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INTRODUCTION

After SARS-CoV-2 infection, a major complication of those who survived to COVID-19 outbreak is
the development of severe lung disease leading to pulmonary fibrosis. At earliest step of virus-host
cell interaction when the SARS-CoV-2 interacts with the ACE2 receptor highly expressed in
pneumocytes type II, a linkage is established between the renin-angiotensin-system (RAS) and
the viral pathogenesis. Within this important system, the angiotensin-converting enzyme (ACE)
is deputed to the conversion of angiotensin I to angiotensin II (AngII), a potent vasoconstrictive
peptide involved directly in inflammation and fibrosis development. AngII is hydrolyzed by ACE2
to Ang1-7, triggering a cascade of events that counteract fibrosis. This imbalance is known to be
due to inflammatory damage. However, because ACE2 is the receptor for SARS-Cov-2, we could
also speculate that the virus per se could modulate its enzymatic activity. In our opinion the wound
healing pathways that mediate tissue repair after SARS-CoV-2 mediated injury, should consider
managing the imbalanced ACE/ACE2 axis. We hypothesize that the heptapeptide Ang1-7 could
provide novel therapeutic interventions for pulmonary fibrosis patients. Understanding how the
RAS, wound healing and other pro-fibrotic pathways act after viral infection should lead to novel
therapeutics in the future.

DEVELOPMENT OF LUNG FIBROSIS AND SARS-CoV-2

In humans, there is an extensive information currently available supporting a clear correlation
between the development of pulmonary fibrosis and respiratory viral infections (Sheng et al.,
2019). The lung architecture and function are altered by the progressive enlargement of fibroblasts
population and extracellular matrix. Enhanced attention has been directed to airway remodeling
(Holgate, 2011). There both TGF-β1 (transforming growth factor-β1) and collagenmay play critical
roles in the formation of airway remodeling. However, the underlying molecular mechanisms that
occurs once viral infection is established leading to fibrosis remain obscure until present.

To date, based on both the observation of the clinically defined as severe cases of the Coronavirus
Disease 2019 (COVID-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoV-
2), as well as the analysis of biopsy/autopsy materials (presence of inflammatory clusters with
fibrinoid material and multinucleated giant cells, with interstitial fibroblasts), it is permeable to
establish some similarities with findings reminiscent of the SARS-CoV, responsible for the severe
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respiratory distress syndrome (SARS) that emerged in 2002–
2003 (Huang et al., 2020; Schaller et al., 2020; Tian et al.,
2020). Comparison of amino acid sequences revealed a high
similarity (95–100%) between most of the SARS-CoV-2 proteins
and those of SARS-CoV (Grifoni et al., 2020). During the
acute phase of SARS-CoV infection, lung damage causes edema,
alveolar shedding of epithelial cells, and the deposition of hyaline
material in the alveolar membranes, reducing the efficiency
for gas exchange. During the next phase of infection (weeks
2–5), the lungs show signs of fibrosis, noting the deposition
of fibrin and infiltration of inflammatory cells and fibroblasts
close to the epithelial cells, in the alveolar spaces. During the
final stage (weeks 6–8), the lung tissue becomes fibrotic with
collagen deposits, and epithelial cell proliferation is observed
in alveoli and interstitial spaces (Ye et al., 2007). The available
evidence on the pathological processes associated with SARS-
CoV involves both direct cytopathic effects on epithelial cells,
as well as aberrant activation of the innate immune response.
Thus, this virus is capable of promoting the activation of
intracellular stress promoting pathways, lysosomal damage and
the consequent activation of autophagy, to preserve cell viability.
In this multifactorial context, autophagy, and oxidative stress
merit attention. Recognized as a dynamic and complex regulatory
process, autophagy may play a central role in pulmonary fibrosis,
depending on the cell type and condition against infection. Thus,
under normal conditions in alveolar epithelial cells (type I- and
II-pneumocytes), alveolar macrophages and endothelial cells,
autophagy could be activated to maintain its homeostasis, inhibit
its death, and prevent fibrosis development (Zhao et al., 2020).

From the first histopathological descriptions, the molecular
basis of the pulmonary fibrosis progression due to SARS-CoV-2
infection is still unclear, and could be complex andmultifactorial,
involving direct viral effects, immune dysregulation/cytokines
(MCP-1; IL-6, IL-8, TGF-β, TNF-α), and increased oxidative
stress (Liu J. et al., 2020; Xu et al., 2020).

Some insights into the mechanisms leading to COVID-19
associated fibrotic process could be shared with those associated
with chronic idiopathic pulmonary fibrosis. Therefore, even
without addressing the immune dysregulation of SARS-CoV-2
infection, in spite of beneficial effects, the available antifibrotic
therapy could exacerbate other clinical aspects of the infection
such as the liver and renal pathology (George et al., 2020).

THE RENIN–ANGIOTENSIN SYSTEM (RAS)
IN LUNG HOMEOSTASIS AND
PATHOGENESIS

The renin–angiotensin system (RAS) is an endocrine system
involved in cardiovascular regulation, and water balance. The
RAS carries on biological functions that are modulated by
a series of stimuli to preserve physiological hemostasis. The
pathogenesis of hypertension, myocardial infarction, heart
failure, diabetes, and inflammatory lung disease pathogenesis
involves an abnormal RAS activation (Jia, 2016). Besides, the
airway remodeling depicted by patients with exacerbated lung
fibrosis, has been associated with elevated plasma levels of AngII

(angiotensin II), which could trigger TGF-β1 production and
collagen deposition (Uhal et al., 2007; Gao et al., 2009; Yang et al.,
2009). In the RAS, the ACE (angiotensin-converting enzyme)–
AngII–AT1 (AngII receptor type 1) axis activation causes
deleterious effects, including vasoconstriction, inflammation,
and fibrosis (McKay et al., 1998). The AngII is hydrolyzed by the
enzyme ACE2, generating the angiotensin heptapeptide Ang1-7
able to interact with its specific Mas receptor. This alternative
ACE2–Ang1–7–Mas axis appears to counter-regulate the ACE–
AngII–AT1 axis (Santos et al., 2013). In this context, Ang1–7
has been shown to have anti-thrombotic, anti-proliferative, anti-
fibrotic, and anti-inflammatory properties in heart, kidney, and
arthritis animal model (Gava et al., 2009; da Silveira et al., 2010).
Furthermore, a vast range of advantageous effects of Ang1-7 or
its analogs with a longer half-life has been documented, mainly
through Mas receptor interaction, exerted on different anatomic
locations and tissues (Passos-Silva et al., 2013; Machado-Silva
et al., 2016).

In addition to its functions in regulating blood pressure,
AngII plays a pivotal role in signaling cellular and molecular
events that are considered critical in the pathogenesis of
pulmonary fibrosis, such as: (i) inflammation (promoting
production of proinflammatory cytokines such as IL-6, and
IL-8 by macrophages), (ii) the production of reactive oxygen
species (ROS) among infected-alveolar epithelial cells followed
by its apoptosis, and (iii) the proliferation, migration, and
differentiation of fibroblasts to myofibroblasts capable of
synthesize smooth muscle alpha-actin (α-SMA) and produce
extracellular matrix (collagen and fibronectin) through a
mechanism mediated by autocratic trans-activation of TGF-β in
the fibroblast itself (Wolf et al., 1992; Kagami et al., 1994; Jia,
2016). In contrast, the Ang1-7 peptide, after interacting with its
cellular receptor Mas, exhibits the ability to inhibit proapoptotic
signaling in alveolar epithelial cells, promote autophagy, and—
together with the ACE2 receptor—counteract the profibrotic
effects, reducing both TGF-β mediated collagen expression, as
well as the transition from fibroblasts to myofibroblasts (Iwata
et al., 2005; Zeng et al., 2009; Zhou et al., 2016).

SARS-CoV-2, RAS, AND LUNG FIBROSIS

The direct virus-host interaction begins with the adsorption
step in the viral replication cycle. Here, it involves the high
affinity binding between the viral spike (S) protein with the
ACE2, followed by the S cleavage by the cellular transmembrane
protease serine 2 (TMPRSS2) action, thus favoring the virus
entry (Zhou et al., 2020). In normal conditions, the ACE2 is
widely expressed near the surface of various epithelial cells—
blood vessels, lung, intestine, and others. Although, during
lung fibrosis, such expression by a c-Jun N-terminal kinase
(JNK)-mediated transcriptional pathway, is downregulated
depending on the cell-cycle stage. In the adult lung, the major
sources of angiotensin-converting enzyme (ACE)-2 are the
normally quiescent alveolar epithelial type II pneumocytes, that,
during lung fibrosis, proliferate actively, and downregulate the
expression of this protective enzyme. The ACE2 expression
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is severely downregulated or absent in actively proliferating
pneumocytes during lung fibrosis (type I-pneumocytes), that
appear replacing the damaged alveolar type II pneumocytes (Uhal
et al., 2013). Moreover, a deregulation of this lung protective
pathway may occur when the expression level of ACE2 is
diminished after the interaction with the coronavirus SARS-
CoV by its internalization inside the cell or, alternatively when
it is released by TACE (ADAM17)-mediated cleavage from the
surface of epithelia to the extracellular environment into the
airway surface liquid (Kuba et al., 2005; Lambert et al., 2005; Jia
et al., 2009). From these findings, it is plausible that ACE2 activity
and the ACE2–Ang1–7–Mas axis are diminished after its binding
to SARS-CoV-2. It may enhance the ACE-AngII–AT1 axis thus
heightened AngII activity leading to pulmonary vasoconstriction
and inflammatory and oxidative organ damage, increasing
the acute lung injury risk. Supporting these assumptions,
significantly higher serum AngII levels accompanied by higher
viral load in respiratory secretions and severe lung injury among
patients with COVID-19 pneumonia in comparison with healthy
individuals (Liu Y. et al., 2020). The respiratory distress presented
by severe SARS-CoV-2 infections is an unfavorable sign that
could be directly related to the level of fibrosis and inflammation,
favored by a cytokine storm involving IL-6, IL-10, and TNF-α
(Chen et al., 2020).

When repetitive cycles of productive SARS-CoV infection
occur in type II pneumocytes (epithelial cells in a quiescent
state with high ACE2 expression) followed by cytolytic effect,
their differentiation toward proliferating pneumocytes (low
expression of ACE2) is promoted (Sims et al., 2008). TGF-β
is a pivotal protagonist highly expressed in almost all fibrotic
processes acting as potent pro-fibrogenic cytokine. Besides the
well-recognized Smad-dependent cascade in TGF-β signaling,
there is cumulative evidence indicating that ROS level also

modulates such signaling through Smad-independent pathways.
TGF-β and ROS are involved in a vicious cycle. On the one
hand, TGF-β favors a redox imbalance by increasing ROS level
and suppressing antioxidant enzymes. Besides, ROS induces
TGF-β thus promoting its fibrogenic consequences (Liu and
Desai, 2015). Interestingly, the heptapeptide Ang1-7 is able to
interfere with this pathway by diminishing the AngII-elicited
expression of Smad proteins and the nuclear trafficking of p-
Smad2/3, as well as by decreasing the level of phosphorylation
of PI3K (phosphoinositide 3-kinase), Akt, p38-MAPK (mitogen-
activated protein kinase), and JNK (c-Jun N-terminal kinase)
signaling pathways (Zhou et al., 2016).

In pulmonary viral infection-induced fibrosis, the oxidative
stress rises in epithelial cells, thus stimulating the production
and release of TGF-β, causing excessive migration, proliferation,
activation, and myofibroblastic differentiation of fibroblasts,
causing the abnormal accumulation of these cells and reflecting
the process of airway remodeling. Myofibroblasts are a major
producer of collagenous and non-collagenous matrix molecules
and its hyperplasia has been demonstrated in asthmatic patients
(Yang et al., 2012; Sakai and Tager, 2013). On the other
hand, AngII-induced collagen expression also depends on
TGF-β (Kagami et al., 1994), which subsequently induces
extracellular matrix accumulation and inflammation. In this
scenario, activated fibroblasts induce further injury and death
of alveolar epithelial cells, thereby creating a vicious circle of
profibrotic epithelial cell-fibroblast interactions nourished by
TGF-β leading to the formation of non-functional scar tissue
(Li et al., 2016). Also, TGF-β would also be responsible for the
inhibition of the expression of the Mas receptor for Ang1-7 in
fibroblasts, thereby antagonizing the anti-fibrotic capacities of
the hepatapeptide (Cofre et al., 2015). In this microenvironment,
TGF-β will be able to act on alveolar macrophages stimulating

FIGURE 1 | The renin–angiotensin system in homeostasis and in SARS-Cov-2 infection. Angiotensin I (AgnI), Angiotensin II (AgnII), Angiotensin 1-7 (Agn1-7),

angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2).
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the secretion of IL-4, IL-6, and IL-13, thus enhancing the
development of fibrosis. As a counterpart, inhibition of TGF-β
is expected to decrease the influx of neutrophils, macrophages,
and lymphocytes at the site of injury. In contrast, Ang1–7 could
inhibit AngII-induced expression of TGF-β, α-SMA and collagen,
as it was demonstrated at different tissues (Zeng et al., 2009;
Shenoy et al., 2010; Marques et al., 2012) (Figure 1).

CONCLUDING REMARKS

In conclusion, early events during the SARS-CoVs infection
propitiate the imbalance the RAS favoring increased levels

of AngII, thus promoting inflammation, and exacerbated
fibrosis. The current knowledge offers the chance to counteract
such cascade of pathogenic events by increasing Ang1–7,
able to inhibit TGF-β and collagen expression, contributing
to a potential attenuation of airway remodeling during
severe COVID-19.
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