and CDK4 amplification in over 90% of WDLPS and

DDLPS, besides representing a diagnostic tool, provides the

rationale for evaluating novel therapies (6, 16, 30, 31).

MDM2 encodes an E3 ubiquitin-protein ligase that binds

p53 promoting its proteasome-mediated degradation thus

negatively regulating its tumor suppressor function (32, 33).

MDM2 knockdown heav i ly impac ted DDLPS ce l l

proliferation (34, 35). Likewise, DDLPS cells underwent cell

cycle arrest and apoptosis after exposure to nutlins (e.g.

nutlin 3a, idasanutlin) (36–38), a prototypical class of

MDM2 antagonists specifically designed to block the

interaction between MDM2 and p53 (32, 33) (Table 1).

DDLPS cel ls harboring wt p53 exhibited a higher

responsiveness to MDM2 antagonists belonging to different

chemical classes (i.e. nutlin3a, idasanutlin, siremadlin)

(Table 1) with respect to p53-mutant cell lines (35, 48). A

comparative study demonstrated that the higher effectiveness

of the MDM2 inhibitor SAR405838 (Table 1), compared to its

analogue MI-219 and nutlin 3a in inhibiting DDLPS cell

growth and inducing apoptosis, relied on the presence of
Frontiers in Oncology 03
both wt p53 and MDM2 amplification (49). Gene expression

analyses implicated restoration of the p53 pathway and

reactivation of pro-apoptotic genes in the potent antitumor

activity of SAR405838 against a DDLPS xenograft. The

MDM2-p53 inhibitor BI-907828 (Table 1) induced tumor

regression in two DDLPS PDX models with long lasting effect

and a complete pathological response in one of them (50).

Inhibition of histone deacetylases can affect MDM2 expression/

function by acting at both transcriptional and post-translational

levels (51, 52). Indeed, in DDLPSmodels, MDM2 downmodulation

induced by histone deacetylase inhibitors such as vorinostat and

romidepsin has been associated with antitumor activity in vitro and

in vivo (35, 53). Interestingly, the antitumor activity of the

proteasome inhibitor bortezomib against a DDLPS PDX was also

associated with MDM2 downmodulation (54).

Preclinical studies suggested rationale-based drug

combinations to improve the antitumor efficacy of MDM2-

targeting agents. Given the aberrant activation of the PI3K/

AKT/mTOR pro-survival pathway observed in DDLPS (55),

idasanutlin was tested in combination with the PI3K/mTOR

inhibitor NVP-BEZ235 resulting in enhanced cell growth

inhibition, apoptotic cell death, and reduction of tumor

growth rate (38). Roy et al. (48) described a p53-dependent

paradoxical activation of ERK pathway as a mechanism of
TABLE 1 Investigational drugs in well differentiated and dedifferentiated liposarcoma.

Drug names (corporation/sponsor) Primary targets Clinical development status in cancer Refs

RG7112, (RO5045337) (Hoffman-Roche) p53-MDM2 binding Phase I/Ib in advanced solid, hematologic tumors (32, 33)

idasanutlin (RG7388, (RO5503781)(Hoffman-
Roche)

p53-MDM2 binding Phase I/II/III study in advanced solid tumors and AML (32, 33)

SAR405838 (MI-77301) (Sanofi-Aventis) p53-MDM2 binding Phase I in advanced solid tumors and MM (32, 33)

siremadlin (HDM 201) (Novartis) p53-MDM2 binding Phase I/II in solid and hematological tumors (33)

BI-907828 (Boehringer Ingelheim) p53-MDM2 binding A Phase Ia/Ib, in Advanced or metastatic solid tumors (33)

palbociclib (PD0332991) (Pfizer) CDK4; CDK6 Approved for ER-positive breast cancer (39–41)

ribociclib (NPV-LEE011) (Novartis) CDK4; CDK6 Approved for ER-positive breast cancer (39–41)

abemaciclib (LY2835219) (Eli Lilly) CDK4; CDK6, CDK9 Approved ER-positive breast cancer (39–41)

erdafenib (JNJ-42756493) (Janssen) FGFR1-4 Approved for locally advanced or metastatic urothelial carcinoma (42, 43)

infigratinib (NPV-BGJ398) (Novartis) FGFR1-3 Approved for unresectable or metastatic cholangiocarcinoma (43, 44)

LY2874455(Eli-Lilly) FGFR1-4 Phase I advanced-stage solid tumors (42, 43)

tepotinib (EMD1214063) (Merck) Met Approved for NSCLC (45)

crizotinib (PF-02341066) (Pfizer) Met, ALK, ROS Approved for NSCLC, ALCL (45)

forentinib (XL880) (GlaxoSmithKline) Met, VEGFR2 Phase I NSCLC (45)

ponatinib (AP24534) (Incyte/Takeda) BCR-ABL, VEGFR2-3, FGFR1-2,
Flt3

Approved CML, ALL (45)

apatinib (YN968D1) (Hengrui Medicine) VEGFR2, src, c-Kit Approved for gastric cancer (45)

pazopanib (GW786034) (Novartis) VEGFR1-3, PDGFR, c-Kit, FGFR1/3 Approved for GIST, pancreatic neuroendocrine tumor, metastatic
RCC

(45)

selinexor (KPT-330) (Karyopharm Therapeutics) XPO1 Approved for MM, DLBCL (46)

AMG900(Amgen) AURKA/B Phase I in advanced solid tumors and AML (47)

alisertib (MLN8237) (Millennium
Pharmaceuticals)

AURKA Phase I/II in solid and hematological tumors (47)
frontie
ALCL, Anaplastic Large-Cell Lymphoma; ALL, Acute lymphocytic leukemia; AML, Acute Myeloid Leukemia; CML, chronic Myeloid lymphocytic leukemia; DLBCL, diffuse large B cell
lymphoma; ER, estrogen receptor; GIST, Gastrointestinal stromal tumor; MM, Multiple Myeloma; NSCLC, Non-Small Cell Lung Cancer; RCC, Renal Cell Carcinoma.
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resistance triggered by idasanutlin. Mechanistically, reactive

oxygen species production, due to drug-induced mitochondrial

translocation of p53, promotes the activation of receptor

tyrosine kinases (RTKs) (e.g. IGF1R, PDGFRb) and the

downstream MEK-1/ERK pathway. The combination of

MDM2 antagonists with the MEK1/2 inhibitor GSK112021B

synergistically inhibited cell growth and potentiated apoptotic

cell death. In mice bearing wt p53 DDLPS xenografts, this drug

combination decreased tumor growth and increased survival.

CDK4 encodes cyclin-dependent kinase 4, which allows G1/

S cell cycle progression by phosphorylating Rb. The clinical

availability of CDK4/6 inhibitors fostered exploration of CDK4

as therapeutic target in DDLPS (39–41). Both genetic and

pharmacological downmodulation of CDK4 inhibited DDLPS

cell proliferation inducing cell cycle arrest, apoptosis, and

antitumor activity in vivo (34, 38, 56, 57). The CDK4 inhibitor

ribociclib significantly delayed DDLPS xenograft growth, an

effect associated with decreased Rb phosphorylation, BrdU

incorporation and 18F-Fluorodeoxy-D-glucose uptake (56).

CDK4/6 inhibitors can induce a senescent-like cell state which
Frontiers in Oncology 04
could variably impact tumor growth/progression (58). In WD/

DDLPS cell lines, CDK4 inhibitors (i.e. palbociclib, ribociclib,

abemaciclib) (Table 1) induced senescence associated with

accumulation of unphosphorylated Rb and post-translational

downregulation of MDM2 (57). MDM2 loss was directly

implicated in the senescent program triggered by treatment

with CDK4 inhibitors. Notably, a lower expression of MDM2

in tumor biopsies after treatment with palbociclib was associated

with tumor response. These findings suggested a favorable

interaction between CDK4 inhibitors and agents affecting

MDM2 expression/function. Indeed, palbociclib sensitized

DDLPS cells to apoptosis induced by idasanutlin through

promoting a full activation of the p53 pathway (38). Moreover,

this combination reduced DDLPS xenografts growth and

improved mice survival. The enhanced antitumor activity

observed upon co-treatment with suboptimal doses of

ribociclib and siremadlin prompted the clinical evaluation of

this combination (59) (Table 2).

Additional preclinical studies suggested combination

strategies including palbociclib and anti-IGF1R agents (e.g.
TABLE 2 Summary of results from clinical trials that tested innovative treatment options for patients with metastatic WDLPS and DDLPS.

Drugs
Corporation/sponsor

Study
phase

Population Treatment
line

N° of patients Main findings in LPS Refs

p53-MDM2 binding inhibitor
AMG-232
(Kartos therapeutics)

I Metastatic WDLPS/DDLPS >3 48 non-adipocytic
tumors, 10 WDLPS, 10
DDLPS

Tumor response: SD 10/10
(100%) WDLPS and 7/10
(70%) DDLPS

(60)

p53-MDM2 binding inhibitor
SAR405838
(Sanofi-Aventis)

I Solid tumours with no further
effective standard treatment

>1 39 non-adipocytic
tumors,
35 DDLPS

Tumor response: DDLPS 22/
31 SD (71%)

(61)

p53-MDM2 binding inhibitor
siremadlin and CDK4/6 inhibitor
ribociclib
(Novartis)

Ib Locally advanced or metastatic
WDLPS/DDLPS

>1 74 Tumor response: 3 PR, 38
SD

(59)

CDK4/6 inhibitor palbociclib
(Pfizer)

II Advanced WDLPS/DDLPS >1 30 (plus 30 enrolled in
expansion cohort)

Progression-free rate at 12
weeks: 57.2%
Median progression-free
survival: 17.9 weeks

(62)

multi-RTK inhibitor pazopanib
(Novartis) and topoisomerase I
inhibitor topotecan

II Recurrent or metastatic, non-
resectable STS, or metastatic or
unresectable osteosarcoma

>1 106 non-adypocitic STS,
19 LPS, 28
osteosarcoma,

Overall response rate: 0% (63)

multi-RTK inhibitor
anlotinib (AL3818)
(Chia-tai Tianqing Pharmaceutical
Co)

II Metastatic LPS >1
(antacycline-

based)

156 non adipocytic STS,
13 LPS

Progression-free rate at
12weeks: 63%
Objective response rate: 7.7%

(64)

multi-RTK inhibitor
pazopanib
(Novartis)

II Unresectable or metastatic LPS >1 12 MLP, 27DDLPS, 2
pleomorphic LPS

Progression-free rate at
12weeks: 68%;
Tumor response: 1 PR
(2.4%), 17 SD (41.5%)

(65)

multi-RTK inhibitor
regorafenib
(Bayer HealthCare)

II Metastatic LPS >1 34 DDLPS, 12 myxoid/
round cell LPS, 2
pleomorphic LPS

Overall response rate: 0%
Progression-free survival:
median, 2 months

(66)

XPO-1 inhibitor selinexor
(Karyopharm Therapeutics)

II-III
RCT

Advanced or unresectable DDLPS 2-5 285 (188 randomized to
selinexor)

PFS: 2.8 vs 2.1 months
(P=0.01)
Tumor response: 5 PR
(2.7%), 111 (59%)

(67)
frontiers
MLPS, myxoid liposarcoma; PR, partial response; PFS, progression free survival; RCT, randomized controlled trial; SD, stable disease.
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R1507 or NVP-AEW541) which resulted in enhanced inhibition

of cell cycle progression and metabolic activity (68). The

combination of palbociclib with recombinant methionase

heavily impacted tumor cell dependence on methionine in an

orthotopic DDLPS PDX model resistant to doxorubicin (69).

Published findings of early clinical trials investigating

MDM2 and CDK4 inhibitors in WD/DDLPS patients are

summarized in Table 2 (59–62).
Potential targets and
investigational therapies

Receptor tyrosine kinases

Growth factor/RTKs drive and coordinate adipocytic

differentiation by transducing stimulatory or inhibitory signals

depending on multiple endogenous and environmental factors

(70–72). The deregulated expression/function in LPS

development and progression suggested some RTK axes as

potential actionable targets. MET, AXL, KIT, and IGF1R were

found overexpressed in WD/DDLPS cells versus normal

adipocytes and pre-adipocytes (73) and genetic analyses

evidenced common amplifications of IGF2, IGF1R, ERBB3

together with FGFR1, FGFR3 and PDGFR in WD/DDLPS (74–

76). The more extensive amplification of genes encoding RTKs

in DD than in WD components corroborated their role in

promoting disease progression and the therapeutic potential of

their targeting.

Overexpression and rare mutations of FGFRs, along with

amplification of the adaptor protein FRS2 and the autocrine

production of FGFs, contribute to the aberrant activation of the

FGFR pathway in DDLPS (31, 74–82). Consistently, FGFR1 and/

or FGFR4 overexpression has been associated with shorter

disease-free survival and overall survival in WD/DDLPS

patients (79). Treatment of DDPLS cells with the FGFR

inhibitor erdafitinib (42, 43) (Table 1) reduced cell viability

and induced apoptosis. Moreover, combination of erdafitinib

with idasanutlin resulted in a synergistic antiproliferative effect,

enhanced apoptosis and reduced DDLPS xenograft growth rate.

In a case report, a patient with metastatic DDLPS refractory to

multiple lines of conventional and targeted therapies

experienced disease stabilization after erdafitinib treatment.

These findings suggested FGFR1/FGFR4 expression as

predictive biomarker in clinical trials investigating

FGFR inhibitors.

The FGFR inhibitors infigratinib and LY2874455 (43, 44)

exhibited in vitro and in vivo antitumor activity in a FRS2-

amplified DDLPS experimental model originated from a high-

grade metastatic tumor unresponsive to several conventional

chemotherapeutics as well as to the MDM2 inhibitor RG7112
Frontiers in Oncology 05
and palbociclib (Table 1) (81, 82). Differently from FRS2

amplification, expression of FGFR signaling components (e.g.

FGFs, FGFRL1) was suggested to modulate cell response to

FGFR inhibitors. Moreover, activation of FGF/FGFR signaling

is markedly affected by the co-accessory molecules heparan

sulfate proteoglycans (HSPGs) (83, 84). In particular, the

HSPG syndecan-1 was demons t ra t ed to promote

proliferation and inhibit differentiation of adipocyte

progenitors (85, 86). Syndecan-1 was found overexpressed in

DDPLS compared with normal adipose tissue and lipomas and

its expression was controlled by FGF, a circuit that the FGFR

inhibitor PD173074 could interrupt (86). FGF2 exerts a

biphasic effect on adipogenesis with low concentrations

enhancing adipogenesis (87). Moreover, the activity of

adipokines such as FGF21 could be affected by the expression

of the coreceptor Klotho which was found significantly reduced

in DDLPS compared to healthy adipose tissue (88, 89).

Notably, high levels of Klotho were associated with better

survival in LPS patients (89). Klotho also modulates the

insulin/IGF1 signaling (90), another positive regulator of

adipocytic diffentiation (70, 71). Klotho overexpression

reduced IGF1R signaling, decreased DDLPS cell proliferation

and promoted gemcitabine-induced apoptosis (89).

Analogously, the IGF1R inhibitor BMS-754807 increased

gemcitabine-induced cell death confirming the implication of

the RTK in DDLPS drug resistance. A combinatorial drug

screening identified several synergistic target pairs in a DDLPS

cell line including EGFR and IGF1R, IGF1R and CDK4, IGF1R

and EGFR, IGF1R and STAT3. The combination of anti-IGF1R

agents (e.g. R1507 or NVP-AEW541) with CDK4 inhibitors

cooperatively suppressed the activation of proteins within the

crucial AKT pathway (68).

The constitutive or HGF-induced Met activation enhanced

DDLPS cell proliferation, migration and invasion. Accordingly,

MET knockdown or pharmacological targeting by the Met

inhibitors SU11274 and tepotinib (91) (Table 1) reduced DDPLS

tumorigenic potential in vitro and in vivo. A high-throughput drug

screening evidenced the antiproliferative activity of the Met

inhibitors foretinib and crizotinib (45) (Table 1) on a panel of

PDX-derived DDLPS cell lines (54). Interestingly, death receptor

upregulation induced by Met inhibitor PHA-665752 pretreatment

enhanced the antiproliferative and pro-apoptotic activity of TRAIL

in DDLPS cell lines (92).

Inhibition of RTKs present on tumor and microenvironment

cells was suggested to partecipate in the antitumor activity of

multi-targeting RTK inhibitors (i.e. ponatinib, apatinib

pazopanib) in DDPLS models (Table 1). Angiogenesis

inhibition contributed to DDLPS PDX growth delay induced

by pazopanib alone and in combination with doxorubicin (43,

45, 93–95). Clinical trials of anlotinib and pazopanib have been

recently reported (Table 2) (63–65).
frontiersin.org
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Additional investigational therapies

WD/DDLPS are characterized by MDM2 overexpression

associated with wild-type p53. MDM2-mediated ubiquitination

downmodulates the tumor suppression function of p53 by

promoting its nuclear export through exportin-1 (XPO1) and

degradation (96). XPO1 overexpression, observed in LPS

samples and cell lines (97), was recently confirmed in samples

comprising the WD and DD components of primary tumors as

well as the normal adipose tissue from DDLPS patients (98).

These findings support targeting the nuclear export as a rational

therapeutic approach for WD/DDLPS. The selective XPO1

inhibitor selinexor (46) (Table 1) decreased DDLPS cell

growth by inducing cell cycle arrest and apoptosis (97, 98).

Mechanistic studies showed that selinexor inhibited the IGF1R/

AKT pathway activation by upregulating the expression of IGF

binding protein 5 which acts as a tumor suppressor in DDLPS

cells (97). Cell response to this drug was associated with a

decrease of the survivin anti-apoptotic cytoplasmic pool (98).

Selinexor significantly reduced the growth of a tumor xenograft

from an established DDLPS cell line (97) and showed a moderate

activity, anyway higher than doxorubicin, in three DDLPS PDXs

displaying myogenic and rhabdomyoblastic heterologous

differentiation (98). A phase III trials showed a small, though

statistically significant, benefit for selinexor compared with

placebo, suggesting also absence of the calcium and MDM2

binding protein CALB1 as a predictive biomarker for longer

progression-free survival (67) (Table 2).

Recent reports highlighted the potential of the mitotic serine-

threonine kinase Aurora A (AURKA) as therapeutic target.

AURKA was found significantly upregulated in DDLPS

compared to WDLPS and patients with high AURKA

expression in tumors showed shorter recurrence-free survival

(99). AURKA knockout and enzyme blockade by the inhibitors

alisertib and AMG900 induced DDLPS cell cycle arrest and

apoptosis (47) (Table 1). Alisertib also efficiently suppressed

tumor xenograft growth (100, 101). Of note, DDLPS cell lines

displayed heterogeneous sensitivity to AURKA/B inhibitors either

alone or in combination with cytotoxic chemotherapeutics likely

related to different tumor cell molecular characteristics (99–101).
Discussion

Therapeutic options for WD/DDLPS are limited and patient

outcomes remain unsatisfactory. The pathognomonic amplification

of genes implicated in cell cycle and growth control has provided

the rational bases for clinical evaluation of targeting agents. Despite

high expectations, first reports recorded modest benefit from

MDM2 and CDK4 inhibitors as single agents. MDM2 inhibitors

evaluated in phase I/II trials showed disease stabilization inWDLPS

and DDLPS (Table 2) (60, 61). The CDK4 inhibitor palbociclib

resulted in favorable PFS and occasional tumor responses in a phase
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II trial for advanced WD/DDLPS (62). However, a real world

experience in retroperitoneal diseases showed very limited clinical

activity of single-agent palbociclib (102). Recently, trials are

combining MDM2 and CDK4 inhibitors. A phase Ib study

testing the combination of siremadlin and ribociclib recorded

stable disease and manageable treatment-related toxicity

supporting the feasibility of this approach (Table 2) (59).

Other recent trials have reported on pazopanib and other

TKI inhibitors for liposarcomas (63–66) (Table 2). Extensive

genomic analyses of WD/DDLPS and functional studies are

currently actively exploring additional targets.

Among the recurrently amplified genes in WD/DDLPS,

HMGA2 deserves deeper investigation. In addition to its role as

an oncoprotein associated with aberrant expression in several

tumor types, HMGA2 promotes a cancer stem cell phenotype,

chemoresistance, and is involved in adipogenesis at the clonal

expansion step from preadipocytes to adipocytes (103–107).

HMGA2 transcript is overexpressed, or implicated in gene

fusions, in DDLPS significantly more frequently than in their

paired WDLPS samples (7). Efforts to identify HMGA2 inhibitors

are ongoing (108, 109). Nonetheless, high levels of MDM2

concurrent with low HMGA2 amplification did correlate with low

overall survival (110). The severe DDLPS rhabdomioblastic variant

may harbor low HMGA2 amplification, which may have

therapeutic implications as a lower expression of HMGA2 may

result in higher drug sensitivity (98). In-depth investigation on the

role of genetic alterations of HMGA2, and its relation with other

players in DDLPS oncogenesis/progression, is needed to decipher

its therapeutic relevance.

Recent insights into the WD/DDLPS molecular characteristics

revealed an intrinsic heterogeneity reflecting early dedifferentiation

and genomic instability. Although the mechanisms underlying

dedifferentiation are not fully understood, additional genetic

alterations, beyond already knew gene amplifications, may

provide potential targets. Changes associated with progression

from WDLPS to DDLPS include rearrangements of several

chromosomal regions. Fusion transcripts appear more frequent in

DDLPS than WDLPS (7) although few information exists about

their association with histologic characteristics. Importantly, some

of them are potentially druggable, such as fusions involving NTRK

or MAP2K6 genes described in case reports (111, 112).

Differentiation therapy may provide new therapeutic

opportunities for DDLPS. Agonists of PPARg, a key effector of

adipogenesis, were shown to be effective inducers of re-

differentiation in LPS preclinical models and clinical samples

(113–115). Currently, while early clinical trials provided mixed

results (116, 117), other trials of PPARg ligands are underway in
LPS patients. PPARg is under the repressive control of the FUS-
CHOP fusion oncogene in mixoid liposarcoma. Interestingly, the

ability of trabectedin to displace FUS-CHOP from its targets

promoters provided the rationale for the clinical evaluation of

the PPARg agonist pioglitazone (115). Although such

differentiating approach appears of particular interest for mixoid
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liposarcoma, the maintenance of the adipocytic program could be

pharmacologically exploited in at least subsets of DDLPS

(73, 118).

Therapeutic progresses in LPS have been hampered by the

disease rarity and the consequent challenge in designing prospective

clinical trials and establishing predictive experimental models. In

recent years, PDX models of WD/DDLPS, recapitulating tumor

histology, biology and genetics, have been developed providing the

opportunity to explore novel therapeutic approaches and relevant

biomarkers (54, 98, 119). Patient-derived cell and xenograft models

represent valuable tools to assess the therapeutic relevance of

molecular alterations that, besides chromosomal amplifications

shared by WDLPS and DDLPS, drive liposarcomagenesis and

disease progression. Integrated “multi-omics” investigation will

contribute to identify novel druggable vulnerabilities and

synthetic lethal drug combinations eventually enhancing the

development of innovative, biology-driven, effective treatments for

WD/DDLPS patients.
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