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Background: The purpose of the current study was to examine the effectiveness of Matching

Pursuit (MP) algorithm in emotion recognition.

Methods: Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy students

were collected while subjects were listening to emotional music clips. Applying three

dictionaries, including two wavelet packet dictionaries (Coiflet, and Daubechies) and

discrete cosine transform, MP coefficients were extracted from ECG and GSR signals. Next,

some statistical indices were calculated from the MP coefficients. Then, three dimen-

sionality reduction methods, including Principal Component Analysis (PCA), Linear

Discriminant Analysis, and Kernel PCA were applied. The dimensionality reduced features

were fed into the Probabilistic Neural Network in subject-dependent and subject-

independent modes. Emotion classes were described by a two-dimensional emotion

space, including four quadrants of valence and arousal plane, valence based, and arousal

based emotional states.

Results: Using PCA, the highest recognition rate of 100% was achieved for sigma ¼ 0.01 in all

classification schemes. In addition, the classification performance of ECG features was

evidently better than that of GSR features. Similar results were obtained for subject-

dependent emotion classification mode.

Conclusions: An accurate emotion recognition systemwas proposed using MP algorithm and

wavelet dictionaries.
Generally, monitoring and evaluation of Autonomic Nerve

System (ANS) has been performed by physiological measures,

including electrocardiogram (ECG), Galvanic Skin Response

(GSR), Blood Pressure (BP), and respiration rates. Among them,

there is a special attention on the ECG and GSR to evaluate

different pathological and psychophysiological conditions.

The ECG is one of the most informative signals for evaluating
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the electrical activity of the heart and the GSR can provide

enlightening evidences for the assessment of the sweet glands

function as an ANS indicator [1]. Thesemeasures offer simple,

effective, low cost, noninvasive, and continuous recordings.

However; to identify desired patterns associated with the

distinctive mental and physiological states, automatic inter-

pretation is crucial.
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At a glance commentary

Scientific background on the subject

The main goal of this study was to examine the perfor-

mance of an automatic emotion recognition system

based onMatching Pursuit (MP) algorithm using galvanic

skin response (GSR) and electrocardiogram (ECG) time

series.

What this study adds to the field

An accurate emotion recognition system was proposed

using MP algorithm with the maximum recognition rate

of 100%. In addition, the classification performance of

ECG features was better than that of GSR measures.
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Several studies have been conducted to find the relationships

between emotion and ANS function. To address this topic,

Kreibig carried out a review of 134 articles studying emotional

ANS responding in healthy individuals, aswell as the choice of

physiological measures in evaluating ANS reactivity [2]. Sig-

nificant ANS response specificity was concluded in emotion,

especially for some distinct affective states. Earlier, Levenson

also examined the ANS as an indicator for detecting the

occurrence of emotion [3]. In some scientific research, distinct

sympathetic and parasympathetic divisions of the ANS func-

tions has been considered. For example, the sympathetic

activation and vagal deactivation has been demonstrated for

anxiety [4]. However, a greatly diverged autonomic signature

has been reported during the occurrence of emotions [2].

Automated biosignal classification has been an interesting

issue in many fields of medical research, including health and

disease monitoring. Emotion recognition is one of the impor-

tant areas. Several emotion recognition applications have

been demonstrated for human life, including computer games

and entertainments, humanecomputer interfaces, humanoid

robotics, intellectual disabilities, and patient/doctor interac-

tion in some diseases, such as schizophrenia and autism

[5e8]. The importance of emotion recognition has resulted in

the advent of “affective computing”. Many attempts have

been made to develop automatic devices which can manage

the problem of human emotion recognition and interpreta-

tion. Several methodologies have been suggested to improve

the recognition rates. These methodologies comprise the

application of time domain, spectral components, wavelet

transform, and nonlinear analysis.

Dynamic structures of physiological signals and quickly

fluctuation in their patterns recommend their decomposition

over large classes of waveforms. For this purpose, Fourier

Transform (FT) and wavelet analysis have been introduced,

which are not always satisfactory. FT results in a poor

exemplification of functions that are well localized in time. In

addition, in both aforementioned techniques, the signal

transition from their expansion coefficients cannot be easily

detected and identified, because the information may be

diluted over the entire analysis. Wacker and Witte claimed
that among time-frequency methods, Matching Pursuit (MP)

algorithm is a desirable one, as it provides a promising time-

frequency resolution for all frequencies and reduces cross

terms concurrently [9]. In addition, MP is the first processing

procedure which adapts the window length to the local fea-

tures of the examined time series [10,11]. Applying this

method, periodic and transient structures of the signal are

defined parametrically by time span, time occurrence, fre-

quency, amplitude, and phase.

The time-frequency resolution of MP is high, and this

technique has been successfully used in many areas of

biomedical research. Durka and Blinowska studied transients

in sleep Electroencephalogram (EEG) by means of MP algo-

rithm [11]. It has shown that sleep spindles can be localized

with high precision. In addition, their time span and in-

tensities were recognized. The authors claimed that applying

MP technique, different structures in data can be identified

and the spatiotemporal characteristics can be monitored.

Bardonova et al. used MP to detect the frequency changes in

heart signals [12]. The heart cycles were decomposed, and a

relative frequency histogram of the data was calculated. They

showed that frequency changes in the QRS complex of ECG

signals can be analyzed during the experiment using MP

technique. Sommermeyer et al. proposed an algorithm based

on MP to examine photoplethysmographic signals of patients

with sleep disorders [13]. The system offered information

about the central or obstructive sleep apnea. The promising

specificity (>90%) and sensitivity (>95%) were revealed. To

classify ECG features, Pantelopoulos and Bourbakis examined

the effectiveness of the projections of ECG samples onwavelet

packet dictionaries extracted from MP algorithm [14]. Hong-

xin et al. employed MP with Gabor dictionary to compress

EEG and ECG signals [15]. Genetic algorithm was also imple-

mented to reduce computational complexity. By applying the

proposed algorithm, a higher compression ratio and lower

reconstruction errors have been achieved compared to the

traditional methods. It has confirmed that theMP technique is

a suitable tool for studying the nonstationary physiological

signals.

In the current study, the performance of MP on GSR and

ECG time series was assessed. Special emphasis was put on

the emotional responses elicited by music.

Considering the music as a method intended to stimulate

certain emotions, very few investigations on emotion recog-

nition have been done using intelligent algorithms and clas-

sifiers. Kim and Andre proposed an emotion recognition

system based on four physiological signals, including elec-

tromyogram (EMG), ECG, respiration changes (RSP), and skin

conductivity (SC) [16]. Entropy, time-frequency indices, spec-

tral measures, and geometric analysis were calculated to find

the most relevant features. They performed subject-

dependent and subject-independent classification. For two

above mentioned cases, the maximum classification rates of

95% and 70%were achieved, respectively. Duan et al. assessed

the performance of k nearest neighbor (KNN), support vector

machine (SVM), and least squares in emotion recognition

using EEG signal [17]. After smoothing EEG power spectrum

features, their dimension was reduced by means of minimal

redundancy maximal relevance (MRMR) and principal

component analysis (PCA). The proposed framework resulted

https://doi.org/10.1016/j.bj.2017.11.001
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in the mean accuracy rate of 81.03%. Lin et al. attempted to

discover the association between musical stimuli and EEG

signals [18]. The maximum accuracy of 92.73% was acquired

using 60 features extracted from all EEG frequency bands,

including delta, theta, alpha, beta, and gamma with a tem-

poral resolution of 1 s. Their previous work also revealed that

the alpha power asymmetry could discriminate the categories

of emotion with the average classification rate of 69.7% in five

volunteers [19]. In another investigation, to improve the

classification rate of emotional EEG signals, Lin et al. applied

machine learning algorithms [20]. They showed that some

power spectrum features can be considered as sensitive

measures for characterizing emotional brain dynamics. The

maximum classification rate of 82.29% ± 3.06% was reported.

Naji et al. proposed a novel approach based on forehead bio-

signals (FBS) and ECG to recognize music stimulates emotions

[21]. The mean accuracy of 89.24%, corresponding to recog-

nition rates of 94.86% and 94.06% for valence and arousal di-

mensions, was attained.More recently, for characterizing four

emotions, including engaging, soothing, boring, and annoying

elicited bymusical stimuli, 3 channel FBSwere examined in 25

healthy individuals [22]. The best accuracy rate of 87.05% was

obtained, which is corresponding to the best arousal accuracy

of 93.66% and the best valence accuracy of 93.29%. Using ECG

features in combination with FBS data [23], correct classifica-

tion rates increased to 94.91%, 93.63%, and 88.78% for arousal,

valence, and total classification rates, respectively. Agrafioti

et al. proposed a subject-dependent emotion recognizerwhich

recruited empirical mode decomposition to detect emotion

patterns on ECG [24]. They examined two classification prob-

lems: (1) low, medium, and high arousal, (2) low and high

arousal. Using linear discriminant, a maximum accuracy of

89% was reported. Alzoubi et al. applied ECG, EMG, and GSR

properties to discriminate eight affective states [25]. Several

statistical features were extracted. Two feature selection

methods and nine classifiers were examined. Among them,

KNN and linear Bayes normal classifiers yielded the best

emotion recognition rates. They reported a mean kappa score

of 0.25 for user-dependent mode. In another study, an

emotion recognition system was proposed that considers five

physiological signals, including ECG, GSR, blood volume pulse

(BVP), respiration, and pulse signals [26]. A support vector

regression (SVR) was trained on morphological indices to

discriminate three emotions. The results showed the highest

recognition rate of 89.2%. Jerrita et al. evaluated ECG data of 60

participants in 6 emotional states [27]. After combining the

Hurst features with higher order statistics (HOS), four classi-

fiers were examined. A maximum accuracy of 92.87% was

reported for random validation. However, in a subject-

independent validation mode, the highest recognition rate of

76.45% was achieved. An automatic multiclass arousal/

valence classifier was proposed using standard and nonlinear

features of ECG, GSR, and RSP [28]. A recognition accuracy was

more than 90% using the quadratic discriminant classifier

(QDC). Later, the team proposed a personalized framework to

characterize the emotional states [29]. Features from

the instantaneous spectrum, bispectrum, and the dominant

Lyapunov exponent (LE) were fed to a SVM. An overall accu-

racy of 79.29% was achieved in recognizing four emotional

states.
Due to the importance of emotion recognition and its ap-

plications, it is crucial to further scrutinize and improve the

accuracy of emotion classification system. Therefore, the aim

of the current study was to propose a more accurate system

for affect recognition. To this effect, MP algorithm with three

different dictionaries in combination with some feature se-

lection methods were employed on ECG and GSR signals.

The current study is organized as follows: In section 2, the

data collection protocol is described. In addition, the proposed

methodology is introduced which consists of matching pur-

suit algorithm, feature selection, and classification. The re-

sults are presented in section 3 and the study is concluded in

section 4.
Methods

The emotion recognition framework is shown in Fig. 1.

Briefly, ECG and GSR signals were recorded simultaneously

from 11 subjects while listening to music with different

emotional content (Data Acquisition). Then, applying 3 dic-

tionaries, including Coiflets wavelet (Coif5) at level 14, Dau-

bechies wavelet (db4) at level 8, and discrete cosine transform

(DCT), matching pursuit coefficients were calculated from the

normalized GSR and ECG signals (Feature Extraction). After

extracting some statistical features (Indices), different

dimensionality reduction methods were evaluated to

decrease the computational costs, the risk of curse of

dimensionality, and to remove redundant features. Finally,

the feature vector was fed to a probabilistic neural network

(PNN).

Data acquisition

GSR and ECG signals of 11 college students (females; mean

age: 22.73 ± 1.68 years) were collected. All participants were

asked to read and sign a consent form if they agreed to take

part in the experiment. The privacy rights of human subjects

were always observed and the experiment was conducted in

accordance with the ethical principles of the Helsinki Decla-

ration [30].

To describe emotions, one of the most commonly used

approaches is a dimensional model of emotion in which a few

independent dimensions are considered on discrete or

continuous scales. In this approach, two dimensions are

usually chosen, namely arousal and valence. In the current

protocol, emotional states in all four quadrants of valence and

arousal dimensions were selected. As a result, peacefulness

(low arousal and positive valence), happiness (high arousal

and positive valence), sadness (low arousal and negative

valence), and scary (high arousal and negative valence) were

chosen as emotion classes. Fifty six short musical excerpts

(fourteen stimuli per each emotional category) were selected,

which validated by Vieillard et al. [31] They were recorded in a

piano timbre.

The music blocks were presented in a random order. The

subjects were instructed to put on the headphones, lie down

in a supine position, and try to remain still during data

acquisition. The initial baselinemeasurement was carried out

for 2 min with eyes closed followed by about 15 min of

https://doi.org/10.1016/j.bj.2017.11.001
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Fig. 2 Protocol description.

Fig. 1 Proposed methodology.
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emotional music. All tests were done in a controlled temper-

ature and light, as well as at specific times of the day (9 AMe13

PM). The average temperature of the room was about 23 �C.
Musical pieces were presented at a comfortable volume using

KMPlayer software. Fig. 2 depicts the protocol description.

After the section, the subjects were asked to fill in the ques-

tionnaire for evaluating the emotional contents of the music.

All signals were collected in Computational Neuroscience

Laboratory using 16 channels PowerLab (manufactured by

ADInstruments). To remove AC power line noise, a digital

notch filter was applied at 50 Hz. The sampling rate was

400 Hz. An example of recorded signals is shown in Fig. 3.

More details about signal acquisition procedure can be found

in the study performed by Goshvarpour et al. [32].
Feature extraction

Matching pursuit
In 1993, MP algorithm was first proposed by Mallat and Zhang

[33]. This technique is a greedy, iterative procedure and is

described as follows:

1. Find the first function (atom) of the chosen dictionary,

which has the largest inner product with the input signal

and provides the best fit to it.

2. Subtract the contribution provided by the selected function

from the signal.

3. Repeat steps 1 and 2 on the remaining residuals until a

satisfactory decomposition of the given signal is provided

in terms of selected function.
Each dictionary consists of functions which exemplify the

structures of the signal. In addition, all dictionary functions

are normalized; therefore, they have an equal chance in the

selection of optimal matching model.

Let x be the given signal and D be the selected dictionary

with functions (atoms)fP. Therefore, it can be written

asD ¼ ffPgP2G. To approximate and decompose x, the MP

technique works iteratively as follows:

x ¼
Xm�1

n¼0

anfPn þ Rmx (1)

where f represents the matched function in the nth iteration,

and P characterizes the precise time and frequency centers,

phase, amplitude, and width. an is the projection (inner

product) of Rnx on fPn.

an ¼ 〈Rnx;fPn〉 (2)

Rmþ1x ¼ Rmx� 〈Rm;fPm〉fPm (3)

https://doi.org/10.1016/j.bj.2017.11.001
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Fig. 3 Example of GSR and ECG signals from one subject.
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where R0x¼x. As mentioned previously, the best atom that

maximizes the inner product of the signal (specified by

equation (2)) should be chosen to minimize equation (3) in

every step. The stop criterion of the MP algorithm is achieved

when either the maximum number of functions or a reason-

able signal approximation has been reached.

GSR and ECG signals have different morphological struc-

tures. Applying MP with given dictionaries, one can distinct

and approximate these structures. Wavelet packets, Gabor

atoms, and cosine packet are some of the waveform dictio-

naries. For wavelet dictionaries, it is crucial to select the

suitable wavelet functions and the number of decomposition

levels. Therefore, first, one should knowwhichwavelet type is

suitable for ECG and GSR signals, and then appropriate dic-

tionary is selected for MP. In other words, if the characteristics

of the selected dictionary matched the data, better results

would be attained.

In the current study, three different dictionaries were

examined, including coif5 at level 14, db4 at level 8, and DCT

dictionary.
Fig. 4 Architecture of the PNN.
Feature selection

A high-dimensional feature space results in computational

costs, the risk of curse of dimensionality, and poor classifi-

cation accuracies. In this study, to extract relevant features,

two traditional linear techniques (LDA and PCA) and one

global nonlinear approach (Kernel PCA) were implemented.

PCA
PCA constructs a linear transformation T with the principal

components (i.e., principal eigenvectors) of the data, in which

the TTcovX�XTis maximized [34]. In this term, covX�X repre-

sents the covariance matrix of the zero mean data X. There-

fore, PCA formulated as (4).

cov y
X�X

¼ ly (4)

where l is principal eigenvalues. The low-dimensional data

representations yi are calculated by mapping onto the linear
basis T, Y ¼ ðX� XÞT. One of the main drawbacks of the PCA

technique is that the covariance matrix size is proportional to

the data-points dimensionality [35].

Linear Discriminant Analysis (LDA)
LDA is a supervised technique, which attempts to find a linear

mappingM thatmaximizes the linear class differentiation in a

low-dimensional space [34]. Consider the within-class scatter

Sw and the between-class scatter Sb, which are defined as (5)

and (6),

Sw ¼
X
c

pc cov
Xc�X

c
(5)

Sb ¼
X
c

cov
X
c

¼ cov
X�X

�Sw (6)

wherecov
Xc�X

c
is the covariance matrix of the zero mean data-

points xi assigned to class c2C. The ratio of the within-class

scatter (Sw) and the between-class scatter (Sb) is optimized

by LDA:

TTSbT
TTSwT

(7)

By solving the generalized eigen problem, this maximiza-

tion can be made as follows:

Sby ¼ lSwy (8)

Kernel PCA
Using a kernel function, the reformulation of traditional linear

PCA is constructed in a high-dimensional space by Kernel PCA

(K-PCA) [36]. As a result, a nonlinearmapping is achieved by K-

PCA. The kernel matrix K of the data-points xi is calculated by

(9):

kij ¼ k
�
xi; xj

�
(9)

where k shows a kernel function [37]. Applying some adjust-

ment, the kernel matrix K is centered.

k0 ¼ k� 1

n
jj0k� 1

n
kjj0 þ 1

n2
ðj0kjÞjj0 (10)

The eigenvectors of the kernel matrix vi have an influence

on the eigenvectors of the covariance matrix ai (which shaped

by k in a high-dimensional space).

ai ¼ 1ffiffiffiffi
li

p yi (11)

https://doi.org/10.1016/j.bj.2017.11.001
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In the covariance matrix, the results of the projection onto

the eigenvectors (i.e., the low-dimensional representation of

data Y) can be measured by:

Y ¼
8<
:

X
j

a1k
�
xj; x

�
;
X
j

a2k
�
xj; x

�
;K;…;

X
j

adk
�
xj; x

�
9=
; (12)

The performance of K-PCA highly depends on the selection

of the kernel function k (the Gaussian, polynomial, and linear)
Table 1 Wilcoxon rank sum test p-values for comparison betw
measures, including ECG and GSR.

Dic Indices ECG, Rest with:

Happiness Sadness Peacefulness Scary

Coif5 min 2 � 10�4 1 � 10�4 8.57 � 10�87 1.48 � 10

mean 0.16 0.51 0.11 0.098

max 0.46 0.039 0.15 0.13

var 3.7 � 10�3 5.20 � 10�8 2.4 � 10�9 7.008 � 1

std 3.7 � 10�3 5.20 � 10�8 2.4 � 10�9 7.008 � 1

db4 min 6.5 � 10�3 2.16 � 10�4 2.62 � 10�4 1.42 � 10

mean 0.12 0.39 0.16 0.26

max 0.51 0.032 0.10 0.22

var 4.2 � 10�3 5.55 � 10�8 3.15 � 10�9 8.25 � 10

std 4.2 � 10�3 5.55 � 10�8 3.15 � 10�9 8.25 � 10

DCT min 0.008 1.3 � 10�3 1.3 � 10�3 1.16 � 10

mean 0.017 0.16 6.2 � 10�3 9.1 � 10�

max 0.50 0.29 0.60 0.98

var 2.9 � 10�3 2.49 � 10�7 1.15 � 10�8 2.26 � 10

std 2.9 � 10�3 2.49 � 10�7 1.15 � 10�8 2.26 � 10

Abbreviation: Dic: Dictionary.

Table 2 Evaluation of the autonomic measures of ECG and GSR
emotional categories.

Dic Feature High arousal
(N)/Low arou

ECG

Coif5 min 1.31 � 10-18*

mean 0.6797

max 0.0015*

var 1.37 � 10-14*

std 1.37 � 10-14*

Tukey hsd post hoc test HA vs. N p < 0.01

HA vs. LA p < 0.0001

LA vs. N p > 0.05

db4 min 2.69 � 10-10

mean 0.2676

max 0.004*

var 4.86 � 10-15*

std 4.86 � 10-15*

Tukey hsd post hoc test HA vs. N p < 0.01

HA vs. LA p < 0.0001

LA vs. N p > 0.05

DCT min 0.003*

mean 0.0193*

max 0.0438*

var 4.32 � 10-11*

std 4.32 � 10-11*

Tukey hsd post hoc test HA vs. N p < 0.01

HA vs. LA p < 0.001

LA vs. N P > 0.05

* indicates the significant differences (p < 0.05).
[37]. Like PCA technique, themain drawback of K-PCA is about

the size of the kernel matrix [35]; which is squared by the

number of the data-points samples.
Classification

Probabilistic neural network
The architecture for this system is demonstrated in Fig. 4 [38].
een emotional states and rest condition of autonomic

GSR, Rest with:

Happiness Sadness Peacefulness Scary
�5 1.57 � 10�290 0 0 0

1.96 � 10�305 0 0 0

4.54 � 10�282 8.93 � 10�264 0 0

0�9 9.37 � 10�117 1.39 � 10�241 2.21 � 10�318 5.31 � 10�280

0�9 9.37 � 10�117 1.39 � 10�241 2.21 � 10�318 5.31 � 10�280

�4 5.97 � 10�282 0 0 0

5.35 � 10�303 0 0 0

3.76 � 10�261 0 6.40 � 10�262 0
�9 8.92 � 10�117 2.26 � 10�318 1.38 � 10�241 5.06 � 10�280

�9 8.92 � 10�117 2.26 � 10�318 1.38 � 10�241 5.06 � 10�280

�4 2.68 � 10�288 0 0 0
3 2.25 � 10�305 0 0 0

1.16 � 10�269 1.48 � 10�267 0 0
�8 1.41 � 10�115 1.51 � 10�241 1.34 � 10�317 5.53 � 10�279

�8 1.41 � 10�115 1.51 � 10�241 1.34 � 10�317 5.53 � 10�279

by means of Freidman test (with Tukey post hoc) on three

(HA)/Neutral
sal (LA) (3A)

Positive valence (PV)/
Neutral (N)/Negative
valence (NV) (3V)

GSR ECG GSR

0* 2.09 � 10-18* 0*

0* 0.6963 0*

6.28 � 10-181* 2.62 � 10-4* 2.18 � 10-170*

8.24 � 10-166* 2.16 � 10-15* 3.24 � 10-182*

8.24 � 10-166* 2.16 � 10-15* 3.24 � 10-182*

p < 0.0001 PV vs. N p < 0.001 p < 0.0001

p < 0.0001 PV vs. NV p < 0.0001 p < 0.0001

p > 0.05 NV vs. N p > 0.05 p > 0.05

0* 1.73 � 10-9* 0*

0* 0.0944 0*

1.12 � 10-163* 0.0039* 4.6 � 10-144*

8.24 � 10-166* 5.2 � 10-15* 3.24 � 10-182*

8.24 � 10-166* 5.2 � 10-15* 3.24 � 10-182*

p < 0.0001 PV vs. N p < 0.01 p < 0.0001

p < 0.0001 PV vs. NV p < 0.0001 p < 0.0001

p > 0.05 NV vs. N p > 0.05 p > 0.05

0* 0.0019* 0*

0* 0.0404* 0*

4.11 � 10-256* 0.163 3.07 � 10-258*

1.08 � 10-164* 9.86 � 10-12* 5.43 � 10-181*

1.08 � 10-164* 9.86 � 10-12* 5.43 � 10-181*

p < 0.0001 PV vs. N p < 0.01 p < 0.0001

p < 0.0001 PV vs. NV p < 0.0001 p < 0.0001

p > 0.05 NV vs. N p > 0.05 p > 0.05

https://doi.org/10.1016/j.bj.2017.11.001
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Fig. 5 Three emotional categories considered in the study: (A) Five classes of emotion (5C), including positive valence and

positive arousal (happiness), positive valence and negative arousal (peacefulness), negative valence and positive arousal

(scary), negative valence and negative arousal (sadness), and rest condition (neutral); (B) Three classes of valence (3V), including

positive valence (peacefulness and happiness), negative valence (scary and sadness), and rest condition (neutral); (C) Three

classes of arousal (3A), including high arousal (happiness and scary), low arousal (peacefulness and sadness), and rest condition

(neutral).

b i om e d i c a l j o u r n a l 4 0 ( 2 0 1 7 ) 3 5 5e3 6 8 361
As shown in Fig. 4, the network consists of three main

parts: (1) input layer, (2) radial basis layer, and (3) competitive

layer. Consider that Q input/target pairs are involved in the

network. For each target vector, K elements are assigned,

where K shows the number of neurons in the second layer.

One element of the target vector is 1 and the others are 0. The

weights of the first layer (IW1,1) are developed by the transpose

of the matrix constructed from the Q training pairs. Then, a

jjDistjj function calculates the closeness between the input

vector and the training set. Its output is multiplied by the bias

and sent to transfer function. An output vector (O1) is pre-

sented which is close to 1, if a target is close to a training

vector. For the second layer weights, LW1,2, the target vector

(T) is assigned. The row related to the certain class of input is 1

and otherwise it is 0. Themultiplication TO1 is obtained by the

sum of the O1 elements to each of the K target classes. Finally,

the compete layer, the second layer transfer function,

assigned a 1 to the largest component of C box target and 0's
elsewhere.
An explanation on PNN is briefly provided as follows:

� Feeding a feature vector into the input layer.

� Determination of the distance between the input and the

weight vector.

� Calculation of the summation of these contributions for

each input class to yield the probability.

� Selection the maximum of these probabilities by a compet-

itive layer and assigned 1 for that class and 0's elsewhere.

One of the crucial steps in the training process of PNN is the

determination of the sigma value (the smoothing parameter),

which can be identified by trial and error.
Results

Studying GSR and ECG signals, the emotional responses of 11

healthy young college students were examined. MP

https://doi.org/10.1016/j.bj.2017.11.001
https://doi.org/10.1016/j.bj.2017.11.001
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coefficients were extracted from the normalized GSR and ECG

signals applying 3 different dictionaries, i.e. Coif5 at level 14,

db4 at level 8, and DCT. In the next stage, some statistical

measures were calculated from the extracted coefficients,

including minimum (min), mean, maximum (max), variance

(var), and standard deviation (std). To determine if there are

any significant differences between the MP coefficients of the

emotional states and rest condition, the nonparametric Wil-

coxon rank sum test was performed. The results of this test

are presented in Table 1.

As shown in Table 1, in most cases, the ECG and GSR

indices differed significantly between emotional states and

rest condition.

Friedman's test was also performed to determine what the

biosignal features are in associated with three emotional

categories (Table 2). In addition, Tukey's honestly significant

difference (hsd) criterion was used to take multiple compari-

son into account.

As shown in Table 2, among all statistical measures

extracted fromMP coefficients of ECG, only themean does not

show significant differences between groups. The smallest p-

values of Freidman test indicated that the most significant

differences among three emotional groups revealed by means

of the GSR measures (Table 2). Post hoc comparison revealed

significant differences between high arousal and neutral as

well as positive valence and neutral for GSR indices (p <
0.0001) and for ECG features (p < 0.001). Furthermore, signifi-

cant differences have been observed between high arousal

and low arousal, and positive valence and negative valence for

both signals (p < 0.0001).

To reduce the dimensionality of the feature space and to

discover an optimal feature subset, LDA, PCA, and K-PCA

methods were performed. After applying the feature selection

methodologies, the obtained features were fed to the PNN.

According to the dimensional structure of emotion, the clas-

sificationwasperformed in: (1) arousal-valencedimension (5C:

happiness, sadness, scary, peacefulness, and rest condition as

a different class); (2) arousal dimension (3A: including positive

arousal, negative arousal, and rest condition); and (3) valence

dimension (3V: including pleasant, unpleasant, and the rest

condition). Fig. 5 illustrates the emotion classes schematically.

Subject-dependent and subject-independent emotion classi-

fication modes were considered.

To evaluate the system performance, the classification

accuracies and error for each category with different sigma

values (0.1, 0.09, 0.08,…, and 0.01) were calculated in a subject-

independent mode. The recognition rates for three emotional

groups are presented in Tables 3, 4, and 5 for Coif5, db4, and

DCT, respectively.

According to the results (Tables 3, 4, and 5), it is found that

applying PCA, the performances of the classifier are better

than those achieved by LDA and k-PCA. In addition, the best

recognition rates were achieved for sigma ¼ 0.01, especially

for ECG signals. In this case, the maximum classification rate

of 100% was achieved for all emotional categories (5C, 3V, and

3A).

Among MP dictionaries, better recognition rates were

achieved by means of wavelet pocket dictionaries (Coif5 and

db4).

https://doi.org/10.1016/j.bj.2017.11.001
https://doi.org/10.1016/j.bj.2017.11.001


Table 4 Overall classification accuracies, output error, and elapsed time for PNN and db4 dictionary (subject-independent).

Sigma 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Signal F. S. Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error

5C ECG LDA 62.06 0.30 67.30 0.25 73.38 0.19 80.14 0.14 87.41 0.07 93.63 0.03 97.88 0.008 99.59 0.0002 99.96 0.0004 100 0

PCA 88.54 0.07 92.30 0.04 95.43 0.03 97.57 0.02 98.88 0.006 99.61 0.002 99.89 0.001 99.99 0.0001 100 0 100 0

K-PCA 27.38 0.78 28.30 0.72 29.34 0.67 30.72 0.62 32.91 0.57 36.32 0.51 41.34 0.44 50.11 0.32 64.32 0.22 82.61 0.07

GSR LDA 40.46 0.09 40.93 0.09 41.40 0.1 41.99 0.1 42.94 0.08 44.62 0.02 46.07 0.003 48.57 0.005 52.93 0.02 63.19 0.03

PCA 49.54 0.07 50.06 0.06 50.68 0.05 51.64 0.04 52.74 0.05 54.26 0.06 57.34 0.05 60.96 0.04 67.16 0.02 78.46 0.001

K-PCA 32.94 0.82 34.00 0.82 34.50 0.80 35.06 0.77 36.21 0.60 37.18 0.45 38.34 0.31 38.96 0.11 40.03 0.08 41.80 0.06

3V ECG LDA 51.47 0.22 52.32 0.21 53.17 0.21 54.13 0.20 55.47 0.20 57.56 0.19 61.24 0.18 66.55 0.15 75.56 0.12 91.85 0.03

PCA 88.38 0.06 91.63 0.04 94.60 0.03 96.88 0.01 98.45 0.003 99.54 0.002 99.89 0.0006 99.99 0.0001 100 0 100 0

K-PCA 47.57 0.23 48.07 0.23 49.02 0.23 49.80 0.22 51.15 0.22 53.26 0.21 56.29 0.20 62.01 0.18 71.81 0.14 86.10 0.06

GSR LDA 58.15 0.11 58.87 0.11 59.35 0.10 60.31 0.10 61.24 0.09 62.85 0.08 64.90 0.08 67.93 0.08 72.54 0.06 80.93 0.02

PCA 62.51 0.05 62.82 0.04 63.32 0.04 64.19 0.04 65.06 0.04 66.34 0.04 68.58 0.04 71.51 0.04 76.10 0.03 84.36 0.01

K-PCA 49.93 0.06 49.93 0.06 50.29 0.07 50.66 0.06 51.29 0.04 51.75 0.04 52.06 0.04 52.34 0.04 53.07 0.13 55.39 0.003

3A ECG LDA 50.96 0.42 51.55 0.41 52.39 0.39 53.40 0.37 54.84 0.34 57.04 0.31 59.63 0.27 63.97 0.23 72.10 0.17 89.11 0.06

PCA 88.60 0.08 91.75 0.05 94.58 0.04 96.97 0.02 98.62 0.01 99.53 0.002 99.85 0.001 99.99 0.0001 100 0 100 0

K-PCA 47.97 0.53 48.41 0.48 49.27 0.44 50.33 0.40 51.71 0.37 53.49 0.33 56.68 0.30 61.92 0.25 72.07 0.18 86.08 0.08

GSR LDA 58.62 0.07 59.30 0.07 59.93 0.06 60.55 0.07 61.08 0.08 61.82 0.08 62.93 0.08 64.78 0.07 68.08 0.06 76.61 0.03

PCA 63.78 0.09 64.27 0.09 64.77 0.09 65.43 0.08 66.15 0.07 67.35 0.07 69.26 0.08 72.09 0.07 76.66 0.05 84.89 0.02

K-PCA 52.58 0.43 52.78 0.43 52.92 0.43 53.00 0.42 53.01 0.43 53.34 0.42 53.59 0.42 54.17 0.35 56.06 0.13 58.23 0.05

Abbreviations: 5C: 5 Classes of Emotions; 3V: 3 Classes of Valence; 3A: 3 Classes of Arousal; K-PCA: Kernel PCA; F. S.: Feature selection; Acc: Accuracy.

Table 5 Overall classification accuracies, output error, and elapsed time for PNN and DCT dictionary (subject-independent).

Sigma 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Signal F. S. Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error Acc (%) Error

5C ECG LDA 48.73 0.47 52.51 0.41 56.97 0.35 62.68 0.28 69.57 0.21 77.89 0.15 87.65 0.07 95.78 0.02 99.46 0.004 100 0

PCA 84.69 0.09 88.85 0.06 92.89 0.04 95.95 0.02 98.12 0.006 99.35 0.002 99.83 0.0009 99.96 0.0001 100 0 100 0

K-PCA 28.11 0.93 28.96 0.85 30.14 0.76 31.15 0.69 33.67 0.62 37.08 0.54 43.03 0.44 52.74 0.31 68.10 0.17 86.17 0.03

GSR LDA 42.85 0.08 43.56 0.08 43.90 0.06 44.69 0.05 44.84 0.03 45.45 0.02 46.08 0.01 47.40 0.04 48.68 0.06 51.91 0.07

PCA 47.60 0.006 48.44 0.02 48.94 0.02 49.31 0.03 50.02 0.03 51.22 0.05 52.80 0.04 55.39 0.05 59.79 0.05 70.43 0.02

K-PCA 32.88 0.82 34.07 0.81 34.46 0.80 35.00 0.76 36.12 0.61 37.19 0.45 38.19 0.32 39.16 0.12 40.16 0.09 41.97 0.06

3V ECG LDA 51.94 0.23 52.58 0.23 53.61 0.22 54.54 0.21 56.08 0.20 58.33 0.18 61.81 0.17 66.53 0.15 74.78 0.11 91.09 0.04

PCA 85.99 0.07 89.33 0.05 92.49 0.04 95.39 0.02 97.62 0.01 99.12 0.003 99.76 0.0008 99.94 0.0002 100 0 100 0

K-PCA 48.31 0.30 48.96 0.27 50.04 0.24 50.88 0.22 52.12 0.20 54.20 0.20 57.75 0.19 63.90 0.17 74.59 0.12 88.74 0.05

GSR LDA 56.90 0.03 57.03 0.03 57.50 0.03 57.84 0.03 58.31 0.02 58.78 0.04 59.49 0.06 60.00 0.08 60.94 0.08 64.16 0.06

PCA 60.86 0.08 61.15 0.07 61.68 0.06 62.42 0.05 62.94 0.04 63.80 0.04 65.67 0.04 67.38 0.05 70.47 0.04 78.33 0.03

K-PCA 49.87 0.06 49.88 0.06 50.29 0.07 50.60 0.07 51.23 0.04 51.79 0.04 52.06 0.04 52.50 0.05 53.32 0.15 55.52 0.003

3A ECG LDA 51.25 0.045 51.80 0.43 52.80 0.4 53.74 0.37 55.46 0.34 57.40 0.30 60.31 0.27 64.83 0.22 72.97 0.16 89.76 0.05

PCA 86.16 0.1 89.33 0.07 92.62 0.05 95.63 0.03 97.80 0.01 99.10 0.003 99.74 0.0007 99.95 0.0002 99.99 0.0001 100 0

K-PCA 48.50 0.47 48.81 0.45 49.30 0.42 50.01 0.4 51.38 0.38 53.60 0.34 57.59 0.29 63.93 0.24 74.99 0.15 88.93 0.05

GSR LDA 57.36 0.14 57.72 0.14 58.86 0.13 59.57 0.12 60.41 0.10 61.09 0.1 61.52 0.1 62.15 0.10 62.60 0.09 64.49 0.07

PCA 63.02 0.1 63.31 0.1 63.78 0.09 64.16 0.09 64.70 0.09 65.18 0.09 66.30 0.08 67.96 0.07 71.40 0.08 78.89 0.05

K-PCA 52.56 0.44 52.75 0.43 52.92 0.43 53.00 0.43 53.01 0.43 53.29 0.42 53.51 0.42 54.34 0.35 57.44 0.16 58.49 0.05

Abbreviations: 5C: 5 Classes of Emotions; 3V: 3 Classes of Valence; 3A: 3 Classes of Arousal; K-PCA: Kernel PCA; F. S.: Feature selection; Acc: Accuracy.
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Fig. 6 Total emotion recognition rates for DCT, db4, and Coif5

dictionaries for sigma ¼ 0.01. The outliers are plotted

individually using the 'þ' symbol (an outlier is an observation

that is numerically distant from the rest of the data).
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To evaluate the performance of three dictionaries more

easily, a graphical representation was provided for best PNN

structure (sigma ¼ 0.01). Fig. 6 summarizes the classification

accuracies for DCT, db4, and Coif5 dictionaries.

As shown in Fig. 6, higher emotion recognition rates with

lower variation were achieved for wavelet packet dictionaries.

The performance of feature selection techniques has been

demonstrated schematically in Fig. 7.
Fig. 7 Emotion recognition rates applying K-PCA, LDA, and PCA m

(sigma ¼ 0.01), y-axis shows recognition rates.
Applying PCA, the maximum accuracy of 100% was

reached for ECG signals in all emotion classes and all dictio-

naries. In addition, K-PCA showed lower emotion recognition

rates compared to PCA and LDA.

As the emotional performance includes a subjective,

conscious experience, a subject-dependent classification was

also examined. In this case, classification was performedwith

PNN (for sigma¼ 0.01, which resulted in the best classification

rates in subject-independent mode) for the extracted features

of every subject. Since the best results were achieved using

PCA in a subject-independent fashion, we have applied this

method for the evaluation of subject-dependent mode. Tables

6, 7, and 8 summarize the classification performances for

Coif5, db4, and DCT, respectively, where classification is

subject-dependent.

Using ECG parameters, the average classification rate is

100% for all MP dictionaries and all emotional classes (3A, 3V,

and 5C). For GSR parameters, the mean accuracy rates of

94.48%, 94.55%, and 92.52% were achieved for 3A, 3V, and 5C

using Coif5. Using db4, the average classification perfor-

mances were 94.75%, 94.63%, and 92.58%. Using DCT, the

mean accuracies were 92.49%, 92.78%, and 89.8%, corre-

spondingly. Again, mean emotion recognition rates were

higher for wavelet packet dictionaries than that of DCT.
Discussion and conclusions

The current study was aimed to offer a new methodology for

emotion recognition based on ECG and GSR signals. After
ethods on ECG and GSR using different MP dictionaries

https://doi.org/10.1016/j.bj.2017.11.001
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Table 6 Overall classification accuracy, sensitivity, and specificity using PCA and PNN for Coif5 dictionary (subject-
dependent).

3A 3V 5C

Signal Subject Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%)

ECG 1 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100

7 100 100 100 100 100 100 100 100 100

8 100 100 100 100 100 100 100 100 100

9 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100 100

GSR 1 94.84 99.46 99.84 95.24 99.46 99.84 93.34 99.46 99.84

2 95.92 92.43 99.84 96.13 91.89 99.84 94.5 92.43 99.84

3 93.48 99.46 100 94.23 99.46 100 92.46 99.46 100

4 93.14 97.3 99.22 93.34 97.3 99.22 91.24 97.3 99.22

5 99.46 100 100 99.52 100 100 99.39 100 100

6 97.49 100 100 96.94 100 100 95.86 100 100

7 92.93 100 100 95.65 100 100 91.92 100 100

8 89.74 100 100 90.96 100 100 86.89 100 100

9 90.08 100 99.92 85.46 100 99.92 83.9 100 99.92

10 92.53 100 100 93.07 100 100 89.4 100 100

11 99.66 99.46 99.92 99.52 98.92 99.92 99.59 99.46 99.92

Abbreviations: 5C: 5 Classes of Emotions; 3V: 3 Classes of Valence; 3A: 3 Classes of Arousal; Acc: Accuracy; Sen: Sensitivity; Spec: Specificity.

Table 7 Overall classification accuracy, sensitivity, and specificity using PCA and PNN for db4 dictionary (subject-
dependent).

3A 3V 5C

Signal Subject Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%)

ECG 1 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100

7 100 100 100 100 100 100 100 100 100

8 100 100 100 100 100 100 100 100 100

9 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100 100

GSR 1 96.06 100 99.84 95.65 100 99.84 93.95 100 99.84

2 96.06 92.97 99.84 96.33 91.35 99.84 94.84 92.97 99.84

3 93.89 100 100 94.9 100 100 92.32 100 100

4 93.21 98.38 98.91 93.75 98.38 98.91 91.37 98.38 98.91

5 99.05 98.92 100 98.85 98.38 100 98.64 98.92 100

6 97.76 100 100 96.54 100 100 95.86 100 100

7 92.6 100 100 95.38 100 100 91.71 100 100

8 90.9 100 100 91.3 100 100 86.89 100 100

9 90.22 100 100 85.53 100 100 83.77 100 100

10 92.93 100 100 93.27 100 100 89.54 100 100

11 99.52 99.46 99.92 99.39 98.92 99.92 99.46 99.46 99.92

Abbreviations: 5C: 5 Classes of Emotions; 3V: 3 Classes of Valence; 3A: 3 Classes of Arousal; Acc: Accuracy; Sen: Sensitivity; Spec: Specificity.
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collecting GSR and ECG signals of 11 healthy subjects while

listening to some emotional music, an efficient emotion

recognition framework was proposed based on the MP algo-

rithm with wavelet (coif5 at level 14, db4 at level 8) and DCT

dictionaries. In addition, some feature selection techniques

based on traditional linear methodology (LDA and PCA), and
global nonlinear approach (K-PCA) were examined. In a

subject-independent classification, it has shown that our

proposed ECG features outperformed the GSR. Furthermore, it

is verified that wavelet packet dictionaries gave higher clas-

sification rates than DCT dictionary. Considering PCA, the

classification accuracy of 100% was achieved for ECG signal

https://doi.org/10.1016/j.bj.2017.11.001
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Table 8 Overall classification accuracy, sensitivity, and specificity using PCA and PNN for DCT dictionary (subject-
dependent).

3A 3V 5C

Signal Subject Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%)

ECG 1 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100

5 100 100 100 100 100 100 100 100 100

6 100 100 100 100 100 100 100 100 100

7 100 100 100 100 100 100 100 100 100

8 100 100 100 100 100 100 100 100 100

9 100 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100 100

11 100 100 100 100 100 100 100 100 100

GSR 1 91.44 98.38 99.77 92.32 98.38 99.77 88.65 98.38 99.77

2 93 84.32 99.61 94.16 83.24 99.61 91.3 84.86 99.61

3 92.32 99.46 100 93.48 99.46 100 90.56 99.46 100

4 90.29 94.59 98.91 91.17 94.59 98.91 88.04 94.59 98.91

5 97.15 94.05 100 96.88 94.05 100 96.47 94.05 100

6 95.52 98.92 99.77 95.52 98.92 99.77 93.48 98.92 99.77

7 92.19 100 99.92 95.24 100 99.92 90.96 100 99.92

8 85.8 100 100 86.21 100 100 78.94 100 100

9 89.27 99.46 99.77 84.78 99.46 99.77 82.61 99.46 99.77

10 91.64 99.46 99.84 91.92 99.46 99.84 87.84 99.46 99.84

11 98.78 97.84 99.61 98.91 97.84 99.61 98.98 98.92 99.53

Abbreviations: 5C: 5 Classes of Emotions; 3V: 3 Classes of Valence; 3A: 3 Classes of Arousal; Acc: Accuracy; Sen: Sensitivity; Spec: Specificity.
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(sigma ¼ 0.01) in all emotional categories (5C, 3V, and 3A);

whereas, the lowest emotion recognition rates were observed

using K-PCA (Fig. 7). Subject-dependent emotion recognition

scheme indicated the accuracy rate of 100% for ECG charac-

teristics. Compared to the results of previous studies, the ac-

curacy of 100% for discrimination between 5 classes in 11

subjects evidently proved the potential of the proposed

technique.

It is crucial to design and develop an accurate emotion

recognition system. This matter has been challenged by some

researchers who examined different physiological signals and

methods. Table 9 compares the differences between the pro-

posed algorithm and the conventional processing methods in

emotion recognition in terms of number of subjects, number

of emotional classes, type of stimuli, physiological signals,

methodology, and emotion recognition rate.

In the current study, three emotional categories were

adopted, including 5C, 3V, and 3A. The results showed that the

best recognition rates were achieved for sigma ¼ 0.01 in all

emotion categories (5C, 3V and 3A). Using PCA, the mean

classification rate of 100% was reached. The choice of

dimensionality reduction method to provide higher discrimi-

nation rates depends on the implication of feature vector or

data. Totally, there is no rule for feature selection method

which provides higher classification performance. In this

study, the best classification results were achieved by using

ECG parameters in PCA. One of the benefits of PCA is that it is

computationally less expensive than some other feature se-

lection methods like Kernel PCA.

The results of this study confirmed the effectiveness of

matching pursuit algorithm with the wavelet dictionary in

differentiating music-induced emotions using physiological

signals. In addition, the classification performance of ECG
features was higher than that of GSR. These results confirmed

that better results would be obtained if the dictionaries

matched the signal characteristics. Previously, it has shown

that different components of the ANS are activated in emo-

tions. The heart is innervated by both sympathetic and para-

sympathetic nerves systems which speed or slow the heart

rhythm. In contrast, skin response is innervated by sympa-

thetic. In addition, it is easier to get robust ECGwith electrodes

on the hand than GSR from fingers. On the other hand, in this

study, some wavelet mothers like Coif5 have been evaluated.

The major advantage of Coif5 is the complete convergence

properties of it to the ECG. While, the GSR only shows useful

information in a particular frequency range. Therefore, it may

be expected that indices derived from GSR may not as accu-

rate as ECG in emotion recognition based on a 2D emotional

space. This results are in the line with previously reported

articles [39,40]. Seoane et al. showed that ECG is better indi-

cator of emotion than GSR [39]. Lower emotion classification

accuracy has also been reported for GSR than ECG by Pala-

nisamy et al. [40].

Our results also indicated that emotion recognition was

very subjective using GSR features. However, depending on

the MP dictionary, the feasibility of determining emotional

classes was different in terms of valence/arousal di-

mensions. On average, the results supported that valence

was better detectable than arousal. This finding is in the line

with previous achievements on subjective recognition mode

[24]. However, adverse results were reported in some studies

[16].

Based on the physiological characteristics of ECG and GSR,

there are the complex components which involved in the

presentation of emotion or psychological events, respectively.

The performance of GSR is influenced by the sympathetic

https://doi.org/10.1016/j.bj.2017.11.001
https://doi.org/10.1016/j.bj.2017.11.001


Table 9 Comparison between previous achievements on emotion recognition using physiological signals and the result of
this study.

Publication Subjects Number
of classes

Stimuli Signal Method Maximum
Accuracy rate

[13] 3 4 Music ECG, SC, EMG,

and RSP

time/frequency, entropy, geometric

analysis, sub-band spectra, multi-scale

entropy, and extended linear discriminant

analysis as a classifier

70%

[14] 5 2 Music EEG frequency based features and their

combination, SVM, and Linear dynamic

system

81.03%

[17] 26 4 Music EEG frequency domain features 82.29%

[19] 25 4 Music FBS EEG spectrum and time-domain

characteristics of FBS signals

87.05%

[20] 25 4 Music FBS, ECG feature-level fusion and naive-Bayes

decision level fusion

89.24%

[21] 44 2 & 3 Picture &

video game

ECG Hilbert-Huang transform and linear

discriminants

89%

[22] 27 8 AutoTutor ECG, EMG, and GSR Statistical features, k-nearest neighbor

and linear Bayes normal classifiers

Not applicable

[23] 11 3 Movie ECG, GSR, BVP,

respiration, pulse

ReR interval of ECG, GSR, peak of BVP, and

peak

of pulse and SVR

89.2%

[24] 60 6 Audio-visual ECG Hurst, HOS, KNN, Fuzzy KNN 92.87%

[25] 35 5 Picture ECG, GSR, RSP Standard and nonlinear features fed to

QDC

>90%

[26] 30 4 Picture Heart rate instantaneous spectrum, bispectrum, LE,

and SVM

79.29%

This study 11 5 Music ECG, GSR MP, PCA, PNN 100%
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function as well as the performance of ECG is influenced by

both the sympathetic and parasympathetic functions [41]. On

the other hand, sympathetic-linked reactivity has been

associated with emotional arousal and GSR is one of the best

indices of the arousal [42]. Since the proposed system detec-

ted valence more easily, it was expected that the emotional

ANS dynamics through both sympathetic and para-

sympathetic pathways can be acknowledged by ECG

parameters.

The high efficiency of the proposed emotion recognition

system suggests that it can be applied confidently in clinical

use. Since the physiological responses of schizophrenic or

autistic patients may provide information about risk of illness

and recovery, future works should be performed to examine

the implication of the current system on patients with

emotional impairment or disturbance, such as schizophrenia

or autism.
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