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Abstract
Many protein complexes are densely packed, so proteins within complexes
often interact with several other proteins in the complex. Steric constraints
prevent most proteins from simultaneously binding more than a handful of other
proteins, regardless of the number of proteins in the complex. Because of this,
as complex size increases, several measures of the complex decrease within
protein-protein interaction networks. However, k-connectivity, the number of
vertices or edges that need to be removed in order to disconnect a graph, may
be consistently high for protein complexes. The property of k-connectivity has
been little used previously in the investigation of protein-protein interactions. To
understand the discriminative power of k-connectivity and other topological
measures for identifying unknown protein complexes, we characterized these
properties in known Saccharomyces cerevisiae protein complexes in networks
generated both from highly accurate X-ray crystallography experiments which
give an accurate model of each complex, and also as the complexes appear in
high-throughput yeast 2-hybrid studies in which new complexes may be
discovered. We also computed these properties for appropriate random
subgraphs.We found that clustering coefficient, mutual clustering coefficient,
and k-connectivity are better indicators of known protein complexes than edge
density, degree, or betweenness. This suggests new directions for future
protein complex-finding algorithms.
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            Amendments from Version 1

In Version Two, we have added a paragraph to the Background 
section to clarify the differences between our work and Habibi et al.’s 
previous study of k-connectivity in protein complexes. We have 
also updated the references to include some of our more recently 
published work that is relevant here.

See referee reports

REVISED

Background
Proteins are a critical unit in biology. Rather than performing their 
function alone, many proteins form protein complexes, groups of 
proteins that bind together to perform a specific task. Some of these 
complexes, such as the proteasome, are well-characterized, but 
others are not. In addition, it is hypothesized that there are many 
protein complexes in the cell that have not yet been identified. Com-
plexes play an important role in the function of the cell, and by dis-
covering new complexes and learning more about their composition 
and structure, we can gain insights into cellular biology.

Ever since high-throughput protein-protein interaction data sets 
have become widely available, scientists have used the interac-
tion data to create graphs called protein-protein interaction (PPI) 
networks. The vertices in PPI networks represent proteins, and 
there is an edge between two vertices if the corresponding proteins 
interact. These graphs are not perfect models of protein interaction 
in an organism since the experiments that produced the edges are 
error-prone and contain both false positives and false negatives. 
Despite these errors, however, they are useful tools for studying the 
proteome of an organism.

One use for PPI networks is to predict unknown protein complexes 
from the interaction data. Previous algorithms have used several 
different properties to find complexes. By far the most common 
property has been edge density, the fraction of pairs of nodes (possi-
ble edges) that have an edge connecting them1–7. Most edge density 
algorithms search for subgraphs with edge density above a certain 
threshold1–4. Other properties that have been used include clustering 
coefficient7, degree statistics7,8, maximum flow9, and path length10,11. 
Biological networks have also been examined using the properties 
of mutual clustering coefficient12,13 and betweenness centrality14–17.

The k-connectivity of a graph is a measure of how many distinct 
paths exist between any pair of vertices. A graph or subgraph is 
k-connected if there are k disjoint paths between every pair of nodes, 
or equivalently, if the removal of at least k vertices or edges from 
the graph are required in order to disconnect it. We believe that a 
high k-connectivity may be more indicative of a protein complex 
than other measures, and can serve to identify protein complexes 
even with low edge density. If each protein in the complex binds to 
some number of adjacent proteins, then as the number of proteins 
in the complex increases, the edge density will decrease because 
the maximum number of proteins that a single protein can bind to is 
limited by steric constraints. The k-connectivity, however, will stay 
roughly constant as long as each protein remains bound to roughly 
the same number of neighbors. Also, k-connectivity implies a 

certain degree of stability, and a complex with a high k-connectivity 
might be able to retain its structure and even partial function in the 
event of a mutation that caused an interaction to be lost or for a 
certain protein to be missing altogether.

k-connectivity has only rarely been used in connection with finding 
protein complexes. Habibi et al.18 found that, in mass spectrom-
etry data, k-connectivity was a better indicator of protein com-
plexes than edge density. Hartuv and Shamir19 looked for connected 
subgraphs of n proteins that are n/2-connected; however, because 
their stopping condition is a function of the number of proteins 
in the subgraph, this is closer to a measure of edge density than 
k-connectivity.

In order to test the hypothesis that k-connectivity is a useful indica-
tor of complexes in pairwise interaction data, we examined known 
complexes in the iPFam20 and MIPS21 databases. For each of these 
known complexes, we computed k-connectivity as well as vari-
ous other topological properties, with a particular focus on those 
used in previous complex-finding algorithms: edge density, degree 
statistics, clustering coefficient, mutual clustering coefficient, 
number of triangles and 4-cycles, and betweenness centrality. We 
calculated these statistics in protein interaction graphs represent-
ing complexes. For each complex we used interactions determined 
by low-throughput X-ray crystallography data, where available, as 
well as high throughput yeast 2-hybrid (Y2H) studies. Finally, in 
addition to surveying these topological measures in complexes, we 
compared them to those of random complex-like subgraphs, which 
we call pseudocomplexes, pulled from the PPI network. This allows 
us to assess the utility of each of these statistics for discovering 
unknown protein complexes.

Our study compliments the Habibi et al.18 study in several ways. 
First, we used low throughput X-ray crystallography for data on 
complexes where it was available in order to obtain a “ground truth” 
about interactions in complexes. The information from this ground 
truth data, while only available on a limited number of complexes, 
can give evidence that k-connected subgraphs are an important 
property of complexes independent of the data set in which we are 
looking at them. Second, we used Y2H studies for our high through-
put data rather than mass spectrometry studies used by Habibi et al. 
Our use of a different type of high throughput interaction data can 
offer evidence that the ability of k-connectivity to find complexes 
can be applied more generally rather than being a particular prop-
erty of mass spectrometry data. Y2H data is also better suited for 
network studies due to the fact that it is binary; Y2H assays reveal 
the presence of an interaction between exactly two protein, unlike 
mass spectrometry studies which involve interactions between large 
sets of proteins and can be difficult to translate into the binary inter-
actions required by networks22. Third, we examine a wider variety 
of statistics than the earlier study, which focused exclusively on 
k-connectivity and edge density, which gives a more extensive look 
at various statistics that could be useful in complex-finding, and how 
k-connectivity and edge density both rank among these. Finally, in 
addition to surveying these topological measures in complexes, we 
compared them to those of random complex-like subgraphs, which 
we call pseudocomplexes, pulled from the PPI network. This allows 
us to assess the utility of each of these statistics for discovering 
unknown protein complexes.
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Methods
Data
We obtained details about protein complexes in Saccharomyces 
cerevisiae from two different sources. The first source was iPFam, 
where we were able to obtain data about protein complexes as well 
as which proteins interact within the complex20. These interac-
tions were determined via X-ray crystallography, which, while not 
perfectly accurate, should be considered highly reliable. Unfortu-
nately, only 13 complexes with at least three distinct proteins were 
included in this database. The second source of data on known com-
plexes was the MIPS database21. The MIPS database is far more 
extensive, but only contains the proteins present in the complex, not 
the interactions that occur within the complex.

We obtained pairwise Y2H interaction data from Biogrid and cre-
ated an interaction graph using a composite of all Y2H studies in 
yeast available on Biogrid23. We did not include data from high-
throughput affinity purification-mass spectrometry experiments, as 
did Habibi et al.18, because these experiments are biased towards 
protein complex interactions, and we sought to understand the 
properties of protein complexes and how these differ from a random 
background. To discover new protein complexes, it is appropriate to 
use all available data, as in the Habibi et al. study, but this was not 
our purpose. In addition, we wished to avoid complications from 
representing mass spectrometry interactions, which are not intrinsi-
cally binary, in a binary graph. We used high-throughput Y2H inter-
actions exclusively because they are intrinsically binary, and do not 
suffer from known biases towards interactions within protein com-
plexes. For similar reasons, we did not use the PCA binary interac-
tions from Tarassov24 because that study used known complexes to 
filter the results and therefore would be biased in favor of known 
complexes.

The high-throughput Y2H data set, however, has a high error rate 
and includes both false positives (proteins that don’t interact but 
have been reported to interact in one or more studies) and false 
negatives (proteins that do interact but whose interaction has not 
been reported in a Y2H study). We considered using the Y2H Union 
subset of interactions25, a subset of the interactions with higher con-
fidence, but there aren’t enough interactions in this data set between 
proteins in the same complex to give us meaningful results; only 
25 of the 154 complexes in MIPS induced a connected graph, 
and of those 25, only 4 had more than 3 proteins in the data. This 
was not enough data to give a meaningful picture of complexes, 
so we decided it was better to accept the lower quality but higher 
number of interactions from the composite data set. It is worthwhile 
to discover metrics that would allow us to find protein complexes 
in the abundantly available data. We therefore decided to accept a 
lower specificity and a higher number of false positives in order to 
increase the sensitivity.

In order to avoid confusion, for the remainder of the paper, we will 
refer to the entire collection of proteins and interactions determined 
by Y2H interactions as the “network”. The collection of proteins 
and interactions in a complex will be a “graph” while a subset of 
those interactions will be a “subgraph”.

For the complexes from iPFam, we looked at both the interactions 
determined by the X-ray crystallography on isolated complexes 

and also the graph induced in the Y2H network by the proteins 
determined to be in the complex and all Y2H edges amongst these 
proteins. See Figure 1. The X-ray crystallography data set gives 
us an idea of how complexes might look in a complete and accu-
rate interaction network, while the Y2H data set gives us an idea 
of how complexes look in our real error-prone data. For the com-
plexes from MIPS, we were only able to look at the induced graphs 
from the Y2H data. The code used for calculating the statistics of 
protein complexes can be found at https://github.com/suzanneg/ 
complex-stats.

Graph properties
We assessed the following graph measures:

Edge and vertex k-connectivity. Measures of the number of dis-
tinct paths between any pair of vertices. A graph or subgraph is 
k-edge-connected (k-vertex-connected) if between every pair of 
nodes there are at least k edge-disjoint (intermediate vertex disjoint) 
paths. Equivalently, any k-1 edges (vertices) can be removed from 
the graph without disconnecting it. In the remainder of this paper, 
k-connectivity refers to vertex k-connectivity.

Edge density. The number of interactions (edges) divided by the 
number of possible interactions (pairs of vertices).

Degree statistics. The maximum, minimum, and mean degrees for 
each graph, along with the standard deviation of the mean. In order 
to compare these statistics between complexes with differing num-
bers of proteins, we normalize by dividing the degree statistics by 
the number of vertices in the graph.

Clustering Coefficient (CC). A measure of how many of a vertex’s 
neighbors are neighbors of each other. Over a graph or subgraph, 
clustering coefficient is defined as 3 times the number of triangles 
divided by the number of length 2 paths.

Mutual Clustering Coefficient (MCC). For a pair of vertices, the 
percentage of their neighbors that they share. There are several dif-
ferent ways of defining the mutual clustering coefficient between 
two vertices, but for our purposes, we define it as the number of 
shared neighbors divided by the minimum degree (number of 
neighbors) of the two vertices. This method was the best of the ratio 
methods from Goldberg and Roth13 for assessing confidence in PPI 
networks. We calculate the MCC between all pairs of vertices in a 
complex, and as with degree, we report the maximum, minimum, 
mean, and standard deviation.

Figure 1. The 20S proteasome and the graphs that represent it. 
Image on the left is a surface view of the protein. The graph in the 
middle represents the interactions from the isolated complex (from 
iPFam), while the graph on the right contains the same proteins but 
gets its edges from the Y2H network (from Biogrid).
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Motifs. Particular subgraphs in each complex. We were interested 
in the number of triangles and 4-cycles.

Betweenness centrality. For a vertex, the number of shortest paths 
between all other pairs of vertices that contain that vertex. Again, 
we report the maximum, minimum, mean, and standard devia-
tion. As with the degree statistics, we normalize by dividing by the 
number of vertices in the graph. Because complexes are expected to 
be well-connected, we expect betweenness values to be small.

Subgraphs
For each graph of a complex, we looked at three subgraphs: 1) the 
original graph, which includes vertices representing all proteins 
in the complex; 2) a “haircut” subgraph, where we recursively 
eliminate all vertices of degree 1 or less, ensuring the subgraph 
has a minimum degree of 2 (this is the same as the haircut part of 
the algorithm of Bader and Hogue7); and 3) the subgraph that is 
k-connected for the highest value of k, which we call the most 
highly connected subgraph (MHCS).

We look at these additional subgraphs because we believe that 
several properties will be more discernible in these sub-graphs, so 
that these subgraphs are more likely to be able to be discovered 
by a complex-finding algorithm. The single vertices eliminated by 
the haircut are unlikely to be discovered by any complex-finding 
algorithm, and including them lowers the edge density, clustering 
coefficient, and k-connectivity of the graph, as well as raising the 
betweenness of the adjacent vertex. The MHCS clearly highlights 
k-connectivity, but many other properties are also higher in the 
MHCS than in the original graph.

Assessment
In order to assess the significance of properties in the complexes 
and the Y2H network as a whole, we used two different methods 
of generating random graphs. For the Y2H network, we generated 
networks with the same number of vertices and the same edge dis-
tribution by “switching”. Switching works by choosing two random 
edges with different endpoints, (A,B) and (C,D), removing those 
edges, and replacing them with edges (A,D) and (C,B). We use the 
method recommended by Milo et al.26: for a network with n ver-
tices, the process is repeated 100n times to ensure proper mixing. 
The end result is a random network with the same degree distribu-
tion as the original network27. This process is repeated 10 times, 
giving us 10 random networks for comparison.

A somewhat different method was used to assess the significance of 
the properties of the complexes. Switching would only allow us to 
compare a protein complex graph with another graph of the same 
degree distribution, when what we really want is to compare it to 
other graphs from the Y2H network. Our question is “how likely 
are we to see this result in the actual network where there is not a 
complex?” so we seek graphs that are similar to our complexes. For 
each complex with at least 4 proteins, we found a “matched” graph 
that we call a pseudocomplex. A pseudocomplex P that matches 
a complex with n proteins is generated by taking an edge from a 
random triangle from the Y2H network and letting P

2
 = this edge 

and the two nodes it connects. For i > 2, we generate P
i
 from P

i-1
 

by taking a random edge in the Y2H network attached to P
i-1

 and 

adding the vertex at the other end and all edges from this vertex to 
P

i-1
. Repeat this process until we have the same number of vertices 

as the original complex and let P = P
n
. We chose a random edge 

rather than a random neighbor so that nodes connected by multiple 
edges would be more likely to be chosen, making the final graph 
more “complex-like.” We started with an edge from a triangle rather 
than a random edge for the same reason, because most (though not 
all) complexes contained at least one triangle. Although this bias 
may make pseudocomplexes more likely to contain a triangle than 
real complexes are, we believed it was better to be overly conserva-
tive in this respect. We considered only complexes with at least 4 
proteins because fewer nodes in a connected subgraph require some 
measures to be unreasonably high, and this would skew our com-
parisons. We calculated the same measures for pseudocomplexes as 
we did for the complex graphs, and compared our results with the 
real complexes.

Results
Results on iPFam complexes
There were 35 studies in iPFam that involved complexes with at 
least 3 proteins. Some of these studies were of the same or similar 
complexes; we grouped studies together if they produced the exact 
same graph, i.e. the same proteins with the same set of interactions. 
This grouping gave us 13 distinct graphs. All graphs are illustrated 
in Figure S1 and Figure S2 along with the subgraphs they induced in 
the Y2H data. In some cases, it is possible that two different studies 
of the same complex may have produced different graphs, but we 
will treat all distinct graphs as separate entities. Full statistics for the 
complexes from iPFam are in the Supplementary material; because 
we had interaction data from X-ray crystallography, we were able to 
analyze a reliable graph representation for these complexes.

In all except two cases, the interactions from the X-ray crystal-
lography produced connected graphs. Most complexes were only 
1-connected due to the presence of a small number of degree 1 ver-
tices; in all cases except one, the haircut subgraphs were at least 
2-connected. About half the complexes had a subgraph that was 
at least 3-connected. In general, the edge density could be closely 
correlated with the number of vertices in the complex; complexes 
with only 3 proteins produced cliques while those with 12 or more 
tended to have edge densities closer to 1/3. Clustering coefficients 
had a similar pattern to edge density in that the value was closely 
correlated with the number of vertices in the complex. Mutual clus-
tering coefficients were more scattered, but also tended to decrease 
as the number of vertices increased.

When we look at the iPFam complexes in the Y2H data, we see 
that 9 of the 13 have all of their proteins present, 3 have slightly 
more than 60 percent, and 1 has only 1 out of 4 proteins present. 
Only in one, a complex with 3 proteins, were all of the interac-
tions from the X-ray crystallography present in the Y2H data. With 
the exception of that complex, none of the complexes induced con-
nected graphs, and they all had edge densities of less than 0.1. In 
all except two cases, the haircut produced an empty subgraph. Only 
two complexes had a subgraph that was at least 2-connected. Most 
graphs had clustering coefficients of 0. Average mutual clustering 
coefficients were higher, between 0.14 and 0.63. Comparing these 
results with the results obtained using the X-ray crystallography 
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data set gives an indication of how many interactions have not been 
detected using a Y2H assay and how these false negatives make it 
difficult to detect complexes. Note that, in Figure 1, only 8 of the 
32 edges in the “correct” graph generated by X-ray crystallography 
were also observed in the high-throughput graph generated by Y2H 
experiments.

Results on MIPS complexes
Results on k-connectivity, edge density, clustering coefficient, 
and mutual clustering coefficient are summarized in Figure 2, and 
results for normalized maximum degree and betweenness cen-
trality are summarized in Figure 3. The left-hand graphs contain 
full results on the complexes, while the right-hand graphs contain 

Figure 2. Results on k-connectivity, edge density, clustering coefficient, and mutual clustering coefficient. For each statistic, the graph 
on the left contains the percent of complex graphs, haircut graphs, MHCS, and all connected components that are above a given threshold. 
The graph on the right contains percentages of real complexes and pseudocomplexes that are above the threshold. Note that only complexes 
that had some interactions between their component proteins are included in these graphs.
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comparisons with pseudocomplexes. Note that because at least 4 
proteins are needed to create a pseudocomplex, the real complexes 
on the right-hand side are a subset of the complexes on the left-hand 
side. Full results are contained in the Data Files.

Full results of MIPS protein complex topological survey

8 Data Files 

http://dx.doi.org/10.6084/m9.figshare.729086

The results on k-connectivity are shown at the top of Figure 2. 
The graph on the top left gives results on k-connectivity in the full 
complex graphs, the haircut graphs, the MHCS, and all connected 
components of complexes. From this we can observe that most 
complexes are at most 1-connected, but when degree 1 vertices are 
removed, all complexes not destroyed by this operation (39% of the 
total) are 2-connected. Many complexes also had a subgraph with 
even higher connectivity.

Comparisons between k-connectivity in real complexes and pseu-
docomplexes are shown on the top right of Figure 2. Note that this 
graph, unlike the other graphs comparing complexes and pseudo-
complexes, gives the k-connectivity of the MHCS rather than the 
entire complex or pseudocomplex. This was done because most 
complexes and pseudocomplexes had a k-connectivity of 1. It was 
only looking at the MHCS that the differences between complexes 
and pseudocomplexes became apparent. While roughly the same 
number of complexes and pseudocomplexes had a 2-connected 

subgraph, a far higher percentage of complexes had more highly 
connected subgraphs. Note that pseudocomplexes were designed to 
have, with high probability, a triangle (a 2-connected subgraph).

The remainder of Figure 2 summarizes the results on edge den-
sity, clustering coefficient, and mutual clustering coefficient. From 
the raw edge density values, we can see that the edge density of 
most complexes is nowhere near as high as it would be if com-
plexes were cliques or near-cliques: only about 1 in 10 complexes 
had an edge density above 0.7. In the comparisons with pseudo-
complexes, we see that the edge density of complexes and pseu-
docomplexes is fairly similar, with the density of complexes being 
slightly higher. The difference is less dramatic, however, than it is 
for k-connectivity due to the high standard deviation of the pseu-
docomplexes: the point where the maximum difference between 
known complexes and pseudocomplexes can be seen (the obvious 
cut-off point between real complexes and pseudocomplexes), 0.5, 
was well within a standard deviation of the average for pseudocom-
plexes. The obvious cut-off point for k-connectivity, 3-connected, 
by contrast was more than a standard deviation away from the 
average of the pseudocomplexes. The number of complexes with 
high clustering coefficients was also quite small, but clustering 
coefficients had a far more dramatic contrast with pseudocom-
plexes, especially for lower thresholds. Again, however, there was 
a fairly high deviation among pseudocomplexes. Mutual clustering 
coefficients have higher raw values but much less of a contrast with 
pseudocomplexes. When the deviation of pseudocomplexes is con-
sidered, mutual clustering coefficient does not differentiate from 
complexes as well as k-connectivity.

Figure 3. Results on degree and betweenness. For maximum normalized degree, the graph on the left contains the percent of complex 
graphs, haircut graphs, MHCS, and all connected components that are above a given threshold. The graph on the right contains percentages 
of real complexes and pseudocomplexes that are above the threshold. For maximum betweenness, the graphs show the percent of complexes 
below a threshold. Note that only complexes that had some interactions between their component proteins are included in these graphs.
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There are a few further things to note about clustering coeffi-
cients and mutual clustering coefficients. Clustering coefficients 
were quite high in haircut graphs, but this is somewhat mislead-
ing. The haircut can remove length 2 paths from the graph but can-
not remove any triangles; therefore, we would expect to increase 
clustering coefficient, but this increase would not necessarily help 
us in finding complexes. Average mutual clustering coefficient is 
much higher than clustering coefficient. The reason for this is that 
there are many more 4-cycles than triangles. While triangles are 
overrepresented in the Y2H network as compared to a random net-
work of the same degree distribution produced by switching (4681 
v. 1609.8, 2.9 times as many), 4-cycles are also overrepresented 
(98166 v. 24045.0, 4.1 times as many). The frequencies of triangles 
and 4-cycles relative to random networks has been calculated for a 
previous yeast PPI network, also with the result that both were over-
represented, with 4-cycles also overrepresented by a higher mar-
gin, though this was not stated explicitly28. This pattern does not, 
however, appear to hold completely true for all PPI networks; spe-
cifically, in Drosophila melanogaster, triangles appear to be more 
overrepresented than 4-cycles29.

This pattern also seems to hold in the complex graphs. Neither trian-
gles nor 4-cycles were particularly prevalent in complexes relative 
to pseudocomplexes (which were each seeded within a triangle), 
but 4-cycles were more prevalent than triangles. In 50% of com-
plexes, there were more 4-cycles as compared to matching pseudo-
complexes. However, only 29% of complexes had more triangles 
than their matching pseudocomplexes.

The normalized results for maximum degree and comparisons with 
pseudocomplexes are in Figure 3. In many of the complexes we 
looked at, there was at least one protein of high degree that had an 
interaction with all or almost all of the other proteins in the com-
plex, forming a “star” or a “hub and spoke” in the graph. This has 
been previously suggested by Bader and Hogue as a way to model 
the interactions in complexes that were found experimentally using 
affinity-purification8. However, there are some problems with using 
this idea to search for complexes in the data. The first is that we did 
not notice a strong correlation between proteins with high degree 
and proteins that appear in known complexes; roughly 30% of 
proteins of degree 3 or higher in our data set appeared in at least 
one complex, and this number remained roughly constant as we 
increased the degree threshold until it eventually started decreasing 
due to the limited number of proteins with degrees above 20. The 
second problem is that if we look at the protein in a complex with 
the most interactions with other proteins in that complex, the major-
ity of its interactions in the Y2H data are not within the complex. 
Therefore, the strategy of looking for a protein of high degree and 
taking it and all of its neighbors as a complex seems unlikely to 
produce meaningful results for finding protein complexes in Y2H 
data.

Normalized maximum betweenness is also shown in Figure 3. Note 
that for the panels for maximum betweenness, unlike the others, 
we report the number of complexes that were less than a given 
threshold rather than greater than the threshold. Some graphs did 
not have enough vertices (at least 3 in a connected component) to 
make a valid measure of betweenness; these were not included in 

the statistics. Betweenness statistics are not given for unconnected 
complexes because not all pairs of vertices have paths between 
them. Traditionally, betweenness has been used as a way to divide 
the PPI network into functional modules by identifying edges with 
high betweenness as edges between distinct modules or complexes, 
so it may seem odd that we are looking at betweenness within a 
complex. We expect betweenness values to be low, since we expect 
there to be few if any “bottleneck nodes” in the complex that many 
shortest paths must go through. Although the minimum between-
ness was almost always 0, and average betweenness was relatively 
small, the maximum betweenness varied quite widely, and there 
were some vertices with very high normalized betweenness. Sur-
prisingly, the maximum betweenness tended to be higher in the real 
complexes than in the pseudocomplexes.

Discussion
Data
We used a PPI network whose interactions were determined solely 
by high-throughput Y2H assays. Other binary interaction data sets, 
such as small-scale experimental data and literature curated inter-
actions, were not used in this study due to the fear that they would 
be biased in favor of interactions in known complexes. While these 
interactions would be included in the data set used by an algorithm 
looking for unknown complexes, they should not be included in an 
attempt to learn the properties of complexes and what differentiates 
them from random.

Similarly, we chose not to use non-binary data such as affinity puri-
fication data in this study. While these data again might be used 
in a complex-finding algorithm, the correct way to translate the 
data from these non-binary experiments into the binary interactions 
required by graphs is not completely obvious. The two commonly 
used methods (clique and spoke) produce very different topological 
properties, and neither captures well the underlying biology. There-
fore, we decided to sidestep the issue by using only binary data. 
Future studies may include finding a way to use these data.

As we carried out this analysis, we were always aware of the fact 
that our data are error prone. We must keep in mind that the absence 
of an edge does not mean that there is no interaction. In order to 
see that we have false negatives, we need only look at the com-
plexes with their interactions determined by X-ray crystallography 
and compare them to the interactions of those same proteins in the 
Y2H data (Figure 1 and Figure S1 and Figure S2). Presumably, if 
all “real” interactions had been detected, all of the interactions that 
we see in the X-ray crystallography studies would be present. False 
positives are a more difficult matter to detect. Again, if we com-
pare the X-ray crystallography to the Y2H data, we see edges in the 
Y2H graph that weren’t in the X-ray crystallography. However, we 
cannot simply declare these false positives. It is possible that they 
truly are false positives. It is also possible that while “false” these 
interactions are significant due to the fact that they appear in the 
same complex (e.g. we are incorrectly labeling as a neighbor what 
should actually be the neighbor of a neighbor). Finally, it is possi-
ble that these are true interactions that simply do not appear as part 
of this complex. A recent study suggests that there are many such 
binary interactions and that the false positive rate for Y2H data is 
actually much lower than previously believed30.
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While false positives may cause problems in complex-finding algo-
rithms, our survey suggests that false positives may be less of a 
problem than false negatives. If we had used a cleaner data set, we 
would have had fewer false positives but also fewer true positives, 
and we would have had even more difficulty discerning complexes. 
Even in the data set we used, complexes often did not stand out 
when compared to pseudocomplexes.

While the errors in the Y2H data are noteworthy, we do not feel that 
they represent a weakness in our study. To the contrary, a complex-
finding algorithm would also be working in this same error-prone 
data. While it would be interesting to know how a complex would 
appear in a completely correct network, it is more useful to know 
how it appears in the data we have.

Another point about our data worth noting involves the pseudo-
complexes used for comparison to represent “background” areas 
of the graph. Because the generating algorithm was trying to find 
“complex-like” subgraphs, some of our “pseudocomplexes” may in 
fact be unknown protein complexes. This would skew our results 
somewhat, but generally gives a conservative comparison; some 
unique features of true complexes may not be discovered, but it is 
less likely that noted differences between true complexes and the 
set of “pseudocomplexes” are spurious.

Topological measures
We found that edge density may have been overrated as a property 
of complexes. We found that in Y2H data, the complexes were not 
particularly clique-like and edge densities were nowhere near as 
high as most complex-finding algorithms assumed. For example, 
the algorithm used by King et al.31 looks for complexes with an 
edge density of at least 0.7 with a minimum number of proteins. If 
this algorithm were applied to Y2H binary interaction data (the data 
King et al. used included multiple types of interactions, some of 
which were not binary), our research suggests that such a technique 
would find all of the proteins involved in a complex for just over 
a tenth of known complexes with 3 or more distinct proteins. An 
edge density threshold of 0.7 would find the MHCS of about 60% 
of known complexes, thus finding at least part of the complex, but 
this still leaves more than a third of complexes undetected. Also, on 
average, the edge densities in complexes were only slightly higher 
than the edge densities in the pseudocomplexes, which suggests 
that edge density may produce many false positives as well. There-
fore, while edge density has a role in complex-finding algorithms, 
we would be skeptical of methods that purport to find complexes in 
Y2H data based solely on edge density.

Clustering coefficient has not been as popular a parameter for 
complex-finding algorithms as edge density, but it has long been 
one of the standard tools used to study the PPI network and its 
subgraphs. We found that clustering coefficients in real complexes 
were higher than those from equivalent pseudocomplexes.

Mutual clustering coefficient is another statistic that has not been 
used extensively in complex-finding algorithms, but we believe 
shows promise. Many complexes have high average mutual clus-
tering coefficients as seen in Figure 2, and pseudocomplexes often 
have lower mutual clustering coefficients. An additional reason 

to believe that mutual clustering coefficient may perform well in 
a complex-finding algorithm is that mutual clustering coefficient 
considers 4-cycles as well as triangles in its calculation. As men-
tioned in the results section, we have found that 4-cycles are over-
represented in the Y2H network as a whole, and seem to be even 
more overrepresented in complexes. Both clustering coefficient 
and mutual clustering coefficient seem to have a correlation with 
complexes and would likely have a role in a new complex-finding 
algorithm.

Looking at maximum degree, we can see that many complexes have 
at least one protein with interactions with a high percentage of the 
other proteins in the complex. At the high end, this differentiated 
complexes from pseudocomplexes. However, we were not able to 
correlate proteins of high degree with proteins present in known 
complexes. Also, even among high-degree proteins that were present 
in complexes, the majority of the neighbors of those proteins were 
not co-complexed. For these reasons, we are hesitant to recommend 
degree as an important part of a complex finding algorithm.

Betweenness was one of the statistics that performed the most 
unexpectedly. Vertices of high betweeenness are usually believed to 
be vertices that exist between different biological modules. Under 
that assumption, we would expect all vertices in a complex to have 
low betweenness. However, when we looked at complexes under 
this assumption, we found that most complexes had at least one 
vertex with a higher betweenness than their pseudocomplex coun-
terparts. Therefore, any algorithm that partitioned the network by 
looking for high betweenness vertices would run the risk of divid-
ing complexes. It is possible that betweenness could still be used 
in a complex finding algorithm, but likely not in the way that it has 
been used traditionally.

The k-connectivity of complexes, on the other hand, stood out ver-
sus the k-connectivities of the pseudocomplexes. Our results were 
mixed but promising. Most complexes were only 1-connected, but 
this was due to a small number of degree 1 vertices. When these ver-
tices were removed by the haircut, a 2-connected subgraph usually 
remained, and many complexes had 3-connected or 4-connected 
subgraphs. The presence of 3-connected and 4-connected subgraphs 
is significant; because of the way we generated our pseudocom-
plexes, they were biased towards including a 2-connected subgraph 
(the triangle from which the initial edge was selected), but very 
few had a 3-connected subgraph. Almost none of the pseudocom-
plexes that were designed to mimic the connected complexes had a 
4-connected subgraph.

Another feature that is noteworthy about k-connectivity is that, 
while some of the haircut graphs were empty, none of the others 
had a k-connectivity of 1. Eliminating vertices of degree 1 is not by 
itself enough to guarantee that a non-empty graph will be at least 
2-connected, so this result is significant. It indicates that removing 
all degree 1 vertices from complexes also eliminates all articula-
tion points, vertices whose removal disconnects the graph, leaving 
behind a graph where no one vertex can be removed to discon-
nect the graph. It should also be noted that while our results on 
k-connectivity in the error-prone data were promising, our results in 
the more accurate X-ray crystallography data were even more so. In 
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the X-ray crystallography data, all complexes had at least a 2-con-
nected subgraph, and the majority of complexes had a 3-connected 
or 4-connected subgraph. This suggests that as our data become 
more complete and accurate, highly connected subgraphs will play 
an even stronger role in searching for complexes.

The role of k-connectivity in future complex-finding 
algorithms
Our analysis confirms the connection between highly connected 
subgraphs and protein complexes first suggested by Habibi et al.18. 
The fact that k-connectivity was shown to be an important indica-
tor of protein complexes in a different type of experimental data 
than the one used by Habibi et al. suggests that the importance of 
k-connectivity is real and not just an artifact of one type of data.

In their paper, Habibi et al.18 present an algorithm for finding com-
plexes based on k-connectivity. We are somewhat skeptical of using 
vertex connectivity alone as the basis of a complex finding algo-
rithm in Y2H data, however, because subgraphs with these connec-
tivities are too common; it is easy to find 2- or 3-connected graphs 
of almost any size in the PPI network. Starting with a triangle, it 
is possible by adding one vertex at a time to build a 2-connected 
subgraph of any size up to 1689 vertices. Starting with a 4-clique, 
it is possible to build a 3-connected graph of any size up to 913 
vertices. Nevertheless, we feel these vertex connectivity results 
are significant. The MHCS of graphs representing real complexes 
were much more highly connected than those of pseudocomplexes, 
despite our method of generating pseudocomplexes being (perhaps 
unfairly) biased towards higher k-connectivity, and less biased 
towards higher edge density. The presence of a highly connected 
MHCS was one of the statistics that most differentiated real com-
plexes from pseudocomplexes, suggesting that k-connectivity has 
a role in complex-finding algorithms. The absence of articulation 
points and the presence of highly connected subgraphs indicates 
something about the structure of complexes.

We believe k-connectivity should be used in conjunction with other 
properties in a complex-finding algorithm. Several other proper-
ties examined in this survey, most notably clustering coefficient 
and mutual clustering coefficient, were also highly correlated with 
complexes. A complex-finding algorithm based on these data could 
try to build a 3- or 4-connected subgraph that also had high cluster-
ing coefficients and mutual clustering coefficients. Several existing 
complex-finding algorithms use multiple criteria, such as MCODE 
(k-core, clustering coefficient, and edge density)7, the algorithm 
of King et al. (clustering and edge density)31, and the Bayesian 
network of Qi et al. (multiple properties, including edge density, 
degree statistics, and clustering coefficients)32. Connectivity could 
also be used to evaluate candidate subgraphs produced by other 
complex-finding algorithms. Subgraphs found by other methods 
could be examined to find their most highly connected subgraph, 
with higher confidence scores being given to those with higher 
k-connectivity values for their most highly connected subgraphs. 
Finally, we hypothesize that the most highly connected subgraph of 
a complex graph may correspond to the “core” of a protein-complex 
as described by Dezso et al.33 and Gavin et al.34. If true, this would 
imply that k-connectivity could be used in improvements to algo-
rithms that use the core-attachment model35,36.

Conclusion
Before designing a new algorithm to find unknown protein com-
plexes in protein interaction data, we must understand the topo-
logical properties of known protein complexes. We conducted a 
principled and comprehensive survey of the topological properties 
of known protein complexes. We computed vertex k-connectivity, 
edge density, maximum normalized degree, clustering coefficient, 
mutual clustering coefficient, triangle (3-cycle) count, 4-cycle 
count, and betweenness centrality in various graphs representing 
known protein complexes in the high-throughput Y2H data avail-
able for new protein complex discovery. For each known protein 
complex, we computed these properties in the graph induced by 
proteins contained in the complex in the Y2H network as well as in 
the haircut and MHCS subgraphs of these, which are more likely 
to be discoverable by an automated method. To measure the sig-
nificance of our results we computed the same properties as we did 
for the complexes on random “complex-like” graphs from the Y2H 
network.

Although the property of edge density has been the most commonly 
used measure when searching for complexes in the PPI network, 
we found that it may not be the best graph measure for protein 
complex discovery. Instead, we found that k-connectivity, cluster-
ing coefficient, and mutual clustering coefficient appear to be the 
most effective measures for differentiating protein complexes from 
background pseudocomplexes in the pairwise Y2H interaction data. 
Importantly, our analysis suggests that k-connectivity, a graph met-
ric which has rarely been used in the study of protein networks, 
would improve algorithms designed to find protein complexes in 
protein-protein interaction data.
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Figshare: Characterization of known protein complexes using 
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Supplementary material
Here we give full results of all statistics on all complexes we 
studied.

Results on iPFam complexes
Full results of our survey of iPFam complexes are shown in Table S1. 
For each of these complexes, we analyzed both the high quality 
X-ray crystallography data from iPFam as well as the high through-
put Y2H data for the proteins in the complex. There were 35 studies 

in iPFam that involved complexes with at least 3 proteins. Some of 
these studies were of the same or similar complexes; we grouped 
studies together if they produced the exact same graph, i.e. the same 
proteins with the same set of interactions. This grouping gave us 13 
distinct graphs. All graphs are illustrated in Figure S1 and Figure S2, 
along with the subgraphs they induced in the Y2H data. In some 
cases, it is possible that two different studies of the same complex 
may have produced different graphs, but we treat all distinct graphs 
as separate entities.

Table S1. Statistics for iPFam complexes. The number of proteins (n) and interactions 
(m), edge density (Edge Dens.), maximum degree (Max Degree), clustering coefficient 
(CC), average mutual clustering coefficient (Ave MCC), average betweenness (Ave 
Bet.), and the vertex connectivity of the Most Highly Connected Subgraph (MHCS 
Connect.) for each iPFam complex. The IDs given are from the RCSB Protein Data 
Bank. X-ray = complex as determined by X-ray crystallography, Y2H = induced 
subgraph in yeast 2-hybrid data. The number in parentheses in the m Y2H column is 
the number of interactions from the X-ray crystallography that also occur in the Y2H 
network. “N/A” means that there were not enough vertices to calculate a given statistic.

n m Edge Dens. Max Degree

PDB ID X-ray Y2H X-ray Y2H X-ray Y2H X-ray Y2H

1nh2 3 3 3 1(1) 1 0.33 2 1

1w7p 3 3 3 3(3) 1 1 2 2

1id3 4 1 4 0(0) 0.67 N/A 2 0

1p84 8 5 15 1(1) 0.54 0.1 5 1

1kb9 8 5 16 1(1) 0.57 0.1 5 1

1kyo 9 6 17 1(1) 0.47 0.07 6 1

1nt9 10 10 10 5(4) 0.22 0.11 5 4

1k83 10 10 18 6(5) 0.4 0.13 7 4

1sfo 10 10 19 6(5) 0.42 0.13 8 4

1pqv 12 12 11 7(5) 0.17 0.11 6 4

2b63 12 12 22 8(7) 0.33 0.12 8 4

1y1v 13 13 25 8(8) 0.32 0.10 9 4

1jd2 14 14 32 11(8) 0.35 0.12 6 3

CC Ave MCC Ave Bet. MHCS Connect.

PDB ID X-ray Y2H X-ray Y2H X-ray Y2H X-ray Y2H

1nh2 1 N/A 1 N/A 0 0 2 1

1w7p 1 1 1 1 0 0 2 2

1id3 0 N/A 0.33 N/A 0.5 N/A 2 N/A

1p84 0.61 N/A 0.71 N/A 2 0 3 1

1kb9 0.68 N/A 0.77 N/A 1.75 0 4 1

1kyo 0.554 N/A 0.72 N/A 2.44 0 3 1

1nt9 0.26 0 0.63 0.64 3.5 1.3 2 1

1k83 0.47 0 0.83 0.30 2.9 1.3 3 1

1sfo 0.52 0 0.89 0.30 2.8 1.3 4 1

1pqv 0.13 0 0.37 0.26 4.17 1.17 2 1

2b63 0.45 0 0.71 0.16 4.42 1.17 3 1

1y1v 0.42 0 0.66 0.16 4.85 1.08 3 1

1jd2 0.48 0 0.36 0.14 5.93 3.21 4 1
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Figure S1. Complexes from iPFam, and those same proteins in Y2H data. IDs are from the RCSB Protein Data Bank.
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Figure S2. More complexes from iPFam and the same proteins in Y2H data. IDs are from the RCSB Protein Data Bank.
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This manuscript provides an analysis of different features that could potentially be used as input for
methods that identify protein complexes from pairwise interaction data from yeast two-hybrid screens.
The manuscript is strong in using X-ray structures as a gold standard for real interactions and in
performing parallel analysis of real complexes and pseudo-complexes drawn from reasonably realistic
randomized networks. It motivates use of metrics based on clustering and connectivity rather than edge
density or centrality.
 
There are two areas where additional work could increase the value of this manuscript. First would be to
examine which metrics perform better for the task of identifying complexes. A reasonable approach would
be to use the different features to rank a mixture of real complexes and pseudo-complexes and to see
which features perform better at ranking the real complexes above the pseudo-complexes. The second
area would be to investigate properties of complexes that affect the performance of different features. I
suspect that one of the explanations might be that some methods perform better for smaller vs. larger
complexes. It would probably be helpful to look at performance for complexes grouped into size classes.
 
Suggestions:
In the Background paragraph summarizing other methods, which starts “One use for PPI networks”, I think
it would be useful to add “patterns of connectivity as represented by stochastic block models” as a feature
used for identifying complexes. I think these are the best-performing methods. Two references are
Clauset (2008) Park and Bader (2011).et al.
 
In the Background, the statement “Y2H assays reveal the presence of an interaction between exactly two
protein” should be “proteins”. Also, it might be too strong. It is possible that a third protein that forms a
complex with the bait and prey and is co-localized to the cell compartment of the Y2H assay could bridge
the bait and prey resulting in detection of an indirect interaction. Given access to the x-ray structures, they
authors might be able to discover whether any of the published Y2H pairwise interactions are likely to be
indirect rather than direct.
 
In several locations, false positives and false negatives are mentioned. It could be helpful to provide
citations to estimates of false-positive and false-negative rates. Examples are Hart (2006); Huang et al. et

 (2007); Gentleman and Huber (2007); and possibly Cusick  (2009).al. et al.
 
Methods, Assessment: It could be helpful to mention that many of the Y2H assays were asymmetric, with
a smaller number of baits used as queries against a larger library of preys. Some randomization methods
have attempted to keep the distinction between baits and preys as part of the edge swapping.
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a smaller number of baits used as queries against a larger library of preys. Some randomization methods
have attempted to keep the distinction between baits and preys as part of the edge swapping.
 
Results: Are some of the metrics more sensitive to the size of a complex? Can the authors provide some
analysis as a function of protein complex size? Spatial constraints, for example, limit the edge density in
real complexes. Clustering coefficients may have a better inherent normalization for cluster size.
 
Results: It would be helpful to see how the different methods perform in identifying complexes. For
example, suppose that the real complexes and pseudo-complexes are grouped together, and then the
different features are used to rank-order the mixed collection. The ROC/AUC and PR/F-score could be
used to give a rough idea of how well the individual features perform in distinguishing real from
randomized complexes.
 
Figure 2: It would be better to have axes that represent percentages to stop at 100% instead of 120%.
 
Minor points:
Abstract, “Saccharomyces cerevisiae” should be Italic font.
Abstract, “subgraphs.We found” insert space after period.
Background, “Proteins are a critical unit” change to “Proteins are critical units”
Background, “contain both false positives and false negatives”. Might be better to say “subject to” rather
than “contain” because the false negatives aren’t there, not really contained.
Methods, “The code used for calculating the statistics of protein complexes can be found at
https://github.com/suzanneg/ complex-stats.” It would also be helpful to provide the code and data sets as
supplementary information to ensure continued availability of a snapshot of the material at the time of
publication.
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 Nassim Sohaee
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This paper is a survey of the topological properties of known protein complexes and is mostly focused on
k-connected subgraphs as a good candidate for predicting protein complexes in PPI networks.
K-connected subgraphs have been previously proposed as a good alternative for predicting less dense
protein complexes. I have the following comments about this paper:

The idea of using k-connected subgraphs to predict protein complexes has already been
investigated by other researchers. The authors should therefore clearly point out what is new about
their concept and how it differs from earlier published methods.
 
According to  the functional similarity of protein pairs will decrease as the Sharan (2007)et al. 
distance of the path connecting them increases. Hence, a large k value results in a less functional
correlation among proteins. Specifically, for k>= 3, functional similarity significantly decreases and
for k<3, or k=1 or 2, the k-connected graph is dense. As this has already been investigated by
others the authors need to clearly state what makes their method significant. 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Reader Comment 23 Jul 2015
, Harvard Medical School, USADebra Goldberg

Thank you for taking the time to read our paper, and for your comments. We have addressed some
of these points below, and updated our manuscript to reflect your concerns.

"The idea of using k-connected subgraphs to predict protein complexes has already been
investigated by other researchers. The authors should therefore clearly point out what is new about
their concept and how it differs from earlier published methods."

There are four major difference between our study and the Habibi study that previously examined
k-connectivity. We have updated our Background section to clarify these points.

First, we looked at a number of complexes using low-throughput X-ray crystallography data,
something Habibi did not do. Looking at complexes in the X-ray crystallography allows us toet al. 
study the true topology of interactions in complexes and see the properties complexes might have
in a complete and accurate interaction network and also suggests that k-connectivity may be an
innate property of the interactions within a protein complex rather than an artifact of any particular
type of data.

Second, we use a different type of interaction data. Habibi used mass spectrometry data,et al. 
while we were interested in looking at k-connectivity in Y2H pairwise interaction data. We felt that
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while we were interested in looking at k-connectivity in Y2H pairwise interaction data. We felt that
the pairwise interaction data had two advantages over the mass-spectrometry data: it is not biased
towards interactions in complexes, and it is truly binary, avoiding problems that come from trying to
represent the non-binary mass-spectrometry data in a binary graph. The fact that the interaction
data we used is of a very different type from that used by Habibi allows us to, as we mention in our
Discussion, confirm that the importance of k-connectivity in indicating complexes is real and not
just an artifact of one particular type of data.

Third, we examine other statistics in addition to edge density and k-connectivity and analyze the
performance of these statistics at determining complexes. This allows us to determine how
k-connectivity might perform as a complex-finding statistic compared not only to edge density, but
to other possible statistics as well. We list the full statistics we are using in the Methods, give
results on them, and evaluate their performance in the Discussion.

Finally, in addition to simply examining these statistics in complexes, we also looked at them in
"pseudocomplexes," background pieces of the PPI network designed to be "complex-like." By
comparing k-connectivity and other statistics in real complexes and pseudocomplexes, we were
able to give further evidence these statistics may be useful in distinguishing true complexes from
others.

"According to Sharan et al. (2007) the functional similarity of protein pairs will decrease as the
distance of the path connecting them increases. Hence, a large k value results in a less functional
correlation among proteins. Specifically, for k>= 3, functional similarity significantly decreases and
for k<3, or k=1 or 2, the k-connected graph is dense. As this has already been investigated by
others the authors need to clearly state what makes their method significant."

In k-connectivity, k refers to the number of paths rather than the distance of said paths. A graph
being k-connected for a high value of k does not imply that the graph has a long shortest path
between any two vertices (diameter), even if the edge density of the graph is not high. Below we
describe a 4-edge-connected, 13-vertex graph with edge density of 1/3 that has a shortest path
between any two vertices no longer than 2, well within the range that Sharan . suggested couldet al
have significant functional similarity. To construct this example, number the vertices 0-12 and
connect vertex n to vertices n+1, n-1, n+5, and n-5 (mod 13). We also have an example of a
4-vertex-connected graph with diameter 2 and edge density 2/7, but this is harder to describe in a
paragraph. 

 No competing interests were disclosed.Competing Interests:

 24 October 2013Referee Report

doi:10.5256/f1000research.800.r1873

 Lin Gao
School of Computer Science and Technology, Xidian University, Shaanxi, China

This is a promising paper. I think the idea is sound, has some novelty, and can potentially improve
previous results. The explanations of the figures are of particular note. In addition, the authors could try a
larger benchmark complex dataset (CYC2008 category).
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Reader Comment 23 Jul 2015
, Harvard Medical School, USADebra Goldberg

Thank you for reading and reviewing our paper, and we are sorry that we have taken so long to
respond. Thank you also for mentioning the CYC2008 set of complexes. Unfortunately, we are
currently unable to redo this analysis using this set of complexes. However, we are utilizing it in our
current research on complexes and complex-finding algorithms. 
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