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Malaria is a public health concern worldwide, and Togo has proven to be no exception.
Effective approaches to provide information on biological insights for disease elimination
are therefore a research priority. Local selection on malaria pathogens is due to multiple
factors including host immunity. We undertook genome-wide analysis of sequence
variation on a sample of 10 Plasmodium falciparum (Pf) clinical isolates from Togo to
identify local-specific signals of selection. Paired-end short-read sequences were mapped
and aligned onto > 95% of the 3D7 Pf reference genome sequence in high fold coverage.
Data on 266 963 single nucleotide polymorphisms were obtained, with average
nucleotide diversity p = 1.79 × 10−3. Both principal component and neighbor-joining
tree analyses showed that the Togo parasites clustered according to their geographic
(Africa) origin. In addition, the average genome-wide diversity of Pf from Togo was much
higher than that from other African samples. Tajima’s D value of the Togo isolates was
−0.56, suggesting evidence of directional selection and/or recent population expansion.
Against this background, within-population analyses identifying loci of balancing and
recent positive selections evidenced that host immunity has been the major selective
agent. Importantly, 87 and 296 parasite antigen genes with Tajima’s D values > 1 and in
the top 1% haplotype scores, respectively, include a significant representation of
membrane proteins at the merozoite stage that invaded red blood cells (RBCs) and
parasitized RBCs surface proteins that play roles in immunoevasion, adhesion, or
org October 2020 | Volume 11 | Article 5526981
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rosetting. This is consistent with expectations that elevated signals of selection due to
allele-specific acquired immunity are likely to operate on antigenic targets. Collectively, our
data suggest a recent expansion of Pf population in Togo and evidence strong host
immune selection on membrane/surface antigens reflected in signals of balancing/positive
selection of important gene loci. Findings from this study provide a fundamental basis to
engage studies for effective malaria control in Togo.
Keywords: Plasmodium falciparum, genomes, balancing selection, directional selection, immunity, Togo
INTRODUCTION

Malaria clinical presentation ensues when Plasmodium parasites
invade and destroy red blood cells (RBCs). Fever and chills occur
at the time of rupture of infected RBCs (iRBCs) containing
merozoites that are freed to invade uninfected RBCs (1, 2).
Failure to receive prompt treatment may lead to dyserythropoietic
anaemia or severe malaria. P. falciparum (Pf) is the most dangerous
malaria parasite because of the high level of mortality with which it
is associated, its widespread resistance to antimalarial medicines,
and its dominance in the world’s most malarious continent, Africa
(3–5).

In Togo, malaria transmission occurs most of each year.
Although decades of control efforts have reduced the disease
burden, the entire country’s population is still at risk of
falciparum malaria infection (6). In addition, challenges in
parasite control would have made the infection a public health
concern and may aggravate the difficulty of treatment. Clinical
spectrum of malaria in Togo usually ranges from asymptomatic
carriage of malaria parasites to a febrile disease that may evolve
into a severe, life-threatening illness, making the infection a
major cause of morbidity and mortality, especially in children
(7, 8). Antimalarial drug resistance (e.g., parasite resistance to
chloroquine or pyrimethamine) has been experienced across
Africa. In early investigations in Togo, clinical and parasitological
therapeutic failure tests of artemether-lumefarine (AL) and
artesunate-amodiaquine (ASAQ) for 3% and 3.8%, respectively,
have been observed (6), and they drew the entire country’s
attention to an eventual resistance to artemisinins. However, in a
recent study, therapeutic efficacy of AL and ASAQ was shown
without delay in the clearance of mutant parasites (9). Pf surface-
exposed proteins are targets of host immune responses, and
repeated exposures to the parasite in endemic areas induce a
slow and gradual development of acquired immunity to clinical
malaria, which is usually evidenced as a decline in the prevalence of
clinical episodes (10, 11). Hence, acquisition of information on
both immunity-related antigens and drug resistance genes for
effective interventions to sustain and drive forward the struggle
against malaria parasite in Togo is therefore a research priority.

Complete sequencing of the Pf genome has boosted post-
genomic studies of malaria (12). It provides fundamental
knowledge for better understanding of the cellular and
molecular mechanisms of infection and immunity to develop
new control methods, including new drugs and vaccines,
improved diagnostics, and effective vector control techniques.
org 2
With rapid development of sequencing technologies (13),
hundreds of falciparum isolate genomic data worldwide had
been investigated and shared by large collaborative initiatives
such as the MalariaGEN Pf Community Project and the Pf3k
Consortium. Application of the genomic approaches in the
analysis of whole genome variations–generated high-density
single nucleotide polymorphisms (SNPs) of the parasite has
mostly focused on vaccine antigen genes and drug-resistant
genes. However, to date, nothing is known on genomes of
malaria isolates in Togo, and this could limit the joint research
with those in other endemic areas in the sub-Saharan Africa region.

In this study, we performed the first whole-genome
sequencing (WGS) of Pf clinical isolates from Togo. With the
aim to contribute to accelerating the pursuit of effective malaria
control, we applied genomic approaches in the analysis of whole
genome variations–generated high-density SNPs to provide
biological insights on target genes, especially those under host
immune selection.
MATERIALS AND METHODS

Sampling Sites and Ethics Statement
Malaria transmission in Togo occurs for most of each year with
seasonal outbreaks (9), and populations are served by health
facilities experienced in the management of malaria cases. For
this study, clinical samples were collected at health centres in
urban areas of Agou-Gadzépé (7°28’01’’ N; 1°55’01’’ E) and
Atakpamé (7°52’87’’ N; 1° 13’05’’ E) in Agou and Ogou
prefectures, respectively, in the Plateaux Region (Figure 1) in
2017 and 2018. Samples collection was made under a study
protocol approved by the Togolese Ministry of Health’s Bioethics
Committee following institutional ethical guidelines by the ethics
committee at National Institute of Parasitic Diseases, Chinese
Centre for Disease Control and Prevention. Informed consent
was obtained from all subjects prior to sample collection.

Genomic Data
For our analyses, genome and annotation data of Pf 3D7 strain
(the most complete whole genome standard reference) from
PlasmoDB database (http://plasmodb.org/plasmo/) (14) were
downloaded. In addition, raw sequences from 62 genome data
of falciparum clinical isolates from Africa [n = 32 (Congo DR,
Gambia, Ghana, Guinea, Malawi, Mali, Nigeria, and Senegal)]
and Asia [n = 30 (Bangladesh, Cambodia, China-Myanmar
October 2020 | Volume 11 | Article 552698
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Border (CMB), Laos, Myanmar, Thailand, and Viet Nam)] were
also referenced (15–17).

Sampling of Malaria Parasites and
Extraction of Genomic DNA
Malaria-naturally exposed subjects who received parasitological
diagnosis using Giemsa-stained thick blood smear microscopy
under 1000x magnification were referred to our study. Whole
blood specimens from subjects who were diagnosed with the
presence of Pf asexual parasitaemia (parasites counted per 200
leukocytes and parasite density calculated as the number of
parasites per microliter by assuming a fixed leukocyte count of
8000 cells/mL of blood) were sampled as dried blood spots
(DBSs) on Whatman FTA cards (GE Healthcare) as
recommended by the manufacturer. Genomic DNA was
extracted [using the QIAGEN DNeasy Blood & Tissue Kit
(Qiagen), according to the manufacturer’s instructions] from
DBSs and monospecies infection was confirmed by polymerase
chain reaction (PCR). Ten clinical samples with high
parasitaemia (parasite density > 50000/mL), and qualitatively
and quantitatively good enough, were selected to ensure the
integrity of sequencing.

Whole-Genome Sequencing
WGS of Pf clinical isolates from Togo was performed by OE
Biotech (Shanghai). Extracted genomic DNA was sheared into
150 bp fragments using a Covaris instrument. The fragmented
DNA molecules were used to construct Illumina-sequencing
libraries with TruSeq DNA LT Sample Prep Kit (Illumina). All
libraries were sequenced on the Illumina HiSeq X10 platform
according to the manufacturer’s protocol (18), using the direct
sequencing approach, as described previously (17). All reads
were filtered by removing the adapter sequences and low quality
sequences were removed with Trimmomatic-3.0. (19). The
Frontiers in Immunology | www.frontiersin.org 3
sequencing reads have been submitted to the Short Read
Archive of the National Centre for Biotechnology Information.

Identification of SNPs and Population
Structure
All sequenced reads from the 10 samples were mapped to the Pf
3D7 genome using Burrows-Wheeler Aligner and Sequence
Alignment/Map (SAMtools-1.3) (20). Samples with average
coverage < 95% sequences mapping over 3D7 reference genome
were removed. For high-quality SNP calling, sequencing reads
were genotyped using an in-house pipeline based on GATK best
practices and SnpEff workflows (21), with Pf3K known-sites (15).

Principal component analysis (PCA) and neighbor-joining
were performed to investigate major geographical division of
population structure. PCA and a neighbor-joining tree of all
samples were undertaken via SPSS-Ver25 and Mega-Ver6.0
programs, respectively, to compare Pf SNPs from Togo isolates
with those from the 62 isolates collected worldwide (15–17).

Tests for Signatures of Selection
For SNPs in all populations, nucleotide diversity (p) was
estimated for the whole genome mutation rate in 4 kb sliding
window and 2 kb step across each chromosome in Arlequin-
Ver3.5 (22). To distinguish between genes evolving neutrally and
under selective pressures, or genetic hitchhiking, Tajima’s D
value (TD) for each sliding window and the corresponding
gene was also calculated.

In addition, long-range haplotype diversity approach
integrated haplotype score (iHS) was employed to identify
genes under recent positive selection. iHS compares integrated
extended-haplotype homozygosity (EHH) values between alleles
at a given SNP (23). iHS computation was based on the Togo
clinical isolates by tracking the decay of haplotype homozygosity
for both the ancestral and derived haplotypes extending from
FIGURE 1 | Sampling location in Togo and information about clinical samples used in this study.
October 2020 | Volume 11 | Article 552698
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every SNP site (24). For this test, we restricted the analyses to
SNPs with inferred ancestral states with minor allele frequencies
equal to or higher than 5% (25). iHS scores were estimated using
Selscan-Ver1.10a (26).

To assess whether genes associated with putative functions
were enriched among the group of genes with high Tajima’s D
values (> 1.0) or high |iHS| (top 1% score), gene ontology (GO)
term analysis was conducted. Genes with a TD > 1.0 were classed
as genes of potential interest for GO analysis. Analysis was
performed using GO Enrichment tool of PlasmoDB (http://
plasmodb.org/plasmo/, PlasmoDB Ver-46). The adjusted P
values were also generated from Fisher’s exact test, and the
statistical significance was set for P < 0.05.
RESULTS

Genetic Diversity of Falciparum Isolates
From Togo
We used a direct sequencing approach that requires only high
parasitaemia for malaria parasites without leukocytes filtration
(17) to sequence clinical isolates of Pf genomes from Togo.
Among the 10 clinical samples that were sequenced, results of
seven were good enough and provided enough coverage (> 95%
sequences mapping over the 3D7 reference genome) (Table 1).
The remaining three samples mapped onto only 58.89%, 56.43%,
and 46.83% (unshown data) and failed for further analysis. In
this study, the Togo isolates generated between 55 and 176 M
paired-end reads of 150 bp from each of the samples, globally. All
sequencing reads have been deposited to the National Centre for
Biotechnology Information (NCBI) Short Read Archive (Bio-
Project Accession Number: PRJNA616298). A variable
proportion of reads (3.8–14.2%) from all the isolates were
mapped to the reference and aligned onto at least 95% of the
reference 3D7 strain genome in high fold coverage (7.2–33.9x).

For analysis of polymorphism, a total of 266963 SNPs
common loci were available for analysis after quality filtering
(Table 1). The list of the SNPs for all the isolates is provided in
Supplementary Table 1. Of the 266963 SNPs, excluding the low-
frequency SNPs (103497 SNPs with minor allele frequency <
5%), a total of 163466 SNPs across the seven isolates were
identified and could be mapped to coding sequences. In
addition, SNPs were identified across 4614 genes on 14
chromosomes in the samples and 931 genes had more than
Frontiers in Immunology | www.frontiersin.org 4
five SNPs (Figure 2A). These genes were considered informative
for comparisons of polymorphic nucleotide sites.

Comparison of Genetic Diversity of the
Isolates Among Different Endemic Regions
Overall genome-wide p of Pf clinical isolates from Togo were
estimated at 1.79 × 10−3. However, genetic diversity was lower in
intronic regions but higher in exonic and intergenic regions
(Supplementary Table 1). Supplementary Figure 1 shows the p
map of the isolates across 14 chromosomes. Interestingly, we
observed that Togo samples have genes with higher SNPs,
suggesting a greater genetic diversity than that reported from
other African samples (p = 1.03 × 10−3) (27), but lower than that
of isolates from CMB (p = 2.87 × 10−2) (17).

We then performed PCA and neighbor-joining analyses of all
strains to assess major geographical difference. As part of Africa
isolates, the Togo isolates illustrated a higher discrepancy than
the 3D7 strain genome. Neighbor-joining displayed a tree with
two distinct branches separating two major clades that
correspond to the Asia and Africa geographical groups of
samples (Figure 2B). There was evidence of clear distinction of
the isolates from the two regions, and African isolates displayed
sub-clusters to form two (or three) monophyletic clades.
Furthermore, we found that the outcome from PCA was
similar to that of the neighbor-joining analysis. The major axis
of differentiation (F1) of the PCA distinguished clearly two major
Asia and Africa groups of isolates, which is in accordance with
their geographical origins (Figure 2C). Similar observation was
noted in recent studies on Pf isolates from CMB (17, 28). In
addition, among the Africa samples, Togo samples exhibited
greater genetic diversity than has been reported from other
African regions. The second and third principal components
(F2 and F3) defined a distinct South-Asian cluster and
distinguished the African samples better according to their
locations, where Togo samples were well differentiated from
other African samples (Figure 2D). Furthermore, Togo isolates
were widely separated in our PCA result, suggesting high
diversity of Pf from Togo.

Signatures of Selection in the Isolates
From Togo
We investigated signatures of selection of the parasite in this sub-
Saharan Africa region. TD of the Togo isolates was −0.56 across
the entire genome (Figure 3A), indicating a population history
TABLE 1 | Sequencing and mapping summary of Pf genome of seven clinical isolates from Togo.

Samples Ag-022 Ag-087 At-005 At-010 At-017 At-042 At-199

Sequencing and mapping
Number of clean reads 95 290 916 56 567 466 55 109 050 135 016 594 132 741 868 141 629 208 176 447 420
Mapped on Pf 3 796 286 3 414 970 7 700 867 6 078 064 5 761 033 6 713 431 6 615 316
Mapped (%) 4.0 6.1 14.2 4.5 4.4 4.8 3.8
Coverage
Coverage fold 7.2 10.7 33.9 13.1 13.4 13.5 11.8
Genome covered >1 (%) 95.3 97.7 98.7 97.6 98.3 97.8 98.1
Variation
Filtered SNP 26 091 35 139 57 129 37 065 37 828 35 653 38 058
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of purifying selection and/or recent population expansion. To
study allele frequency distributions for individual genes, with the
gene transfer format file containing information about gene
structure, we annotated genes and then calculated TD for the
individual genes. Of the 5601 genes analyzed, the TD obtained
were mostly negative (3759 genes, average TD = -0.95). Such
predominantly negative values are consistent with previous
analyses indicating a historical population expansion of Pf in
Africa (29), and it suggests that these genes were under selective
sweep (directional selection) (17, 28, 30). We found 931 genes
that each had at least five SNPs. A list of the top 250 lowest values
for genes with at least one SNP (n = 4614) is provided in
Supplementary Table 2. Against this background, 746/4614
genes (16.2%) had positive TD values (Supplementary Table
3), of which 140 genes had values > 1 (87 genes coding proteins
with known functions), suggesting signals of balancing selection
for these genes (28, 31).

Mean pairwise divergence was higher in a significant
representation of genes that encode membrane proteins
expressed at the merozoite stage that invades RBCs (for
Frontiers in Immunology | www.frontiersin.org 5
example, merozoite surface proteins, MSPs; serine repeat
antigens, SERAs; rhomboid proteases, ROMs; duffy binding-
like merozoite surface proteins, MSPDBLs; rhoptry associated
adhesins, RA) (32, 33), and parasitized RBC surface proteins that
play roles in disease severity—immune evasion, rosetting, or
cytoadherence to microvasculature (repetitive interspersed
family of polypeptides, RIFINs; erythrocyte membrane protein
1, PfEMP1; and subtelomeric variant open reading frames,
STEVORs) (34–37). Importantly, there was evidence of
balancing selection on particular genes including antigen genes
related to RBC invasion, including those with solid balancing
selection (reflected in high TD) [sera5 (TD = 1.42); apical
asparagine-rich protein, aarp (TD = 1.34); ferlin-like protein,
flp (TD=1.29); msp3 (TD = 1.28); and msp7 (TD = 1.08)] (Table
2) and those with TD < 1 [phospholipase, pl; erythrocyte binding
antigen-175, eba175; reticulocyte binding protein 2 homologue a,
rh2a; ra; 6-cysteine protein, pf41; apical membrane antigen 1,
ama1; sera4; glutamate-rich protein, glurp; merozoite TRAP-like
protein,mtrap; rom4; membrane associated erythrocyte binding-
like protein, maebel; rhoptry neck protein 2, ron2; subtilisin-like
A

B D

C

FIGURE 2 | SNPs frequency distribution in samples and genomic relationships among Pf reference strains and Togo isolates. (A) Distribution numbers of genes with
each given number of SNPs in the population sample of seven Pf clinical isolates from Togo. From the 4614 genes analyzed in total from 14 chromosomes, 20.2%
(931/4614) had more than five SNPs. (B) Neighbor-joining tree of Pf constructed from the SNPs occurring in at least half of the samples. Lineages are colored
according to geographic origin. Branch lengths indicate considerable diversity in Pf strains. Annotated branches represent the Togo isolates. (C, D) Principal
component analysis based on common SNP loci in Togo clinical isolates and reference strains. Colors correspond to the geographic origin of the samples, of which
the Togo isolates are highlighted in red. (C) The major fact (F1) of differentiation of the PCA identified clearly the two groups of isolates that clustered according to
their geographic origin. (D) The second and third facts (F2 and F3) defined a distinct South-Asia cluster and distinguished the African samples better according to
their locations.
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protease 1, sub1; and msp1] (Supplementary Table 3). Most of
these antigen genes were reported previously for the balancing
selection (28, 31, 38, 39) and were significantly enriched by GO
analysis (P < 0.0001). Although antigen genes associated with
parasite-mediated immune evasion, adhesion, or rosetting were
found in the positive TD list [13 rifs (PF3D7_1000600,
PF3D7_1254800, PF3D7_0713000, PF3D7_0632100,
PF3D7_1040900, PF3D7_1300400, PF3D7_1254700,
PF3D7_1150300, PF3D7_0808800, PF3D7_0114700,
PF3D7_1101300, PF3D7_1100300, and PF3D7_0401300), three
vars (PF3D7_0302300, PF3D7_1200600, and PF3D7_0601400)
and one stevor (PF3D7_1479900)] (Supplementary Table 3) and
were all highly significantly enriched by GO analysis (P <
0.0001), only the var PF3D7_0302300 is likely under strong
balancing selection (TD = 1.33) (Table 2). Interestingly,
PF3D7_1200600 (TD = 0.57) is the Pf var gene (var2csa)
implicated in pregnancy malaria (34). GO analysis showed
significant drug resistance enrichment for amino acid
transporter aat1 and bifunctional farnesyl/geranylgeranyl
diphosphate synthase fpps/ggpps, which got TD > 1.

Antigenic variation within Pf surface-exposed putative
proteins is a target of host immune selection. Therefore, we
Frontiers in Immunology | www.frontiersin.org 6
applied iHS for all SNPs from Pf isolate genomes to investigate
genome-wide evidence for positive selection (Figure 3B). We
identified all 14 chromosomal regions with loci above the top 5%
value (|iHS| > 1.8157) of the randomly expected distribution
including 646 genes (Supplementary Table 4). Using |iHS| =
2.49223 (top 1% expected distribution) as a strong hits threshold,
we identified 306 genes under significant positive selection
(38, 40), of which 296 had at least five SNPs (Supplementary
Table 5).

This analysis identified the selection signals for important
genes with loci above the top 1% iHS score (|iHS| > 2.49223),
including 10 RBC invasion-related antigen genes [msp1, msp4,
msp7, msp9, ron2, mspdbl1, mspdbl2, ra, sera6, and rom4]
(Supplementary Table 6). From these, msp1, msp7, mspdbl1,
mspdbl2, ra, and sera6 were highly significantly enriched by GO
analysis (P < 0.0001) (Table 3) and have been reported
previously as promising subunit candidates for a malaria
multicomponent vaccine (32, 39, 41). Similarly, 134 genes
implicated in roles for immune evasion, RBCs aggregation, or
cytoadherence to microvasculature (73 rifs, 50 vars, and 12
stevors) were identified (Supplementary Table 7), of which six
rifs, seven vars, and eight stevors (Table 3) were reported
A

B

FIGURE 3 | Genomic map of Pf isolates from Togo. Paired-end short-read sequencing produced high-quality data for a population sample of seven falciparum
clinical isolates from Togo, with genome-wide average mapping depth to the 3D7 reference strain genome. (A) Tajima’s D values map of falciparum clinical isolates
from Togo. Values for all gene SNPs were plotted and arranged according to their chromosomal positions (blue and gold colors indicate consecutive chromosomes
numbered from the smallest upwards). TD for RBC invasion-related antigen genes are shown in enlarged red dyes and those for genes implicated in parasite-
mediate immunoevasion, cytoadhesion, resetting/sequestration, or deformability of RBC/rigidity, are indicated in enlarged green dyes. Pregnancy malaria-related
var2csa is also highlighted (black dye). (B) Top |iHS| hits in Pf isolates from Togo with SNPs minor allele frequency ⩾ 5%. x axis indicates individual chromosomes in
alternating colors of their SNPs; y axis is the value of |iHS|. Plot of genome-wide |iHS| scores shows regions of the genome that have windows of elevated values
with high scoring (top 1% of |iHS| values) for important gene loci highlighted, consistent with the operation of recent positive directional selection. The horizontal lines
represent values of 2.49223 and 1.8157 used to define windows containing SNPs with overlapping regions of EHH.
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previously as targets of acquired immunity and may serve to
prevent severe malaria (42–46). Furthermore, the var2csa that is
implicated in pregnancy placental malaria (34, 47) was also
observed in the top highest haplotype scores. Overall, iHS
values aligned onto those obtained from Tajima’s D analysis.
We also found signals of positive selection in genes that may be
related to drug resistance (n = 8) within the top 1% iHS
Frontiers in Immunology | www.frontiersin.org 7
(Supplementary Table 8). From these, two genes (abc
transporter I family member 1, abcI3 and AP2 domain
transcription factor, apiap2) (Table 3) were significantly
enriched by GO analysis (P < 0.001) and were previously
reported (48, 49). But, no selection signals were observed
around the five known Pf drug resistance genes that include
the chloroquine resistance transporter (crt), multidrug
TABLE 2 | Ten Pf genes with Tajima’s D scores > 1 enriched by GO analysis in Togo isolates.

PlasmoDB accession number Product description Genomic location Tajima’s D

PF3D7_1128400 bifunctional farnesyl/geranylgeranyl diphosphate synthase, FPPS/GGPPS Chr11: 1104216 - 1106505 (-) 1.64955
PF3D7_0207600 serine repeat antigen 5, SERA5 Chr02: 303593 - 307027 (-) 1.42303
PF3D7_0423400 apical asparagine-rich protein, AARP Chr04: 1055665 - 1056318 (+) 1.34164
PF3D7_0302300 erythrocyte membrane protein 1 (PfEMP1), pseudogene Chr03: 125992 - 130,235(-) 1.32775
PF3D7_0806300 ferlin-like protein, putative, FL Chr08: 337902 - 343,254 (-) 1.28799
PF3D7_1035400 merozoite surface protein 3, MSP3 Chr10: 1404195 - 1405259 (+) 1.27765
PF3D7_0201600 PHISTb* domain-containing RESA-like protein 1, PHISTb RLP1 Chr02: 77251 - 78808 (-) 1.25357
PF3D7_0629500 amino acid transporter, AAT1 Chr06: 1213948 - 1216005 (-) 1.16843
PF3D7_1335100 merozoite surface protein 7, MSP7 Chr13: 1419086 - 1420141 (-) 1.07565
PF3D7_0629300 phospholipase, putative, PL Chr13: 1205190 - 1207781 (+) 1.00902
October 2020 | Volume 11 | Ar
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TABLE 3 | List of important Pf top 1% |iHS|-related genes enriched by GO analysis in Togo isolates.

PlasmoDB accession number Product description Genomic location Core SNP position |iHS| TD

RBC invasion
PF3D7_0207500 SERA6 Chr02: 298897 - 302564 (-) 302491 2.61685 -1.26953
PF3D7_0930300 MSP1 Chr09: 1201812 - 1206974 (+) 1202025 2.56848 0.01
PF3D7_1012200 RA Chr10: 470979 - 471933 (+) 471579 4.37817 0.64916
PF3D7_1035700 MSPDBL1 Chr10: 1413200 - 1415293 (+) 1414316 2.90723 -0.38036
PF3D7_1036300 MSPDBL2 Chr10: 1432498 - 1434786 (+) 1434091 3.68371 -0.67735
PF3D7_1335100 MSP7 Chr13: 1419086 - 1420141 (-) 1419448 3.47128 1.07565
Disease severity*
PF3D7_0100200 RIFIN Chr01: 38982 - 40207 (-) 39702 3.16652 -0.84159
PF3D7_0223100 RIFIN Chr02: 904551 - 905775 (+) 905045 2.4995 -0.58835
PF3D7_1040300 RIFIN Chr10: 1609063 - 1610422 (+) 1610067 2.57465 -0.64439
PF3D7_1041100 RIFIN Chr10: 1635596 - 1636779 (+) 1636505 2.76899 -0.93846
PF3D7_1254800 RIFIN Chr12: 2228632 - 2229740 (-) 2229043 2.89538 0.56703
PF3D7_1400600 RIFIN Chr14: 20897 - 22232 (-) 21300 3.23468 -1.60369
PF3D7_0400400 PfEMP1 Chr04: 45555 - 56860 (-) 45589 2.98694 -0.39466
PF3D7_0412700 PfEMP1 Chr04: 561667 - 569342 (-) 567264 2.67708 -1.12228
PF3D7_0425800 PfEMP1 Chr04: 1156423 - 1167821 (+) 1167689 2.92778 -0.69117
PF3D7_0600200 PfEMP1 Chr06: 3503 - 12835 (+) 4675 3.13913 -0.63996
PF3D7_0800300 PfEMP1 Chr08: 40948 - 50939 (+) 47670 2.76534 -1.15258
PF3D7_1100200 PfEMP1 Chr11: 32666 - 42386 (-) 38595 2.62163 -0.78851
PF3D7_1300300 PfEMP1 Chr13: 33959 - 44742 (-) 38488 2.71192 -1.03834
PF3D7_0631900 STEVOR Chr06: 1333013 - 1334035 (+) 1333642 2.61356 -1.48024
PF3D7_0700400 STEVOR Chr07: 36922 - 37927 (-) 37825 2.52706 -0.47579
PF3D7_0732000 STEVOR Chr07: 1385635 - 1386626 (+) 1386482 2.77924 -0.27519
PF3D7_0832600 STEVOR Chr08: 1405835 - 1406999 (-) 1406589 2.84218 -0.41204
PF3D7_0900900 STEVOR Chr09: 55074 - 56081 (-) 55173 2.63821 -0.01639
PF3D7_1040200 STEVOR Chr10: 1605930 - 1606953 (+) 1606790 2.70068 -0.65842
PF3D7_1300900 STEVOR Chr13: 62515 - 63547 (-) 62808 2.96459 -1.13878
PF3D7_1479500 STEVOR Chr14: 3269494 - 3270496 (+) 3270203 2.77831 -0.53876
Pregnancy malaria
PF3D7_0201600 PHISTb RLP1 Chr02: 77251 - 78808 (-) 78077 3.37438 1.25357
PF3D7_1200600* VAR2CSA Chr12: 46788 - 56805 (-) 53438 2.71766 0.57512
Drug resistance
PF3D7_0319700 ABCI3 Chr03: 820708 - 830802 (+) 821301 2.76481 -1.199
PF3D7_0613800 ApiAP2 Chr06: 566139 - 578993 (+) 571916 2.742 -0.280
tic
*Antigen genes implicated in parasite-mediate immune evasion, deformability of RBC/rigidity of iRBC membrane, rosetting/sequestration, and/or cytoadhesion.
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resistance-1 (mdr1), dihydrofolate reductase (dhfr),
dihydropteroate synthase (dhps), and kelch 13 (k13).
DISCUSSION

P. falciparum originated in Africa and spread to other continents
as human migration gradually formed new populations (29). In
this study, both the PCA and neighbor-joining tree analyses
showed that the parasites derived from Togo clustered according
to their geographic origin and distinguished two major clades
that correspond to the Asia and Africa geographical groups of
samples (17, 38). In addition, our data revealed the average
nucleotide diversity of Pf from Togo is much higher than that
from other African samples, but it is lower than the parasite from
the CMB, probably due to the historically different antimalarial
drugs used in that area (17). However, locally varying selection
on pathogens due to differences in host immunity may be the
major factor for the high nucleotide diversity observed in Togo
isolates in comparison to other Africa isolates.

The purpose of the Tajima test is to detect deviation from
neutrality, in other words, to indicate processes such as balancing
selection, selective sweeps, and population expansion. This study
revealed that some particular antigen genes that are related to
RBC invasion and disease severity, and known to be
polymorphic and under balancing selection by host immune
system (31, 39), got TD < 0; suggesting selective sweep
(directional selection) and/or recent population expansion.
Interestingly, previous scans for evidence of positive selection
on Pf have clearly identified loci that have undergone selective
sweeps (38, 49, 50) as well as loci that are apparently under
balancing selection, including those encoding targets of acquired
immunity (31). In addition, some other investigations have
observed multiple genes under recent positive selection by
computation of iHS in other parasite populations (39, 40, 51,
52). Therefore, here, we applied iHS as a complementary analysis
to assess signals of host immune selection.

In Pf isolates from Togo, within genes that are likely under
signals of recent positive selection, host immunity-related antigen
genes have been the major selective agents. In terms of the top
outlier genes (top 1% |iHS| as a strong hits threshold and GO
enrichment analysis), 31 of the 306 genes with known functions
included six RBC invasion-linked antigen genes (msp1, msp7,
mspdbl1, mspdbl2, ra, and sera6) (32, 41) and 22 antigen genes
(six rifs, seven vars, and eight stevors) that are associated with roles
in evasion to host immunity, rosetting or cytoadhesion (35–37),
among which is var2csa, a pregnancy placental malaria-related gene
(34, 47) (Table 3). Potential interest for GO analysis for genes under
balancing selection by host immune system revealed six genes
related to RBC invasion (aarp, flp, msp3, msp7, pl, and sera5)
(32), one var (PF3D7_0302300) associated with pathogenesis (GO:
0009405), and phistb rpl1 that is implicated in placental
cytoadherence to microvasculature (47).

Interestingly, we found that most of the gene family members
with elevated |iHS| are located close to each other on the
chromosome. For example, from three sera genes that are
Frontiers in Immunology | www.frontiersin.org 8
contiguously arranged on chromosome two, sera6 was involved
in the top 1% SNP locus (|iHS| = 2.61685) and the remaining
other two were also included in the 5% iHS list. This was also
observed on chromosome two between mps4 involved in the
top 1% |iHS| (|iHS| = 2.83572) andmsp2 included in the 5% |iHS|
(|iHS| = 2.08998). Following similar observation with eight
serine-repeat antigen genes in P. vivax isolates (25), this could
be explained by the process of positive natural selection
increasing the prevalence of both selected variant as well as of
nearby variants, generating local regions of extended haplotypes.

We identified genes that are likely to have been under
exceptionally strong recent positive selection. Given these genes
encode membrane/surface proteins, they would have been under
high selection from the host immune system as potential selective
targets of host immunity, and this may explain the high iHS scores
that we observed (39, 41, 42). For example, highly elevated |iHS|
associated with the gene encoding the MSP1 antigen was
consistent with that from a previous report on Pf isolates from
Gambia and Guinea, as this gene has a complex pattern of
polymorphism that is likely to result from different selective
processes (38). The MSP1, a core member of band 3 co-ligand
complex during RBC invasion (32), has been validated as one of
the leading blood-stage malaria vaccine antigens with sequences
incorporated in experimental vaccine trials (41). In addition,
highly supported windows of elevated iHS scores were also
observed on chromosomes two and 10, incorporating the sera6
and a cluster of different antigen genes (including ra,mspdbl1, and
mspdbl2), respectively. Similarly, genes under high operation of
positive selection in the Togo isolates include those encoding
known surface antigens such as vars (PF3D7_1100200,
PF3D7_0425800, PF3D7_1300300, and PF3D7_0400400) and
promising targets of immunity that require further studies
[members of rif (PF3D7_0223100, PF3D7_1400600, and
PF3D7_0100200) and stevor (PF3D7_1040200, PF3D7_0631900,
PF3D7_1300900, and PF3D7_0832600) families]. They are known
to bind to cerebral endothelial/RBC surface receptors and have
been identified or reported previously as immune targets that may
serve to prevent severe malaria (43–45, 53, 54).

This analysis failed to detect selection signals for some
important antigen genes such as lsa3, ama1, msp2, msp3,
eba175, or circumsporozoite protein, csp [which have been
entered vaccine-stage development (39, 41)], and rif
(PF3D7_0100400, PF3D7_0401600, or PF3D7_1254800), vars
(PF3D7_1150400, PF3D7_0533100, or PF3D7_0412700), or
stevors (PF3D7_1254100 or PF3D7_0300400), to mention a
few (43, 44, 53, 55), which have been identified or validated as
targets of acquired immunity for vaccine development (39, 42).
The reason could be that iHS may not be suitable for detecting
positive selection for those SNPs that have reached fixation in a
local population (28). Another possible explanation could be that
they may be less targeted by host immunity in Togo subjects,
given malaria transmission intensity and parasite genetic
diversity are known to vary greatly among different parts of
Africa due to variation in rainfall abundance and seasonality
(39). However, immunological investigations using higher
numbers of samples are needed in the future.
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Positively skewed allele frequency distributions indicating the
operation of balancing selection of Pf genes in other parasite
populations have been reported (31, 38, 39, 56). In this study, the
phistb rlp1 encoding PHISTb domain-containing RESA-like
protein 1 at the surface of iRBCs, which was reported
previously as most likely under balancing selection (31, 38),
was also identified. It interacts with VAR2CSA and modulates
knob-associated heat-shock protein 40 expression on the iRBC
surface, and thus may regulate VAR2CSA expression to confer
stable chondroitin sulfate A binding capacity and the parasite’s
cytoadherence (47). The var2csa was also detected among genes
under strong positive selection in the Togo isolates. It encodes a
particular parasite adhesion molecule (PfEMP1) expressed on
the surface of iRBCs for roles in sequestration of Pf-iRBCs in the
placenta, which occurs as a result of its binding to host receptors
such as chondroitin sulphate A. Signals of strong balancing
selection were evident in a similar subset of genes in Togo and
other West Africa isolates. This is consistent with expectations
that balancing selection due to allele frequency-dependent
acquired immune responses is likely to operate on antigenic
targets in Togo subjects (38). Such evidence could lead to studies
for a vaccine to induce antibodies to prevent placental adhesion/
sequestration by reducing the maternal anaemia and infant
deaths that are associated with malaria in pregnancy (34, 39).

Furthermore, we found high |iHS| for two particularly
important antigen genes (msp7 and phistb rlp1), although they
appear to being under balancing selection. The msp7 in
association with msp1, is important in invasion of mature
RBCs and has been reported as a potential target of acquired
immunity (32). Following similar observation with csp gene in
P. knowlesi isolates (30), these genes could be targets of
both balancing and directional selection due to their location
within an elevated window of haplotype homozygosity on
chromosomes, or might have hitchhiked to intermediate allele
frequencies by a linked locus under selection within population-
specific isolates.

Of the eight Pf drug-resistant genes identified within elevated
iHS regions in Togo samples, none of the five known drug
resistance genes (crt, mdr1, dhfr, dhps, and k13) were included,
suggesting that Togo population is not under important
antimalarial drug selection. This is consistent with a recent
study in Togo that has shown therapeutic efficacy of AL and
ASAQ without delay in the clearance of mutant parasites (9).
However, GO analysis for the drug-resistant genes that we
identified by iHS computation within the top 1% |iHS| (abcI3
and apiap2) or with TD > 1 (aat1 and fpps/ggpps) were highly
significantly (P < 0.001) enriched. In addition, our study
suggested additional drug resistance genes under strong
positive selection (Supplementary Table 8), which have been
reported previously (48, 49).
CONCLUSION

This study assessed the first whole-genome sequences of Pf
isolates from Togo. Our results showed that the parasites
derived from Togo clustered according to their geographic
Frontiers in Immunology | www.frontiersin.org 9
origin and suggest greater genetic diversity of Pf isolates in
Togo than seen in other African countries. In addition,
Tajima’s D values were predominantly negative, consistent
with directional selection and/or a history of recent expansion
of Pf population in Togo. Against this background, there was
evidence of balancing and positive selections on particular genes.
Loci showing evidence of recent positive selection and balancing
selection attest that host immunity has been the major selective
agent. This is reflected in a significant representation of genes
that encode membrane proteins expressed at the merozoite stage
that invades RBCs and parasitized RBC surface proteins
implicated in roles for immunoevasion, rosetting, or
cytoadhesion. Our study would contribute with insightful
information on the current epidemiological scenario of malaria
in Togo and provides a fundamental basis to engage studies for
effective malaria control in Togo.
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