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Purpose: There is great interest in unobtrusive long-term sleep measurements using wear-
able devices based on reflective photoplethysmography (PPG). Unfortunately, consumer 
devices are not validated in patient populations and therefore not suitable for clinical use. 
Several sleep staging algorithms have been developed and validated based on ECG-signals. 
However, translation from these techniques to data derived by wearable PPG is not trivial, 
and requires the differences between sensing modalities to be integrated in the algorithm, or 
having the model trained directly with data obtained with the target sensor. Either way, 
validation of PPG-based sleep staging algorithms requires a large dataset containing both 
gold standard measurements and PPG-sensor in the applicable clinical population. Here, we 
take these important steps towards unobtrusive, long-term sleep monitoring.
Methods: We developed and trained an algorithm based on wrist-worn PPG and accel-
erometry. The method was validated against reference polysomnography in an independent 
clinical population comprising 244 adults and 48 children (age: 3 to 82 years) with a wide 
variety of sleep disorders.
Results: The classifier achieved substantial agreement on four-class sleep staging with an 
average Cohen’s kappa of 0.62 and accuracy of 76.4%. For children/adolescents, it achieved 
even higher agreement with an average kappa of 0.66 and accuracy of 77.9%. Performance 
was significantly higher in non-REM parasomnias (kappa = 0.69, accuracy = 80.1%) and 
significantly lower in REM parasomnias (kappa = 0.55, accuracy = 72.3%). A weak correla-
tion was found between age and kappa (ρ = −0.30, p<0.001) and age and accuracy (ρ = 
−0.22, p<0.001).
Conclusion: This study shows the feasibility of automatic wearable sleep staging in patients 
with a broad variety of sleep disorders and a wide age range. Results demonstrate the 
potential for ambulatory long-term monitoring of clinical populations, which may improve 
diagnosis, estimation of severity and follow up in both sleep medicine and research.
Keywords: hypnogram, sleep staging, polysomnography, heart rate variability, wearable, 
pediatrics

Introduction
Sleep of adequate duration and quality is a central aspect of a healthy life. Many 
factors can contribute to insufficient or disturbed sleep, including a wide variety of 
sleep disorders. Objective assessment of sleep structure is an important part of the 
diagnostic work-up of patients with suspected sleep disorders. The current gold 
standard is polysomnography (PSG), using an array of body-worn sensors to assess 
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sleep, typically during a single night. Methods to perform 
long-term ambulatory monitoring of sleep would have 
important applications, such as more precise severity 
assessment, evaluation of night-to-night variability and 
follow-up of treatment. Moreover, the use of unobtrusive 
methods would provide additional practical benefits as it 
avoids interference with the sleep of the subjects and may 
be better accepted, especially in children.

Today, the consumer market is flooded with wearable 
devices promoting endless possibilities to trace a person’s 
health by monitoring daily activities, energy expenditure 
and sleep. Typical consumer sleep trackers contain sensors 
measuring motion and cardiac activity. Advanced algo-
rithms are then applied to perform sleep staging with the 
promise to distinguish wake, “light sleep”, “deep sleep”, 
and Rapid Eye Movement (REM) sleep.1 Importantly, 
most manufacturers clearly state that their products are 
not intended for scientific or medical purposes and that 
care must be exercised when using and interpreting these 
data.2,3 Nevertheless, a growing number of people collect 
data from wearables and ask their physician to evaluate 
their self-measured sleep.4 On the other hand, the clinical 
use of wearable devices is gaining attention, given the 
potential advantages including unobtrusive sleep measure-
ments collected in a patient’s natural environment.1 

However, proper validation against gold standard PSG is 
scarcely available as of yet.4 Moreover, the limited valida-
tion efforts for popular devices are typically restricted to 
healthy participants, especially young adults with adequate 
sleep schedules and without sleep disorders.5

The combination of modern hardware capabilities and 
advanced machine learning methods for data analysis 
yields the promise of technology that can significantly 
improve the current diagnostic approach in sleep medicine. 
For example, the use of artificial intelligence to automati-
cally score sleep stages based on PSG results in compar-
able and – in some cases – more consistent agreement than 
humans performing the same task.6,7 Automatic scoring of 
sleep stages based on signals that can be obtained from 
wearable devices still falls short in comparison to PSG 
based methods, although performance seems to be catch-
ing up.8–10 Most well-validated algorithms for what could 
be called “surrogate sleep staging” use heart rate variabil-
ity (HRV) as an indicator of autonomic changes during 
sleep, which have been studied extensively over the last 
decades. Both the sympathetic nervous system (SNS) and 
parasympathetic nervous system (PNS), which are 
involved in the cardiac autonomic nervous system, are 

coupled with circadian rhythm, the sleep-wake cycle, and 
ultradian processes such as NREM and REM sleep.11 For 
example, in healthy subjects, autonomic cardiovascular 
regulation varies considerably per sleep stage. As NREM 
sleep progresses from light towards deeper sleep, there is 
an increase in cardiovagal drive and PNS activity and 
a reduction in cardiac and SNS activity. This results in 
a decrease in heart rate and increase in the respiratory 
mediation of HRV and becomes visible in the high- 
frequency band (HF) (0.15 to 0.4 Hz) of HRV. In contrast, 
autonomic activity is unstable during REM where PNS 
and SNS activity fluctuates producing abrupt changes in 
heart rate. The average heart rate and the power in the low- 
frequency band (LF) (0.04 to 0.15 Hz) of HRV is higher 
during REM than during NREM sleep, and there is a shift 
of the LF/HF ratio towards sympathetic dominance.11 

These changes in autonomic activity are often captured 
with different HRV features, which in turn can be derived 
from inter-beat intervals (IBIs) obtained by electrocardio-
graphy (ECG), while the vast majority of (consumer) sleep 
trackers use reflective photoplethysmography (PPG) to 
measure cardiac activity and, in addition, accelerometers 
to detect body movements. This leaves a gap between the 
available ECG-based algorithms and the practical applica-
tion of such algorithms in the context of wearables. There 
are several factors contributing to this, such as the vulner-
ability of PPG to motion artefacts, which can impair the 
extraction of HRV features.12 On the other hand, pulse 
transit time (PTT) may be affected by blood pressure, 
which is known to vary differently across sleep stages, 
thereby influencing differently PTT and in turn, PPG- 
derived beat intervals and consequently, HRV.13,14 These 
factors may be some of the reasons that ECG-derived 
algorithms cannot be used on PPG-based HRV without 
a significantly negative impact on performance.15 

Accordingly, the translation from an ECG-based model 
to a clinically applicable PPG-based model is a non- 
trivial step and requires either the integration, in the 
model, of knowledge about the differences between the 
modalities, or alternatively, that the model is trained with 
data acquired with the target sensor, ie, PPG. Either 
approach requires a sufficient amount of data containing 
both gold standard PSG and PPG measurements from 
a clinical population. Here, we take this important step 
towards unobtrusive, long-term remote monitoring of 
sleep in the clinical setting. We developed an automatic 
sleep staging model using wrist-worn PPG signals and 
accelerometry, and trained and validated it on a unique, 
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large dataset containing data from a clinical population 
comprising children, adolescents and adults with 
a variety of sleep disorders.

Methods
Datasets
Data Acquisition and Sleep Stage Scoring
We used reference PSG and raw PPG and accelerometry 
to train and validate the automatic sleep staging model. 
PPG and accelerometer data were obtained with a CE- 
marked wrist-worn sensor (Philips Research, Eindhoven, 
the Netherlands), containing a three-axial accelerometer 
(sampling frequency: 128 Hz) and a PPG sensor with 
a light source consisting of two green light LEDs (sam-
pling frequency: 32 Hz).19 Participants wore the device 
on their non-dominant wrist, with the sensor facing the 
skin on the dorsal side of the hand, above the ulnar 
styloid process.

To equalize the time base between PSG and PPG/ 
accelerometer measurements, each recording was 
restricted to the period between lights off and lights on 
as determined during PSG. This period corresponds to the 
interval for which the PSG was scored with respect to 
sleep stages.

Each PSG recording was evaluated by a single scorer 
out of a team of seven certified, expert sleep technicians 
from the Sleep Medicine Center Kempenhaeghe (Heeze, 
the Netherlands). Kempenhaeghe is a third-line expert 
center for multidisciplinary sleep medicine. Institutional 
interrater agreement scores according to the American 
Academy of Sleep Medicine (AASM) assessment criteria 
are high, with an average agreement of 85.6% (range 
83–88%). There were no systematic differences between 
recordings scored by different technicians for SOL, WASO 
or number of awakenings.20

Sleep stages were scored in 30-second epochs accord-
ing to the 2015 AASM criteria.21 To validate 4-class sleep 
staging, the ground-truth reference classes were obtained 
by combining stage N1 and N2 in a single “N1+N2” class, 
representing “light sleep”, while the remaining classes 
Wake, N3 (“deep sleep”) and REM were used without 
changes.

Training Dataset
Sleep Disordered Patients - The training dataset 
included all 422 sleep disordered patients (416 adults 
and 6 children/adolescents) available in the Sleep and 
Obstructive Sleep Apnea Measuring with Non-Invasive 

Applications (SOMNIA) cohort by August 15th 2018.19 

The SOMNIA dataset is created by Kempenhaeghe, and 
includes data from patients with a wide range of sleep 
disorders, including sleep-related breathing disorders, 
insomnia, sleep-related movement disorders and para-
somnias. The primary sleep diagnosis was coded accord-
ing to the International Classification of Sleep Disorders 
(ICSD) criteria.22 Where applicable, multiple sleep dis-
orders could be entered. For analysis, subjects were 
grouped according to the ICSD main categories, as 
described by Fonseca et al.17

Healthy Sleepers - A total of 121 recordings from 
healthy adults were also included in the training dataset. 
From these, 81 recordings were obtained from two 
cohorts, the Night to Night (N2N) and Heart Health 
Study (HHS) datasets, collected by Philips Research 
during 2014 and 2015. Participants had no neurological, 
cardiovascular, psychiatric, pulmonary, endocrinological, 
or sleep disorders. In addition, people using sleep, anti-
depressant or cardiovascular medication, recreational 
drugs or excessive amounts of alcohol were excluded 
from the study, as well as pregnant women, shift work-
ers and people who crossed more than two time zones in 
the last two months. The study protocols were described 
in detail by Fonseca et al.23 The remaining 40 record-
ings were acquired from the HealthBed dataset, col-
lected at the Sleep Medicine Center Kempenhaeghe, 
using the same protocol as the SOMNIA database.19 

This set included all recordings that were available up 
to 15 October 2018. The HealthBed dataset comprises 
healthy adults without sleep disorders or other medical 
or psychiatric comorbidity.

The SOMNIA and HealthBed studies were reviewed 
by the medical ethical committee of the Maxima Medical 
Center (Eindhoven, the Netherlands. File no: N16.074 and 
W17.128). The Internal Committee of Biomedical 
Experiments of Philips Research approved the N2N and 
HHS studies. All studies met the ethical principles of the 
Declaration of Helsinki, the guidelines of Good Clinical 
Practice and the current legal requirements. The protocol 
for data analysis was approved by the Medical Ethical 
Committee of the Kempenhaeghe hospital and by the 
Internal Committee of Biomedical Experiments of Philips 
Research.

Hold-Out Validation Set
The model was validated on a separate hold-out validation 
set. No data of this set was used to train, tune, or otherwise 
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adapt the original model. This validation dataset com-
prised 244 recordings from adults and 48 recordings 
from children and adolescents with a wide variety of 
sleep disorders. Data was obtained from the SOMNIA 
dataset, as described above, and contained all available 
recordings collected between August 15th 2018 and 
January 8th 2020 for adults, and September 19th 2019 
for children and adolescents.19

Algorithm
Previously, we developed a machine-learning model for 
automatic sleep staging based on long short-term memory 
(LSTM) recurrent neural networks. This model was initi-
ally developed, trained and validated on IBIs obtained 
from ECG data. All details on this model can be found 
in the relevant publications.16,17 Here we will provide 
a summary.

First, PPG signals were pre-processed by bandpass 
filtering between 0.3 and 5 Hz. Individual heartbeats 
were localized by detecting troughs (local minima) in the 
filtered waveform. The distance between consecutive 
heartbeats was calculated, and, using linear interpolation 
to 4 Hz, an IBI time series was built and used as input to 
the feature extraction step. A total of 132 HRV features 
were computed for each 30-second epoch in each PPG 
recording. HRV features were combined with a measure 
of gross body movements calculated as activity counts for 
each 30-second epoch based on the three-axial acceler-
ometer signal.

The combined HRV and body movement feature set was 
used as input to a classifier with an input dense layer with 32 
units, followed by a stack of three bi-directional LSTM 
layers with 64 units each and finally, two dense layers, the 
first with 32 units, and the last which outputs the posterior 
probability for each of four classes: Wake, N1+N2, N3 and 
REM for each 30-second epoch. The final classification is 
the class with the highest posterior probability for each 
epoch. The model used in this study has the same architec-
ture as in our earlier work, but while in that study the HRV 
features used to train the classifier were extracted from ECG, 
in the current work, we trained it with a set comprising HRV 
features extracted from PPG and body movements obtained 
by an accelerometer, and used the corresponding manually 
scored sleep stages from PSG as ground-truth.17 The model 
was trained with the RMSprop optimization algorithm using 
categorical cross-entropy as a loss function.18 The training 
set, comprising data from both healthy sleepers and sleep 

disordered patients, was split in a 75–25% ratio, with the 
largest portion used for model fitting. The second, smaller 
portion was used for early stopping to avoid overfitting, 
using as criteria to stop training for a lack of performance 
improvement for at least 50 consecutive training iterations. 
Using this criterion, the model was trained for a total of 1233 
iterations.

Subsequently, we validated the model in a clinical 
sleep-disordered population using a separate hold-out vali-
dation set.

Analysis of Performance
Sleep stages classified by the model were compared to 
gold standard manual PSG scoring using measures 
described below, as proposed by De Zambotti et al.1

Epoch-per-Epoch Agreement
Epoch-per-epoch agreement between the classified sleep 
stages by the algorithm and gold standard scored PSG 
sleep stages was evaluated using two quality metrics: 
Cohen’s kappa coefficient of inter-rater agreement (or: 
κ) and accuracy. The first metric is an appropriate mea-
sure for quantifying the level of agreement for categorical 
data between two scorers, ie, in this work the classifica-
tions made by the algorithm against ground truth PSG. In 
addition, it is a more robust measure than accuracy, as κ 
takes into account the possibility of agreement occurring 
by chance. κ is usually interpreted with the following 
terms of agreement: κ < 0 “poor”, 0 ≤ κ ≤ 0.20 “slight”, 
0.20 < κ ≤ 0.40 “fair”, 0.40 < κ ≤ 0.60 “moderate”, 0.60 < 
κ ≤ 0.80 “substantial” and 0.80 < κ ≤ 1.00 “almost 
perfect”.24 Both κ and accuracy were computed for each 
recording, for 4-class sleep staging as described above. In 
addition, these metrics were computed for 3-class (mer-
ging N1+N2 and N3 in a single non-REM “NREM” 
class), and 2-class (merging N1+N2, N3 and REM in 
a single “Sleep” class) classification. For 2-class classifi-
cation, we also calculated sensitivity, specificity and posi-
tive predictive value (PPV; all in respect to the detection 
of the positive class, ie, wake). A similar analysis was 
performed for the remaining classes (N1+N2, N3 and 
REM), considering each class (as positive) in comparison 
with the remaining, merged in a single (negative) class.

Confusion Matrix
A confusion matrix was plotted to further detail the pro-
portion of PSG epochs correctly and incorrectly classified 
by the algorithm, with the advantage of also providing 
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information about the source of misclassification. The 
confusion matrix was obtained by aggregating the classi-
fications and corresponding ground-truth of all epochs of 
all recordings of the hold-out validation set.

Influence of Demographic and Clinical 
Characteristics
The impact of demographic and clinical characteristics on 
4-class epoch-per-epoch performance was assessed in var-
ious ways. Spearman’s rank correlation was used to eval-
uate the effect of age and the influence of sex was assessed 
with the Wilcoxon rank-sum test. The effect of body mass 
index (BMI) on performance was tested using Spearman’s 
rank correlations. This analysis was limited to adult sub-
jects as BMI is not a metric that is appropriate to use in 
children. A detailed description of the influence of the 
apnea-hypopnea index (AHI) – an indicator of sleep dis-
ordered breathing severity – on performance can be found 
in the Supplementary Data.

Performance in Relation to Sleep Disorder Diagnosis
In order to understand the classifier’s behavior in the 
presence of different sleep disorders, we calculated κ and 
accuracy separately for each disorder category. The 
Wilcoxon rank-sum test was used to evaluate whether the 
performance differences with respect to the remaining 
participants were significant.

Sleep Statistics
As an intuitive indicator for the practical application of our 
model, we computed commonly used sleep statistics both 
on ground-truth PSG sleep stages and on the classified 
sleep stages by the algorithm. These included sleep onset 
latency (SOL), wake after sleep onset (WASO), total wake 
time (TWT), total sleep time (TST), sleep efficiency (SE) 
and time in N1+N2, N3 and REM. The average error (the 

difference between the PSG-based and the HRV-based 
statistic), standard deviation (SD), 95% limits of agree-
ment (LoA) corresponding to the mean difference ± 1.96 
x SD, and root mean square error (RMSE) were computed. 
A positive mean difference value indicates that the statistic 
tends to be underestimated by the algorithm-based method 
in comparison with PSG. The presence of proportional 
bias in the estimated sleep statistics was assessed by cal-
culating Spearman’s rank correlation between, on one 
hand, the average of the sleep statistic estimated with 
PSG and the algorithm, and on the other hand, the differ-
ence of the sleep statistic estimated with PSG and the 
algorithm.

All data are represented as mean ± SD unless otherwise 
stated. We used an alpha of 0.05 as significance level. All 
statistical analyses were conducted using Python (version 
3.7).25

Results
Cohort Description
Table 1 shows demographic information about the training 
and the validation dataset. Both datasets contained more 
men than women. The median age was lower for the 
validation set (46 years, IQR: 29–58 years) compared to 
the training dataset (52 years, IQR: 41–60 years), as the 
validation dataset comprised more children/adolescents. 
For adults, age did not significantly differ between the 
training and validation dataset (Wilcoxon rank-sum test 
p = 0.097). Median age for the adults in the training 
dataset was 52 years (IQR: 41–60 years) and 49 years 
(IQR: 35–61 years) in the validation dataset.

Table 2 indicates the total prevalence of each sleep 
disorder category in the validation dataset, together with 
the number of patients for whom each disorder was the 

Table 1 Demographic Information for Participants in the Training and Validation Datasets

Parameter Training dataset Validation dataset

Total Healthy 
sleepers

Sleep disordered 
patients

Total Adults Children/ 
adolescents

N (participants) 543 121 422 292 244 48

N Female [%] 225 [41.4] 67 [55.4] 158 [37.4] 106 [36.3] 86 [35.2] 20 [41.7]

Age [min., max.] 

(yrs)

49.4 ± 15.4  

[3, 86]

45.7 ± 13.8  

[18, 69]

50.5 ± 15.7  

[3, 86]

42.3 ± 19.7  

[3, 82]

48.4 ± 15.3  

[19, 82]

11.6 ± 4.4  

[3, 17]

BMI (kg/m2) 27.0 ± 5.0 25.2 ± 3.7 27.5 ± 5.23 – 27.2 ± 5.0 –
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single primary disorder. For adults, the most often occur-
ring combination of sleep disorders were sleep disordered 
breathing and insomnia (in six patients), and insomnia in 
combination with a sleep related movement disorder, also 
occurring in six patients. In the children/adolescents 
group, three participants had insomnia and a comorbid 
sleep disorder, including behavior-related sleep disorder, 
non-REM parasomnia or sleep-related bruxism.

Sleep Staging Performance
Epoch-per-Epoch Agreement
Table 3 shows the agreement between the algorithm-based 
sleep stage classifications and ground-truth PSG sleep stages 
in the validation dataset for the different sleep staging tasks. 

As expected, the most difficult task (4-class sleep staging) 
showed the lowest performance, which nonetheless was sub-
stantial (κ 0.62 ± 0.12, accuracy 76.4 ± 7.3). Overall, 3-class 
sleep staging showed the best performance. When assessing 
binary classification, ie, one sleep stage versus the rest, the 
performance was best for REM and worst for N1+N2.

Confusion Matrix
Table 4 shows the confusion matrix for the sleep stage 
classifications in all epochs of all recordings (a grand total 
of 298,219 epochs). Sleep stage N1+N2 was the most 
prevalent sleep stage. Most confusion in the classification 
of Wake, deep sleep (N3) and REM sleep occurred with 
this N1+N2 class. The two least prevalent classes (REM 

Table 2 Prevalence of Sleep Disorders in the Validation Dataset

Adults Children/Adolescents

Group Total Prevalence Single Primary Disorder Total Prevalence Single Primary Disorder

Sleep disordered breathing 114 86 15 15

Insomnia 71 40 11 8

Movement disorder 35 14 2 2

Behavioral sleep disorder 22 9 4 3

Non-REM parasomnia 15 12 6 4

REM parasomnia 17 6 0 0

Circadian disorder* - - 3 3

Other 34 17 2 1

None 0 - 8 -

Notes: The number of participants with the respective diagnoses are shown as a total; as well as the number of participants in whom the respective diagnosis was the single 
primary sleep disorder. *Circadian disorder was evaluated as a separate group for children/adolescents. For adults, the circadian disorder group was incorporated in the 
category “other” as it contained less than 10 participants.

Table 3 Overall Epoch-per-Epoch Agreement for Both Adults and Children/Adolescents

Task κ (-) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

Wake/N1+N2/N3/REM 0.62 ± 0.12 76.4 ± 7.3 n/a n/a n/a

Wake/NREM/REM 0.68 ± 0.11 85.2 ± 5.8 n/a n/a n/a

Wake (vs Sleep)a 0.66 ± 0.14 91.5 ± 5.4 73.1 ± 16.8 94.6 ± 5.9 74.3 ± 16.6

N1+N2a 0.54 ± 0.13 77.5 ± 6.7 78.0 ± 9.0 76.7 ± 11.6 78.8 ± 11.3

N3a 0.60 ± 0.22 90.8 ± 4.9 69.5 ± 24.3 94.8 ± 4.9 69.1 ± 24.8

REMa 0.69 ± 0.18 93.0 ± 3.9 78.2 ± 19.6 95.2 ± 3.7 71.8 ± 16.1

Note: aBinary classification tasks were assessed by a one versus the rest strategy, where one single class (Wake, N1+N2, N3 or REM) was considered as the “positive” class 
and the remaining classes were aggregated in a single “negative” class. 
Abbreviation: PPV, positive predictive value.
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and N3) showed the best and the second worst overall 
agreement, respectively, suggesting that the occurrence of 
a class is not associated with performance.

Influence of Demographic and Clinical 
Characteristics
Spearman’s rank correlation coefficients showed a weak asso-
ciation between age and κ (ρ = −0.30, p<0.001) and age and 
accuracy (ρ = −0.22, p<0.001), indicating a slight decrease in 
performance with increasing age. This was also suggested by 
a higher performance in children/adolescents compared to 
adults. A detailed description of the performance in chil-
dren/adolescents can be found in the Supplementary data 
Table S1. A significant difference in performance was found 
between sexes for κ (average κ: female = 0.63, male = 0.61, 
p < 0.05), but not for accuracy (average accuracy: female = 

0.77, male = 0.76, p = 0.27). For adults, no significant correla-
tions were found between BMI and κ or accuracy.

Performance in Relation to Sleep Disorder Diagnosis
Table 5 shows the 4-class sleep stage classification perfor-
mance per diagnosis category. The performance for 
patients with sleep disordered breathing was lower with 
respect to κ but not accuracy, compared to patients without 
this specific diagnosis (κ = 0.60 ± 0.12 vs κ = 0.63 ± 0.11, 
p = 0.024). The performance for patients with a diagnosis 
of non-REM parasomnia was significantly higher (both in κ 
as in accuracy) than for patients without that disorder. In 
contrast, for REM parasomnias, performance was lower 
than for patients without that condition. A detailed look at 
the performance for non-REM parasomnias and REM para-
somnias can be found in the Supplementary data Tables S2 

Table 4 Confusion Matrix for Sleep Stage Classification in All Epochs of All Recordings (N = 298,219)

Pred →  
Ref ↓

Wake N1+N2 N3 REM Prev. (-,(%)) Sens. 
(%)

κ (-)

Wake 41,962 (14.1%/ 

75.7%)

11,900 (4.0%/21.5%) 125 (0.04%/0.2%) 1468 (0.5%/2.6%) 55.455 (18.6) 75.7 0.72

N1+N2 10,595 (3.6%/6.8%) 122,603 (41.1%/ 

78.2%)

12,965 (4.3%/8.3%) 10,570 (3.5%/6.7%) 156.733 (52.6) 78.2 0.55

N3 310 (0.1%/0.7%) 13,480 (4.5%/30.0%) 30,795 (10.3%/ 

68.8%)

279 (0.09%/0.6%) 201.907 (15.0) 68.6 0.64

REM 837 (0.3%/2.0%) 7560 (2.5%/18.4%) 256 (0.09%/0.6%) 32,514 (10.9%/ 

79.0%)

41.167 (13.8) 79.0 0.72

PPV (%) 78.1 78.8 69.8 72.5

Notes: Each entry in the confusion matrix indicates the number of epochs. Between parentheses, the percentage relative to the total number of epochs of all classes is 
listed, followed by the percentage relative to the total number of epochs with the corresponding reference sleep stage for that row. 
Abbreviations: Prev., prevalence; Sens., sensitivity; PPV, positive predictive value.

Table 5 Performance for 4-Class Sleep Staging in Diagnostic Subgroups

Conditiona N κ (-) Accuracy (%)

Mean ± SD Median P-valueb Mean ± SD Median P-valuec

Sleep disordered breathing 129 0.60 ± 0.12 0.61 0.024* 75.57 ± 7.74 77.53 0.15

Insomnia 82 0.63 ± 0.11 0.63 0.43 77.16 ± 6.69 77.15 0.64

Movement disorder 37 0.61 ± 0.12 0.61 0.60 76.38 ± 8.24 78.38 0.89

Behavioral 26 0.62 ± 0.10 0.62 0.81 76.97 ± 5.80 77.16 0.96

Non-REM parasomnia 21 0.69 ± 0.07 0.70 0.0023** 80.06 ± 4.32 80.73 0.012*

REM parasomnia 17 0.55 ± 0.11 0.56 0.013* 72.30 ± 7.56 72.39 0.013*

Notes: aSubgroup of patients for whom the primary diagnosis includes that disorder. b,cWilcoxon rank-sum test of differences in κ and accuracy, respectively, between the 
subgroup of patients with that disorder and without. Bold values are statistically significant. **p < 0.01, *p < 0.05.
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and S3. For each of the remaining groups, no significant 
differences were found between patients with and without 
the respective disorder.

Sleep Statistics
Figure 1 illustrates a comparison between illustrative refer-
ence PSG hypnograms and algorithm-based hypnograms 

A D

B E

C F

Figure 1 Representative hypnograms of three patients with a single primary diagnosis of sleep disordered breathing (left panel: patient (A–C)) and three patients with 
a single primary diagnosis of insomnia (right panel: patient (D–F)). Hypnograms are shown based on the PSG reference (top) and the PPG/accelerometer algorithm 
(bottom). Hypnograms were taken from the 25, 50 and 75 percentiles of overall kappa with the lowest performance on top. REM sleep is marked with a red line. Some 
clinical aspects are relevant to mention. Patient (B) was diagnosed with very mild, but treatment responsive obstructive sleep apnea, but also had parasomnia complaints. 
Patient (D and E) had both sleep misperception and were thus diagnosed with paradoxical insomnia. Patient (E) was also diagnosed with a delayed sleep phase, explaining the 
occurrence of N3-sleep later in the night. Patient (F) was diagnosed with insomnia, receiving quetiapine at the time of PSG with good results.
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for three patients with sleep disordered breathing (A, B, 
and C) and three patients with insomnia (D, E, and F), 
based on the values of 25, 50 and 75 percentiles of overall 
kappa (κ= 0.54, κ= 0.62, κ=0.70). The hypnograms show 
that not only overall performance is adequate, but that the 
overall sleep architecture is captured as well, allowing 
clinical interpretation. From the examples, it is clear that 
the detection of wake is generally accurate, which is 
important in the assessment of sleep quality in general 
and sleep disorders in particular, for example in patients 
with insomnia. A detailed description of the performance 
of our model in insomnia is further provided in the 
Supplementary data Table S4. Figure 1 also illustrates 
that the algorithm has some difficulties with fragmentation 
of sleep stages in some cases.

Table 6 compares relevant overall sleep statistics esti-
mated with PPG/accelerometer data versus PSG for adults 
and children/adolescents. Overall, the bias for all sleep sta-
tistics was relatively small, although dispersion was present 
between subjects. The estimation of sleep efficiency with the 
algorithm was almost identical compared to PSG; bias was 
less than 1% with a SD below 10%. RMSE was smallest for 
REM sleep, which was also identified as the best performing 
class according to epoch-per-epoch agreement.

Spearman’s rank correlation showed a weak positive 
proportional bias indicating that the degree of the 

underestimation increased as wake after sleep onset 
increased (ρ = 0.19, p < 0.05). A weak negative proportional 
bias was found for sleep onset latency and REM, indicating 
that the degree of overestimation increased as sleep latency 
increased (ρ = −0.22, p < 0.001) and time in REM sleep 
increased (ρ = −0.17, p < 0.001). The Bland-Altman plots for 
sleep onset latency, wake after sleep onset, total sleep time 
and sleep efficiency are shown in the Supplementary data 
Figure S1.

Discussion
We developed an automatic sleep staging algorithm using 
PPG and accelerometry data obtained from a wrist-worn 
device. To our knowledge, this is the first study that 
evaluated the performance of a PPG-based sleep staging 
algorithm in such a large clinical population comprising 
adults, adolescents and children. Patients had a wide vari-
ety of sleep disorders, and many of them had multiple 
primary sleep disorders. Even for four-class sleep staging, 
the algorithm achieved substantial agreement with gold 
standard PSG. This agreement is in the same κ class as 
human interscorer agreement for five-class sleep staging.26 

Predominant confusions of our wearable method pertained 
between N1+N2 versus wake, N3 and REM. The discre-
pancy between N3 and N2 was also highest when compar-
ing two human expert scorers in another study.26 

Table 6 Sleep Statistics for Both Adults and Children/Adolescents

Parameter PSG PSG – Sleep Statistic Calculated by the Algorithm

Mean ± SD Range [min., max.] Mean Error ± SD 95% LoA RMSE

SOL (min) 18.68 ± 22.46 [0.00, 221.00] −5.28 ± 24.83 [−53.94, 43.38] 25.34

WASO (min) 72.33 ± 65.55 [4.50, 391.00] 9.80 ± 39.45 [−67.52, 87.13] 40.59

TWT (min) 94.96 ± 76.17 [5.00, 492.00] 2.93 ± 33.98 [−63.67, 69.53] 34.05

TST (min) 415.00 ± 85.32 [102.00, 651.50] −3.99 ± 34.08 [−70.78, 62.81] 34.26

SE (%) 81.25 ± 14.63 [19.01, 99.01] −0.70 ± 6.63 [−13.70, 12.30] 6.66

Time in N1+N2 (min) 267.68 ± 60.99 [47.00, 434.00] 1.24 ± 49.95 [−96.66, 99.15] 49.88

Time in N1+N2 (%) 65.02 ± 10.63 [33.33, 100.00] 0.59 ± 10.65 [−20.29, 21.47] 10.65

Time in N3 (min) 76.82 ± 40.69 [0.00, 237.50] 1.19 ± 40.25 [−77.70, 80.08] 40.20

Time in N3 (%) 18.49 ± 9.36 [0.00, 66.67] −0.62 ± 9.56 [−18.12, 19.35] 9.56

Time in REM (min) 70.49 ± 30.77 [0.00, 164.50] −6.42 ± 22.92 [−51.36, 38.30] 23.77

Time in REM (%) 16.49 ± 5.96 [0.00, 34.63] −1.21 ± 5.80 [−12.58, 10.16] 5.92

Abbreviations: PSG, polysomnography; SD, standard deviation; min., minimum; max., maximum; LoA, limits of agreement; RMSE, root mean square error; SOL, sleep onset 
latency; WASO, wake after sleep onset; TWT, total wake time; TST, total sleep time; SE, sleep efficiency; min, minutes.
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Importantly, the effect of age on sleep staging performance 
was limited, indicating that the algorithm is robust across 
all age categories.

We investigated the clinical utility of our method by 
comparing sleep measures estimated by the algorithm with 
those derived from PSG. Only a small average bias was 
found for each sleep statistic, albeit with variations 
between subjects. Our wearable method can thus provide 
clinically relevant information about a patient’s sleep pat-
tern, especially when visualized as a hypnogram. 
A difference in performance was found between men and 
women, but not of an extent that would imply conse-
quences for clinical use. Importantly, performance and 
estimation of sleep statistics were even better for children 
and adolescents, despite the limited number of children/ 
adolescents in the training dataset. The reason for this is 
not fully clear and several factors may contribute. For 
example, one could speculate that children have less 
sleep stage transitions. Our algorithm shows sometimes 
difficulties with the detection of high sleep fragmentation 
resulting in a better performance on patients with lower 
fragmentation. In addition, autonomic expression, and in 
particular parasympathetic activity, is stronger in children, 
as it is known that parasympathetic tone decreases with 
increasing age. We could assume that the performance of 
the algorithm is better in younger subjects with higher 
PNS activity, since it becomes easier to link high para-
sympathetic tone with sleep stage N3, regardless of how it 
was trained. Finally, the performance of our algorithm was 
lowest for patients with REM parasomnias and this sleep 
disorder was not present in the children/adolescents group, 
which could have contributed to the higher performance in 
this group.

Moreover, commercial wearables have mainly shown 
less reliable results in this population so far.27,28 As sleep 
disturbances are relatively common during childhood and 
PSG with its large number of body-worn sensors is often 
not well tolerated by children, a less obtrusive alternative 
for reliable sleep monitoring is highly needed.29,30 For 
example, infants, or children with developmental delays 
are unable to report their sleep patterns. In addition, par-
ents may become less involved with bedtime routines over 
time and may not be aware of their child’s sleep onset 
latency or nighttime awakenings.31,32

Our results achieved in this clinical population demon-
strate an improved performance compared to literature, 
even though studies reported so far were mainly performed 
in healthy populations. An overview of recent literature on 

automatic sleep staging using PPG signals, similar to our 
work, can be found in the Supplementary data Table S5. 
These studies achieved a kappa between 0.38 and 0.54, 
and accuracies between 60% and 69% for 4-class 
classification.33–35 Our method achieved a higher perfor-
mance on 4-class classification with an average kappa of 
0.62 and an accuracy of 76.4%, illustrating substantial 
improvement compared to the reported methods. A small 
note should be made that direct comparison of our results 
with the results reported in literature is slightly difficult 
due to the different study populations. In order to evaluate 
the performance of the model in healthy participants, it 
would be necessary to collect PPG and accelerometer data 
in this population.

Importantly, our algorithm shows relatively high agree-
ment for 2-class Wake/Sleep detection, which is a great 
advantage over actigraphy. Actigraphy is currently consid-
ered the most important clinical tool to obtain long-term, 
objective data on sleep-wake structure at home, despite its 
major limitation: its low ability to accurately detect 
wake.32 In the widely available consumer wearables, the 
sensitivity to estimate wake is catching up in healthy 
subjects, up to 83% in adolescents.36–38 However, the 
performance in sleep disordered patients still falls 
short.39,40 This highlights the importance for careful inter-
pretation of data collected by these consumer devices. 
Users may be convinced of having a sleep disorder based 
on the feedback provided by the sleep tracker, even when 
this is not the case. This condition was recently coined 
orthosomnia and sleep clinics are increasingly confronted 
with this phenomenon.41 An opposite, potentially perverse 
effect of an insufficient performance is that sleep trackers 
may fail to detect the presence of clinically relevant sleep 
disruptions, falsely reassuring the user while a sleep dis-
order remains undiagnosed. An overview of recently pub-
lished research on the ability to detect wake using 
actigraphy and consumer wearables can be found in the 
Supplementary data Table S5. These data show that our 
method achieved substantial improvements in performance 
compared to those available so far.

Our algorithm had most difficulties with classifying 
sleep stage N1+N2 and N3 relative to all sleep stages. 
This phenomenon is quite similar to (dis)agreement 
between human scoring in the assessment of slow waves 
using electroencephalogram (EEG) signals.42 When using 
a classification model based on HRV, this problem is 
slightly different, but still comparable. It is difficult to 
establish from which point onward the parasympathetic 
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tone, used as an autonomic hallmark for sleep stage N3, is 
strong enough to change the classification from sleep stage 
N2 to N3. These “continuous” changes in the autonomic 
spectrum remain an obvious limitation of the technology, 
at least when attempting to provide a surrogate to classical 
epoch-by-epoch PSG sleep staging.

Another important finding is that the algorithm some-
times shows difficulties with the detection of sleep frag-
mentation, despite the overall accurate representation of 
standard sleep architecture parameters. Short non-REM 
intrusions in REM sleep periods, for instance, are only 
occasionally detected by the algorithm (see illustrative 
fragmented REM sleep periods in Figure 1). Note that, 
according to the AASM scoring rules, a mixture of rapid 
eye-movements and spindles and/or K complexes should 
be scored as either stage REM or stage N2 depending on 
the actual occurrence of these events in the respective 30- 
second epochs.21 However, the algorithm identifies these 
sleep stages as REM sleep. Frequent stage shifts between 
N3 and N2 (see, eg, N3 sleep in patient B in Figure 1) are 
typically seen in periods where just about 20% of an epoch 
consists of slow wave activity as the threshold to score N3. 
The algorithm seems to be less sensitive to these border-
line cases.

Conclusion
In summary, this study shows the ability of automatic 
sleep staging using PPG and accelerometer measurements 
obtained with a wrist-worn device, in children, adolescents 
and adults with a wide variety of sleep disorders. The 
results demonstrate the maturity of this technique and the 
opportunities for remote, clinical, long-term sleep monitor-
ing. This may yield a significant change in the clinical 
approach to diagnosis and follow up of sleep disorders. In 
addition, it will allow a fundamentally new view on night- 
to-night variability of sleep as a basis for new pathophy-
siological insights.
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