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Introduction
A new member of the coronavirus 
family, severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2), has 
been spread throughout the world 
since December 2019.[1] The World 
Health Organization declared this novel 
coronavirus disease (COVID‑19) as a 
pandemic.[2] The limited number of staff 
and equipment in hospitals is one of the 
important issues in pandemic situations.[3] 
The symptoms of infected individuals are 
nonspecific. Patients may develop a 
variety of symptoms such as fever, cough, 
loss of appetite, fatigue, and shortness of 
breath. Mild illness is the outcome of most 
COVID‑19 patients. These low‑risk patients 
can be treated by simple methods and 
home‑based self‑quarantine. However, in 
patients with severe COVID‑19, the disease 
progress to acute respiratory pneumonia and 
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Abstract:
Background: The coronavirus disease  (COVID‑19) pandemic has made a great impact on 
health‑care services. The prognosis of the severity of the disease help reduces mortality by 
prioritizing the allocation of hospital resources. Early mortality prediction of this disease through 
paramount biomarkers is the main aim of this study. Materials and Methods: In this retrospective 
study, a total of 205 confirmed COVID‑19  patients hospitalized from June 2020 to March 2021 
were included. Demographic data, important blood biomarkers levels, and patient outcomes were 
investigated using the machine learning and statistical tools. Results: Random forests, as the best 
model of mortality prediction,  (Matthews correlation coefficient  =  0.514), were employed to find 
the most relevant dataset feature associated with mortality. Aspartate aminotransferase  (AST) and 
blood urea nitrogen  (BUN) were identified as important death‑related features. The decision tree 
method was identified the cutoff value of BUN >47 mg/dL and AST >44 U/L as decision boundaries 
of mortality (sensitivity = 0.4). Data mining results were compared with those obtained through the 
statistical tests. Statistical analyses were also determined these two factors as the most significant 
ones with P values of 4.4 × 10−7 and 1.6 × 10−6, respectively. The demographic trait of age and some 
hematological (thrombocytopenia, increased white blood cell count, neutrophils  [%], RDW‑CV and 
RDW‑SD), and blood serum changes (increased creatinine, potassium, and alanine aminotransferase) 
were also specified as mortality‑related features (P  <  0.05). Conclusions: These results could be 
useful to physicians for the timely detection of COVID‑19  patients with a higher risk of mortality 
and better management of hospital resources.
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syndromes and even death.[4] The mortality 
rate of patients in critical cases is high. It 
is necessary to predict the mortality risk of 
patients to efficiently allocation of hospital 
resources. Early identification of key 
patients will help efficient hospitalization 
in the intensive care unit  (ICU).[5] Several 
biomarkers have been indicated in recent 
researches that can help to and mortality by 
providing crucial information regarding the 
patients’ health status.[6]

Early prediction scoring systems using 
machine learning algorithms have 
been proposed to the classify most 
appropriate discriminatory biomarkers 
determining survival or death 
outcomes in COVID‑19  patients.[7] These 
models categorize patients into low, 
moderate, and high‑risk groups. Self‑reported 
symptoms, computed tomography  (CT) 
scans or chest X‑rays, and hematological 
parameters are input data sources of most 
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models. Routine blood tests are low‑cost and quick. Their 
false results are rare and require low‑resource settings. Some 
research studies have introduced feasible blood test‑based 
biomarkers for the early detection of COVID‑19 cases and 
distinguishing high mortality risk patients.[8] However, few 
proposed machine learning predictive models have been 
applied to these biomarkers. In this study, we analyzed 
the blood test results of 205  patients retrospectively with 
machine learning and statistical tools to identify significant 
markers of mortality risk. The findings obtained through 
this study provide easy‑to‑use predictive biomarkers to 
identify high‑risk COVID‑19  patients. This simple method 
can be exploited as a complement for the detection of 
individuals that require immediate medical attention and 
prioritizing their therapy and hospitalization.

Materials and Methods
Dataset collection

The analyzed dataset includes demographic  (age and 
gender), medical records  (blood test), and definite 
survival outcomes  (survived or deceased) information 
of 205 confirmed COVID‑19  patients collected at 
Emam Hossein Hospital  (Hashtrood, Iran) during June 
2020 − March 2021. The cases of COVID‑19 patients were 
confirmed through the clinical symptoms, polymerase chain 
reaction test, and chest X‑rays results. The data contains 
no missing or uncertain values. The patients consisted of 
112 women  (54.6%) and 93 men  (45.4%), and their ages 
range between 16 and 90  years old. Survival outcomes of 
data are nonnormal containing 28  (13.7%) died instances 
and 177  (86.3%) survived instances. Each patient profile 
contains 20 features related to blood tests  [described in 
more detail in Table 1].

Machine learning prediction classifiers

The data of all features were partitioned into two sets of 
training  (70%) and test  (30%). The final prediction scores 
are the median of ten separate random data splitting. 
Three successful methods for the classification including 
Linear Discriminant Analysis  (LDA), Support Vector 
Machines  (SVM), and Random Forests  (RF)[9] were 
used in this study. These methods were implemented by 
“MASS,”[10] “e1071,”[11] and “RandomForest”[12] packages 
in the R statistical environment, respectively.

The main objective of Discriminant Analysis is a predictive 
equation for better classifying and understanding the 
relationship among the features.[13] The SVM is a machine 
learning algorithm used for regression and classification of 
both linear and nonlinear health care types of research.[14] 
RF is the most commonly used ensemble machine learning 
algorithm. RF generates different decision trees with a 
random subset of features to select optimal split.[15]

The performance of applied methods was tested by 
confusion matrix scores of Matthews correlation coefficient 

(MCC), accuracy, F1 score, sensitivity, specificity. Best 
algorithm selection was based upon the MCC score 
because it considers all the four true positives  (TP), 
true negatives  (TN), false positives  (FP), and false 
negatives  (FN) categories of the confusion matrix.[16] 
The accuracy, F1 score, sensitivity, specificity, and MCC 
formulas are the following:

Accuracy = TP + TN/TP + FN + TN + FP

F1 score = 2× TP/2 × TP + FN + FP

Sensitivity = TP/TP + FN

Specificity = TN/TN + FP

MCC  =  TP  ×  TN‑FP  ×  FN/√  (TP  +  FP) ×  (TP  +  FN) 
× (TN + FP) × (TN + FN)

Aggregate feature rankings

Feature selection reduces the complexity of the 
prediction by selecting the most relevant features of the 
dataset.[17] To investigate the most important features of the 
COVID‑19 patients’ dataset and their ranking the following 
procedure was used: first, the ranking of each feature was 
listed by performing RF feature ranking  (section 2.3.1); 
second, features ranked through employing traditional 
statistics analysis  (section 2.3.2); finally, geometric 
mean (GM) of the ranking numbers were calculated and the 
features were ranked according to GM. The feature with a 
smaller GM was considered the most important feature.[18]

Machine learning analysis

RF statistically  (mean square error accuracy decrease) and 
informatively  (Gini impurity decrease) feature ranking 
methods in R are effective machine learning techniques 
in the context of health informatics. In both methods, the 
more important features are which their removal increases 
accuracy drop more.[19] All feature importance ranks were 
assessed through related commands of the “RandomForest” 
package in the R.

Statistical analysis

Traditional statistical tests were also performed to represent 
the relationship between each feature and mortality by 
P  value score. Statistically, a significant difference was 
defined as a P  <  0.05. First, quantile‑quantile plot[20] 
was drawn to each feature to check their distribution. 
Mann–Whitney U‑test  (or Wilcoxon rank‑sum test)[21] 
to the real‑valued features and the Fisher exact test[22] to 
the binary and feature  (gender) were applied to compare 
the distribution of each feature between the two 
groups  (survived and deceased patients). A  low P value of 
these tests means the strong relationship between analyzed 
features and mortality, while a high P  value means the 
opposite. A  violin plot[23] of significant nondemographic 
data was drawn via the R “ggplot2”[24] package. Finally, 
obtained P value scores were employed to rank the features 
from the most death‑related to the least death‑related.
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Prediction using two most important features

The two most relevant features in the dataset were selected 
to predict mortality upon these two features exclusively. 
Accordingly, classification and regression tree  (CART)[25] 
through the R “rpart”[26] and “rpart. plot”[27] packages. The 
results of this methodology are easy to understand and 
interpret by a biomedical doctor and would be useful in 
critical decision‑making situations. To verify the predictive 
power of this decision tree method, one rule method 
prediction through the R “OneR”[28] package was also 
applied to the two selected features.

Results
Performance evaluation of prediction algorithms using 
all features

The study developed machine learning methods for 
mortality prediction of COVID‑19  patients using the 
patients’ demographic and blood tests believed to be 
involved with the outcomes. The results of three applied 
methods of RF, SVM, and LDA are presented in Table  2. 
The performances of the used models were evaluated using 
a confusion matrix. Prediction results showed that RF 
outperformed all the other methods based on performance 
metrics, while LDA was better than SVM. RF was 
considered as the best model regard correct predicting 

of the majority of deceased patients compared to two 
other algorithms by obtaining the top MCC  (+0.514), 
accuracy (0.887), and specificity.[1] LDA attained the highest 
true positive rate  (sensitivity  =  0.4) and F1‑score  (0.5). 
SVM obtained a very high TN rate (specificity = 1).

Machine learning and biostatics clinical feature ranking

Two ranking methods  (machine learning and statistics) 
showed high similarity in the feature selection. Regarding 
RF feature ranking, which measured the importance of 
each feature with the Mean square error decrease and 
the Gini impurity rankings  [Figure  1], the AST and BUN 
features were detected as the most predictive ones among 
all dataset features  [Table  3]. They were selected as top 
features because they both occupy the first and second 
positions in both the RF ranking methods and their removal 

Table 1: Blood test features with the measurement units, and their related minimum, maximum, and median values in 
survived or deceased groups of patients

Feature (measurement) Deceased Survived
Minimum Maximum Median Minimum Maximum Median

WBC (cell per microliter) 3200 55,200 9700 1600 30,400 6300
HGB (grams per deciliter) 5.8 18.7 13.45 5.3 18.9 13.4
MCV (femtoliters) 77.7 99.6 87.8 59.6 133.3 85.4
MCH (picograms per cell) 23.4 33.3 28.3 16.7 39.2 28.5
PLT (cell per microliter) 31,600 337,000 153,500 37,000 535,000 192,000
LYM (cell count percent) 3.7 68.7 12.4 3.8 58 16.06
NEUT (cell count percent) 54.2 94.7 81.34 38.4 95.3 74.3
RDW‑SD (femtolitre) 17 64.7 46.63 16.09 81.2 44.5
RDW‑CV (percent) 12.5 20.4 14.25 11.08 22.7 13.1
ESR (millimeter per hour) 2 78 34 1 112 37
BUN (milligrams per deciliter) 8.41 211.4 45.5 5.13 110.28 18.22
Cr (milligrams per deciliter) 0.9 6.74 2.09 0.7 6 1.3
CRP (milligrams per deciliter) 0.3 30 16 0.4 28 15
PTT (s) 28 65 39.5 28 54 37.5
PT (s) 13 32.5 14 13 24.7 13
Na (millimoles per liter) 125 168 133.7 123.7 149.6 135
K (millimoles per liter) 3.2 7.1 4.32 3 5.2 3.87
AST (units per liter) 18 281 54.1 4 188 26
ALT (units per liter) 12 384 30.4 7 126 23
ALP (units per liter) 138 445 247 122 912 237
WBC: White blood cell, HGB: Hemoglobin, MCV: Mean corpuscular volume, MCH: Mean corpuscular hemoglobin, PLT: Platelets, 
LYM: Lymphocyte’s count, NEUT: Neutrophil’s count, RDW‑SD: Red cell distribution width‑standard deviation, RDW‑CV: Red 
cell distribution width‑coefficient of variation, ESR: Erythrocyte sedimentation rate, BUN: Blood urea nitrogen, Cr: Creatinine, 
CRP: C‑reactive protein, PTT: Partial thromboplastin time, PT: Prothrombin time, Na: Sodium, K: Potassium, AST: Aspartate 
aminotransferase, ALT: Alanine aminotransferase, ALP: Alkaline phosphatase

Table 2: Performance results of machine learning 
algorithms using all features

Method MCC Accuracy Specificity Sensitivity F1‑score
RF 0.514* 0.887* 1* 0.3 0.461
LDA 0.449 0.8709 0.96 0.4* 0.500*
SVM 0.416 0.8709 1* 0.2 0.330
*The top results for each score. MCC: Matthews correlation 
coefficient, RF: Random forests, LDA: Linear discriminant 
analysis, SVM: Support vector machines



Zadeh Hosseingholi, et al.: Mortality risk prediction in patients with COVID‑19 infection

4 Advanced Biomedical Research | 2022

from the dataset would influence the prediction results 
more than the removal of the other features.

According to statistical analysis, the normality assumptions 
were not fulfilled. Wilcoxon rank‑sum tests  (continuous 
variables), and Fisher exact test (categorical variables) were 

applied to the dataset to find statistically different features 
between survived and deceased groups, at a significance 
level of 0.05.

Age was identified as a relevant feature to mortality 
(P = 0.0034) among demographic features. The distribution 

Table 3: Aggregate ranking of all features
Final 
rank

Feature MSE decrease in 
accuracy (%)

MSE 
decrease rank

Gini 
impurity

Gini impurity 
rank

Statics 
result (P)

Statics 
rank

1 AST 6.84 1 3.12 2 0.00000044 1
2 BUN 5.98 2 3.92 1 0.0000016 2
3 Cr 3.57 3 2.16 3 0.000018 3
4 K 2.67 4 1.78 5 0.000316 4
5 PTT 2.62 5 1.97 4 0.11 15
6 RDW‑SD −0.93 17 1.77 6 0.00071 6
7 PT 1.67 7 1.33 9 0.01 10
8 PLT 1.07 9 1.38 8 0.03 12
9 RDW‑CV 0.9 11 0.99 17 0.00046 5
10 NEUT −1.37 21 1.61 7 0.0044 8
11 LYM 0.21 13 1.29 10 0.079 13
12 HGB 1.59 8 1.28 11 0.44 20
13 WBC −0.12 15 1.19 15 0.0047 9
14 ESR 1.06 10 1.28 12 0.14 17
15 CRP 2.38 6 0.82 19 0.374 19
16 Age −1.3 20 1.18 16 0.0034 7
17 ALT −0.63 16 1.22 14 0.022 11
18 Na 0.04 14 1.24 13 0.1171 16
19 MCV −1.11 18 0.82 18 0.098 14
20 ALP 0.44 12 0.8 21 0.25 18
21 MCH −1.2 19 0.8 20 0.7317 21
22 Gender −1.79 22 0.13 22 0.84 22
MSE: Mean square error, AST: Aspartate aminotransferase, BUN: Blood urea nitrogen, Cr: Creatinine, K: Potassium, PTT: Partial 
thromboplastin time, RDW‑CV: Red cell distribution width‑coefficient of variation, PT: Prothrombin time, PLT: Platelets, RDW‑SD: Red 
cell distribution width‑standard deviation, NEUT: Neutrophil’s count, LYM: Lymphocyte’s count, HGB: Hemoglobin, WBC: White blood 
cell, ESR: Erythrocyte sedimentation rate, CRP: C‑reactive protein, ALT: Alanine aminotransferase, Na: Sodium, MCV: Mean corpuscular 
volume, ALP: Alkaline phosphatase, MCH: Mean corpuscular hemoglobin

Figure 1: Random Forests feature selection. The mean square error decrease (left), Gini impurity decrease (right) for each feature removal
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of COVID‑19  patients’ age groups and survival outcomes 
is demonstrated in Figure  2. As it is easy to perceive, 
most patients 36% (74)  were observed in the age range of 
61–75  years old. The highest number of deaths, 25%,[14] 
were seen in patients aged 76–90  years old. As for the 
distribution of the gender of the patients, 14.2% of female 
patients were deceased while 12.9% of them died. The 
Fisher exact test indicated that the two variables of gender 
and patient mortality are independent (P = 0.84).

In this study WBC, PLT, NEUT, RDW‑SD, RDW‑CV, BUN, 
Cr, PT, K, AST, and ALT were identified as significant 
blood biomarkers between survived and deceased groups. 
Violin plots reporting the relative distribution of significant 
blood features are shown in Figure 3.

Ranking the features according to their P  values detected 
AST and BUN as the most significant features [Table 3].

Two selected features‑based prediction

The capability of machine learning in the precise prediction 
of patients’ mortality using the top two ranked features 
alone was evaluated by CART decision tree and one rule 
algorithms. One rule method was also applied to prove 
the obtained results  [Table  4]. As shown, results showed 
high MCC prediction scores  (0.53  0.44), confirming the 
importance of AST and BUN in the dataset. Decision 
tree plot analysis by “rpat.plot” also determined that 
the mortality risk of patients with BUN  >47  mg/dL and 
AST >44 U/L is 50%.

Discussion
Health systems have encountered the problem in the 
efficient allocation of hospital facilities to patients in the 
COVID‑19 pandemic duration. Machine learning helps 
to timely analysis, identify hidden patterns, and compute 
rankings of factors in the dataset. Therefore, researchers 
take advantage of these methods to analyze the health 
records of COVID‑19  patients and predict mortality risk 
among them.[29]

The study used demographics, blood biomarker 
examination results, and survival information of 
205 COVID‑19  patients to find important features being 
involved in their mortality. Three different algorithms 

(RF, SVM, and LDA) were used. RF was the best 
performer with MCC = 0.514 [Table 2].

Because of the imbalance of the dataset  (86.3% survived 
and 13.7% deceased), the algorithms encounter more 
negative instances during training, and consequently, 
they are more trained to recognize deceased patient data 
during testing. Therefore, the used methods obtained 
better prediction scores on negative elements  (specificity), 
rather than the positive elements  (sensitivity).[30] Applying 
the appropriate evaluation metrics is the solution to 
this problem. MCC  (−1 to  +  1), unlike accuracy, is an 
appropriate metric in the imbalanced data context, which 
produces higher scores if the classifier predicts the majority 
of positives and negatives correctly. Hence, it was the main 
performance indicator of used methods.[31]

In the second part of the project, the most relevant features 
associated with the mortality of patients were investigated. 
Since RF achieved the best performance results in 
predicting mortality, its feature selection methods were 
used to rank the clinical features of the dataset. Serum 
AST and BUN were the top two most important features 
of the data  [Table  3]. Increased BUN and serum Cr are 
two laboratory tests that indicate kidney injury. Although 
COVID‑19 impacts mainly the lungs, it can also affect 
the kidneys and liver.[32,33] Kidney involvement in severe 
COVID‑19 patients was frequently seen.[34] The association 
of elevated BUN and serum Cr levels with the mortality 
risk of patients was also proven.[35,36]

Table 4: Performance of machine learning algorithms
Method MCC Accuracy Specificity Sensitivity F1‑score
Decision tree 0.53 0.88 0.96 0.5 0.58
One rule 0.44 0.87 0.96 0.4 0.5
MCC: Matthews correlation coefficient

Figure 2: Distribution of age group and survival outcome
Figure 3: The distribution of the significant blood biomarker data among 
healthy survived and deceased groups
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Virus‑mediated liver injuries and increased abnormal 
levels of ALT and AST, as a common laboratory finding 
in severe COVID‑19  patients with unfavorable outcomes, 
were demonstrated in clinical investigations.[7,37‑39] 
Furthermore, the probability of death is high in patients with 
preexisting liver diseases.[33] The elevated concentrations of 
ALT and AST were reported as recurrence risk predictive 
markers in COVID‑19 patients in future.[40]

The statics results demonstrated a high association of age 
with the survival outcome (P = 0.0034).

The relationship between both COVID‑19 fatality and age 
varies notably across the countries because of differences in 
population health and clinical care standards.[41] The results 
of this study indicated the necessity of allocating more 
clinical facilities to patients over  70  years old. It was also 
found that death in younger age groups  (<30  years of age) 
is uncommon with a log‑linear increase in age groups older 
than 30 years. A higher rate of death in individuals with older 
age is previously reported in several kinds of researches.[42] 
Association of age with the death of patients has previously 
been reported by many researchers.[43‑46] The results also 
indicated independence of gender and survival outcome. The 
results of several studies have emphasized that the severity 
and mortality of COVID‑19 are lower in females than in 
males.[47‑49] However, the insignificance of sex in patient 
outcomes has been shown in some earlier researches.[50,51]

The dead patients showed significantly decreased PLT, 
but increased WBC and NEUT, compared with surviving 
patients.[52] Neutrophils eliminate the viral severe lung 
infections by the production of neutrophil extracellular 
traps.[53] It has been proven that increased neutrophil count 
is indicative of severe COVID‑19 disease, the requirement 
to patient transfer to ICU, and increased mortality rate.[54,55] 
Reduced platelet count is another common hematological 
change in COVID‑19  patients. SARS‑CoV‑2 causes 
thrombocytopenia by different mechanisms such as reducing 
platelet production in the bone marrow, increasing platelet 
destruction by the immune system, and its aggregation in 
the lung. The significantly lower number of platelets in 
the severe COVID‑19  cases has been reported as a poor 
prognosis of COVID‑19  patients. Monitoring PLT count 
during hospitalization has been also suggested.[56]

Elevated RDW‑related parameters  (RDW‑CV and 
RDW‑SD) were associated with mortality in this study. 
A  progressive increase of RDW is a prognostic parameter 
in many infectious diseases including COVID‑19 and its 
routine assessment was suggested in patients[57] RDW 
increases associated with a higher mortality rate was 
found.[58,59] The significantly increased plasma K level was 
seen in dead COVID‑19  patients[60] which is in parallel 
with the findings of this study.

Aggregate features ranking  [Table  3], identified AST 
and BUN as the two most relevant features to patients’ 

death. Then CART was trained and tested using these two 
features and all the 324 patients. The decision tree method 
was employed instead of RF in this phase. Because 
combinations of subsets containing only two features were 
not possible in RF. The prediction was re‑examined by 
one rule model, and the performance result was compared. 
Results showed high MCC prediction scores [Table  4]. 
Performance results of these two prediction models were 
very similar because one rule is a simple decision tree 
method based on one splitting.[61] On the imbalanced 
dataset and fewer features, decision trees lead to better 
predictions.[62]

Strong relationships correlations between features are very 
common in clinical datasets. However, tree‑like graph 
models (decision trees, one rule, and RF), because these 
methods are not affected by the statistical correlation 
between features, and therefore, their application to patient 
clinical datasets could be efficient, as in this study.[63]

Conclusions
The results showed the capabilities of machine learning 
methods in the prediction of COVID‑19  patients’ survival 
outcomes based on simple routine blood test parameters. 
The study also demonstrates that COVID‑19  patients with 
increased levels of AST and BUN have little chance of 
surviving. These results suggest that these two informative 
features can be useful for medical doctors to quickly 
quantify the death risk when analyzing the health records 
of COVID‑19  patients and deciding on the allocation of 
hospital facilities.

Limitation

Although the research has reached its aims, there were 
some unavoidable limitations. First, because of the time 
limit, this research was conducted only on a small size of 
the population. Second, our study did not investigate the 
impact of SARS‑CoV‑2 mutations virus over pandemic 
time. Finally, some variation may exist in the results of 
studies across racial groups. Therefore, care should be 
taken in extending the results to patients in other countries.
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