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Establishment of a Strong Link 
Between Smoking and Cancer 
Pathogenesis through DNA 
Methylation Analysis
Yunlong Ma1,2 & Ming D. Li1,2,3

Smoking is a well-documented risk factor in various cancers, especially lung cancer. In the current study, 
we tested the hypothesis that abnormal DNAm loci associated with smoking are enriched in genes and 
pathways that convey a risk of cancer by determining whether smoking-related methylated genes led 
to enrichment in cancer-related pathways. We analyzed two sets of smoking-related methylated genes 
from 28 studies originating from blood and buccal samples. By analyzing 320 methylated genes from 
26 studies on blood samples (N = 17,675), we found 57 enriched pathways associated with different 
types of cancer (FDR < 0.05). Of these, 11 were also significantly overrepresented in the 661 methylated 
genes from two studies of buccal samples (N = 1,002). We further found the aryl hydrocarbon receptor 
signaling pathway plays an important role in the initiation of smoking-attributable cancer. Finally, 
we constructed a subnetwork of genes important for smoking-attributable cancer from the 48 non-
redundant genes in the 11 oncogenic pathways. Of these, genes such as DUSP4 and AKT3 are well 
documented as being involved in smoking-related lung cancer. In summary, our findings provide robust 
and systematic evidence in support of smoking’s impact on the epigenome, which may be an important 
contributor to cancer.

Cigarette smoking is a common adverse behavior resulting in various cancers1. Notably, smoking confers a higher 
risk for lung cancer, on average between 5- and 10-fold. In developed countries, smoking is responsible for more 
than four of five cases of lung cancer2. A recent World Health Organization report3 showed that smoking-related 
deaths worldwide are approximately 6 million annually, of which the main deadly cause is cancer.

More than 60 known carcinogens have been detected in cigarette smoke4, which include polycyclic aromatic 
hydrocarbons (PAHs), nitrosamines, and aromatic amines; all play a crucial role in tumorigenesis5. Nicotine per 
se not only is the main addictive compound causing smokers to continue to their habit but also makes a genotoxic 
contribution to the pathogenesis of cancer6. Most of these carcinogenic substances require metabolic activation 
to form DNA adducts that evoke genetic mutations and epigenetic reprogramming, which have been linked to 
genomic instability and other alterations4.

So far, many genetic association studies have revealed numerous variants underlying smoking-attributable 
cancers7–9. One of the most robust findings in genome-wide association studies is that variants in the 
CHRNA5/A3/B4 cluster on chromosome 15q24-25.1 show a significant association with both nicotine depend-
ence and lung cancer10. However, current genetics-based evidence is lacking for elucidating the carcinogenic 
mechanisms of cigarette smoking-associated cancers, which leads many researchers to focus on the function of 
smoking-associated DNA methylation (SA-DNAm).

DNA methylation, a reversible and heritable alteration that attaches a methyl group to a nucleotide, influences 
the expression of a disease by mediating transcriptional regulation of genes11, alternative splicing12, or the integ-
rity of the genome13. Recent studies have demonstrated an important role for changes in DNAm during the earlier 
stages of carcinogenesis14, 15. Furthermore, multiple lines of evidence from candidate gene-specific methylation 
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(GSM) studies16 have indicated that aberrant DNAm in the promoter region of susceptibility genes for cigarette 
smoking confer a risk of cancer.

As high-throughput next-generational sequencing and array platforms emerge, our research approach and 
concept have been converted from hypothesis-driven exploration to data-driven hypothesis generation17. Many 
epigenome-wide association studies (EWASs) have revealed a greater number of DNAm loci associated signifi-
cantly with in utero effects of either maternal smoking18 or smoking in adulthood19. Besides, several studies have 
indicated that sustained exposure to cigarette smoke is an indicator of epigenetic reprogramming at a global level 
by measuring the methylation of repetitive elements, such as those of Sat220 and LINE-121.

To the best of our knowledge, there has been no study that provides a systematic analysis of these identified 
SA-DNAm loci with the system biology approach for smoking behavior. Our working hypothesis was that abnor-
mal DNAm loci associated with smoking are enriched in important genes and biological pathways, which convey 
a risk of the initiation and progression of cancer. The primary objective of this study was to test this hypothesis 
by determining whether these methylated genes in smokers are indeed enriched in well-documented biological 
pathways implicated in the etiology of cancer.

Results
Genes enriched by SA-DNAm from blood samples.  Following the procedure described in 
Supplementary Figure S1, 28 studies published between 2008 and 2015 were identified, which included 9 candi-
date GSM studies and 19 EWASs (N = 18,677 subjects; Supplementary Table S1). Of them, 26 studies were from 
17,675 blood samples. For the blood samples, 320 SA-DNAm-enriched genes with at least two independent pieces 
of evidence were included for the pathway-based analysis in the discovery stage. A list of the genes from the blood 
samples is shown in Supplementary Table S2.

Overrepresented pathways of genes from blood samples.  In the discovery stage, we did pathway 
analysis of 320 genes significantly methylated by smoking, which revealed 90 overrepresented biological pathways 
with an FDR Q value of <0.05 (Supplementary Table S4). Of these, 57 pathways were reported to be associated 
with the etiology of cancer (Supplementary Table S5). For example, the most significant pathway of “MSP-RON 
signaling” (FDR Q value = 2.2 × 10−4; see Table 1) has been implicated in regulating the activity of macrophages 
in response to inflammatory stimuli related to epithelial and leukemic carcinogenesis22. The second significant 
one, “RAR activation,” was overrepresented by 12 identified genes (FDR Q value = 3.7 × 10−4) and has been 
prominently associated with the development of cancer23.

Furthermore, some of these overrepresented pathways cause vulnerability to a specific type of can-
cer (Supplementary Table S5), such as the pathways of “non-small cell lung cancer signaling” (FDR Q 
value = 9.6 × 10−3), “small cell lung cancer signaling” (FDR Q value = 0.012), “pancreatic adenocarcinoma sign-
aling” (FDR Q value = 0.017), “renal cell carcinoma signaling” (FDR Q value = 0.026), “ovarian cancer signaling” 
(FDR Q value = 0.026), and “prostate cancer signaling” (FDR Q value = 0.041). In addition, many other overrep-
resented pathways are involved in the oncogenic process of various cancers, which include “actin cytoskeleton 
signaling” (FDR Q value = 7.1 × 10−4), “signaling by rho family GTPases” (FDR Q value = 1.5 × 10−3), “AMPK 

Canonical Pathway
No. of 
Genes P value FDR

MSP-RON signaling pathway 8 6.17 × 10−07 0.00022

RAR activation 14 2.04 × 10−06 0.00037

Rac signaling 10 6.17 × 10−06 0.00071

Actin cytoskeleton signaling 14 7.94 × 10−06 0.00071

Aryl hydrocarbon receptor 
signaling 11 1.15 × 10−05 0.00083

Signaling by Rho family 
GTPases 14 2.51 × 10−05 0.0015

AMPK signaling 12 2.951 × 10−05 0.0016

Renin-angiotensin signaling 9 6.03 × 10−05 0.0028

Molecular mechanisms of 
cancer 17 7.41 × 10−05 0.0030

CXCR4 signaling 10 0.00017 0.0058

ERK/MAPK signaling 11 0.00021 0.0058

HER-2 signaling in breast 
cancer 7 0.00021 0.0058

Thrombin signaling 11 0.00022 0.0058

HGF signaling 8 0.00027 0.0060

Relaxin signaling 9 0.00028 0.0060

Role of tissue factor in cancer 8 0.00033 0.0063

Non-small cell lung cancer 
signaling 6 0.00060 0.0096

Table 1.  Overrepresented Pathways Underlying Smoking-Attributable Cancer from Blood Samples 
(FDR < 0.01).

http://S1
http://S1
http://S2
http://S4
http://S5
http://S5


www.nature.com/scientificreports/

3Scientific Reports | 7: 1811  | DOI:10.1038/s41598-017-01856-4

signalling” (FDR Q value = 1.6 × 10−3), and “ERK/MAPK signaling” (FDR Q value = 5.8 × 10−3) (Supplementary 
Table S5).

Common molecular pathways in blood and buccal samples.  To validate the findings from blood 
samples, we conducted a similar pathway-based analysis for significantly methylated genes from the buccal 
samples, which revealed 32 common pathways in the two kinds of samples (P < 0.05; Supplementary Table S6). 
Among them, 11 pathways were associated with cancer (Table 2), including “RAR activation,” “actin cytoskeleton 
signaling,” “aryl hydrocarbon receptor signaling,” “signaling by rho family GTPases,” and “molecular mecha-
nisms of cancer.” This provides evidence that these pathways are highly likely to contribute to the pathogenesis of 
smoking-attributable cancer.

Interestingly, various crucial cancer-related genes, such as AHRR, CYP1A1, TNF, SMARCA4, CDK6, RARA, 
RXRB, CDKN1A, RARG, and NFE2L2, were enriched in the “aryl hydrocarbon receptor signaling pathway” 
(Supplementary Table S5), through which abnormal epigenetic programming may trigger smoking-attributable 
cancer (Fig. 1). Figure 2 presents a schematic model of major oncogenic pathways underlying the molecular 
mechanism of smoking-attributable cancer.

Similar to pathway analysis, we did a GO analysis for those significantly methylated genes from both blood 
and buccal samples. In the blood sample, we found 19 enriched categories of molecular functions, with an FDR 
Q value < 0.05 (Supplementary Table S7). The most significantly enriched gene set was “transcription activa-
tor activity,” with an enrichment of 3.22 (FDR Q value = 1.92 × 10−4). The second most significant one was 
“sequence-specific DNA binding,” with an enrichment of 2.73 (FDR Q value = 1.92 × 10−4). Seven categories of 
molecular functions were detected in the buccal samples as well (Table 3).

To gain insights from the pathological viewpoint, we did disease-focused enrichment analysis on those genes 
significantly methylated by smoking in both blood and buccal cells. The most significantly enriched disease was 
cancer (Supplementary Figure S2). This again indicates that many of these genes methylated by smoking are 
indeed correlated with cancer.

Subnetwork constructed from the 11 common cancer-related pathways.  Considering the pres-
ence of a significant number of overlapping genes among the 11 common pathways, we selected 48 non-redundant 
genes based on their biological functions and appearance frequencies among the common pathways and used 
them to construct a cancer-associated molecular subnetwork (Fig. 3). The well-documented cancer-related genes 
NOTCH1, CDKN1A, EGR1, AKT3, TNF, MMP9, and SMARCA4 are located in the center of this newly con-
structed subnetwork (Fig. 3).

48 smoking-related methylated genes contribute to lung cancer.  To gain further evidence of the 
contribution of the 48 methylated genes to cancer, we investigated the relation between RNA expression and 
methylation for the genes in the TCGA dataset. Among these genes, we found 148 methylation sites in different 
regions, with the largest number located in the gene body and 5′UTR (Fig. 4a). After examining the correla-
tion between methylation loci and RNA expression in lung adenocarcinoma (LUAD) and lung squamous-cell 
carcinoma (LUSC) samples, we found that large portions of the methylation loci were significantly positively 
or negatively correlated with RNA expression in both LUAD (Fig. 4b and Supplementary Tables S8 and S9) 
and LUSC (Fig. 4c and Supplementary Tables S10 and S11). Most of the methylation loci correlated with RNA 
expression were located in the gene body and 5′-UTR in both LUAD (Supplementary Figure S3a,b) and LUSC 
(Supplementary Figure S3c,d).

Canonical Pathway

Discovery Sample (blood) Validation Sample (buccal)

No. of 
Genes P value FDR

No. of 
Genes P value

RAR activation 14 2.04 × 10−06 0.00037 13 0.008

Actin cytoskeleton signaling 14 7.94 × 10−06 0.0007 13 0.019

Aryl hydrocarbon receptor 
signaling 11 1.15 × 10−05 0.0008 11 0.004

Signaling by Rho family 
GTPases 14 2.51 × 10−05 0.002 13 0.039

Molecular mechanisms of 
cancer 17 7.41 × 10−05 0.003 28 1.55 × 10−05

G-protein coupled receptor 
signaling 12 8.51 × 10−04 0.012 17 0.004

PTEN signaling 7 0.003 0.021 9 0.014

Axonal guidance signaling 15 0.004 0.025 22 0.020

Colorectal cancer 
metastasis signaling 10 0.004 0.025 13 0.036

GNRH signaling 7 0.005 0.025 9 0.021

Breast cancer regulation by 
stathmin1 8 0.012 0.049 12 0.020

Table 2.  Eleven Overrepresented Cancer-Related Pathways in Both Blood and Buccal Samples. Note: The cut-
off threshold of discovery samples was FDR < 0.05 and that of validation samples was P < 0.05.
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Interestingly, the majority of methylation loci correlated with the expression of the associated genes in both 
the LUAD and LUSC samples showed consistent directions (Fig. 4d). There were 18 methylation probes showing 
a positive correlation with RNA expression in both LUAD (51.4%) and LUSC (69.2%), and 25 methylation probes 
showing negative correlation with RNA expression in both LUAD (58.1%) and LUSC (67.6%). For example, the 
cg07151117 probe located in the 5′-UTR of DUSP4, the cg27514333 probe located in the gene body of SMAD6, 
and the cg26271591 probe located in the 5′-UTR of NFE2L2 correlated in a significantly negatively way with 
RNA expression in both LUAD (Table 4, Fig. 5a,b, and Supplementary Figure S4a,b) and LUSC (Table 4 and 
Supplementary Figures S5a,b and S6a,b), and the cg11314684 probe in the gene body of AKT3, the cg02385153 
probe in the gene body of AHRR, and the cg24538512 probe in the gene body of NFATC1 were significantly 
positively correlated with RNA expression in both LUAD (Table 4 and Supplementary Figure S4c,d) and LUSC 
(Table 4 and Supplementary Figure S5c,d).

On the other hand, we found that most of the methylation loci that correlated with RNA expression 
were significantly differentially expressed in the control tissues vs. cancer in both LUAD and LUSC samples 
(Supplementary Table S12 and Supplementary Figures S7 and S8). This is especially true for DUSP4. There were 
two methylation probes (cg07151117 and cg24379915) of this gene showing significant correlation with RNA 
expression in both LUAD (Table 4 and Fig. 5a,b) and LUSC (Table 4 and Supplementary Figure S6a,b). The 
cg07151117 probe showed the strongest inverse correlation between methylation and expression in LUAD sam-
ples (r = −0.742; P < 0.001; see Table 4 and Fig. 5a). The cg24379915 probe was negatively correlated with DUSP4 
expression in the LUAD samples (r = −0.657; P < 0.001; see Table 4 and Fig. 5b). Compared with normal tissues, 
there were two hypomethylation probes of DUSP4 in cancer tissues (Fig. 5c,d and Supplementary Figure S6c,d). 

Figure 1.  The pathway of “aryl hydrocarbon receptor signaling”-initiated smoking-related cancer. Arrows show 
event flow. –m represents hypomethylation, and +m represents hypermethylation. The plot was generated using 
Microsoft PowerPoint. Under normal circumstances, toxic substances from cigarette smoke, including PAHs, 
nitrosamines, and aromatic amines, could enter the bloodstream through the alveolar capillary system and be 
taken up by pulmonary cells. Toxic chemicals such as the PAHs bind to transcription factor AhR, which results 
from the dissociation of AhR and an associated chaperone protein (Chap) complex. After translocating to the 
nucleus, PAHs and AhR dissociate, and AhR is dimerized with ARNT, which is produced from the AhRR–
ARNT complex. The resulting complex binds to the XRE in the promoter of CYP1A1 to enhance the expression 
of CYP1A1. The CYP1A1 then metabolizes PAHs into hydrophilic intermediates such as B[a]-7,8-dihydrodiol-
9,10-epoxide (BPDE), which can be detoxified through the glutathione S-transferase (GST) family of enzymes 
or, in an alternative manner, form DNA adducts. Under abnormal circumstances, CYP1A1 is -m or AhRR has 
altered methylation (−m or +m) that may extraordinarily enhance the expression of CYP1A1, which could 
induce more DNA adduct formation that results in miscoding of the DNA sequence. Under long-term smoking 
exposure, the DNA sequence suffers persistent miscoding that triggers epigenetic changes in many critical 
cancer genes, such as NOTCH1, ATK3, DUSP4, SMAD6, and SMARCA4.
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Consistently, the associations of smoking with the two methylation probes of DUSP4 in LUAD samples (Fig. 6a 
and b) were in line with the finding that these two CpG loci of DUSP4 tended to be hypomethylated in smokers, 
as found by previous EWASs24, 25.

Discussion
In recent years, many studies have emphasized the association of current smoking with DNAm, which is consid-
ered a critical mediating factor in the pathogenesis of cancer. In light of epidemiologic evidence indicating that 
cigarette smoking is highly correlated with cancer, we performed a systematic bioinformatics analysis with the 
goal of revealing the underlying mechanism of smoking-attributable cancer from an epigenetic point of view, 

Figure 2.  Schematic representation of the major enriched pathways underlying smoking-attributable cancers. 
Accumulating evidence indicates that smoking prominently induces cancer development. Based on the 
DNAm-enriched genes associated with smoking, we identified various overrepresented pathways. The major 
pathways were then linked on the basis of their biological relations originating from the database of IPA and 
reported literature. The dashed line representing the link between two pathways was reviewed from the reported 
literature. The plot is generated using Microsoft PowerPoint.

GO-ID
Molecular 
Function

Blood Sample Buccal Sample

No. of 
Genes P value FDR

No. of 
Genes P value FDR

0043565 Sequence-specific 
DNA binding 30 6.20 × 10−07 0.00019 43 1.91 × 10−05 2.15 × 10−03

0005515 Protein binding 178 2.63 × 10−06 0.00054 325 5.54 × 10−05 5.47 × 10−03

0030528 Transcription 
regulator activity 48 2.54 × 10−05 0.0026 88 5.93 × 10−07 2.34 × 10−04

0005488 Binding 239 4.26 × 10−05 0.0038 466 5.79 × 10−06 9.14 × 10−04

0003700 Transcription 
factor activity 30 1.12 × 10−03 0.032 62 9.90 × 10−07 2.57 × 10−04

0008092 Cytoskeletal 
protein binding 19 1.42 × 10−03 0.038 37 1.72 × 10−05 2.15 × 10−03

0019899 Enzyme binding 22 1.61 × 10−03 0.038 38 7.14 × 10−04 4.70 × 10−02

Table 3.  Gene Ontology (GO) Analysis Reveals Common Molecular Functions of Genes from Both Blood and 
Buccal Samples.
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Figure 3.  Gene subnetwork constituted by genes from the 11 common oncogenic pathways. The protein–
protein interactions were based on the database of STRING v 10.0. We used Cytoscape software to 
visualize the subnetwork. The color of a node indicates the methylation direction of CpG loci in a gene. 
Red = hypermethylation, green = hypomethylation, and yellow = both hyper- and hypomethylation at different 
sites. The edges of the genes represent predicted functional links. The number of edges in each gene was used for 
determining the node size, of which NOTCH1 is the biggest.

Figure 4.  Methylation loci of the 48 identified genes. (a) Proportion of methylation loci in different regions. 
(b) Proportion of methylation loci that showed no, positive, or negative correlation with RNA expression in 
LUAD samples. (c) Proportion of methylation loci that showed no, positive, or negative correlation with RNA 
expression in LUSC samples. (d) Venn diagram shows that many methylation loci correlate consistently with the 
degree of expression of the associated gene in both LUAD and LUSC.
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which revealed a group of genes and pathways implicated in the pathology of interest. Based on the findings from 
the current study and previous biological evidence, we present a schematic model for elucidating the biological 
effects of smoking on cancer pathogenesis (Fig. 2).

CpG Locus
Chromosome: 
Position Gene Region

Gene 
Name

Correlation 
Coefficient (r) P value

Cancer 
Type

cg07151117 8: 29204954 5′UTR, body DUSP4 −0.742 <0.001

LUAD

cg24379915 8: 29202958 Body DUSP4 −0.657 <0.001

cg27514333 15: 66996626 Body SMAD6 −0.422 <0.001

cg04265051 11: 68079686 TSS +/− 1500 LRP5 −0.396 <0.001

cg04813697 10: 22920025 Body PIP4K2A −0.395 <0.001

cg24538512 18: 77233465 Body NFATC1 0.503 <0.001

cg05944967 18: 77166811 5′UTR, body NFATC1 0.459 <0.001

cg02385153 5: 404766 Body AHRR 0.442 <0.001

cg11314684 1: 244006288 Body AKT3 0.404 <0.001

cg10841124 5: 433274 Body AHRR 0.367 <0.001

cg26271591 2: 178125956 5′UTR, body NFE2L2 −0.544 <0.001

LUSC

cg07151117 8: 29204954 5′UTR, body DUSP4 −0.485 <0.001

cg27514333 15: 66996626 Body SMAD6 −0.460 <0.001

cg19572487 17: 38476024 5′UTR RARA −0.407 <0.001

cg10062919 17: 38503802 Body RARA −0.407 <0.001

cg11314684 1:244006288 Body AKT3 0.422 <0.001

cg03604011 5: 400201 Body AHRR 0.334 <0.001

cg11902777 5: 368843 Body AHRR 0.324 <0.001

cg26850624 5: 429559 Body AHRR 0.323 <0.001

cg07805542 1: 9779309 Body PIK3CD 0.311 <0.001

Table 4.  Top-Ranked Negative and Positive Correlation between Methylation and RNA Expression in Lung 
Adenocarcinoma (LUAD) and Lung Squamous-Cell Carcinoma (LUSC).

Figure 5.  Two methylation probes of DUSP4 in LUAD samples. (a) Correlation of cg07151117 probe with 
RNA expression in control and cancer cells. (b) Correlation of cg24379915 probe with RNA expression in 
control and cancer cells. (c) Extent of methylation of cg07151117 probe in control and cancer cells. (d) Extent of 
methylation of cg24379915 probe in control and cancer cells. P value was calculated by the Wilcoxon-rank sum 
test.
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There are two types of studies used to discern the association between smoking and DNAm: candidate GSM 
and EWAS. For candidate GSM studies, only a limited number of CpG sites mapped to a candidate gene of inter-
est can be investigated. In contrast, a significant number of CpG sites can be studied with EWASs24–26. Although 
EWAS is powerful for identifying novel methylated CpG sites, many confounding factors remain unresolved. 
For example, in light of the tens of thousands of CpG sites that could be analyzed simultaneously in an EWAS, 
a significant proportion of reported studies might not have had a large enough sample to decrease the rate of 
false-positive associations evoked by multiple testing. Further, the presence of epigenetic and genetic heterogene-
ity and multiple interacting genes can limit the identification of the underlying molecular mechanism of complex 
diseases. Thus, pathway-based analysis is useful not only for reducing the influence of false-positive findings but 
also to collaborate the reported genes statistically based on particular biological functions to uncover the mean-
ingful networks conveying the risk of smoking-induced cancer. In the current study, although we used three bio-
informatics tools (i.e., IPA, EnrichNet, and GeneTrail) based on different databases to conduct the pathway-based 
analysis, the main findings were generated by the IPA.

Two independent SA-DNAm-enriched gene sets were extracted from blood and buccal samples. Among the 
genes from blood samples, many have strong association signals with smoking with multiple replications, such as 
AHRR, F2RL3, AKT3, and GFI1. For example, AHRR, a tumor suppressor gene on chromosome 5p15.33, encodes 
a class E basic helix–loop–helix protein that dampens the translocation of AHR–ligand complex to the nucleus. 
Knockdown of AHRR is correlated with greater tumor cell invasiveness in many tissues, including those of the 
lung, colon, ovary, and breast27. The F2RL3 protein is related to platelet activation and coagulation, as well as to 
cell signaling. Epigenetic association studies28, 29 have provided consistent evidence that F2RL3 methylation pre-
disposes to implicatation in lung or colon cancer. By performing a genome-wide methylation analysis, Fasanelli 
et al.30 demonstrated that smoking-induced hypomethylation in AHRR and F2RL3 contributes to the risk of 
lung cancer, providing evidence of specific altered methylation that can mediate the effect of smoking on cancer 
pathogenesis. Very recently, Joehanes et al.31 conducted a meta-analysis of genome-wide DNA methylation for the 
effect of smoking on DNA methylation based on 15,907 blood-derived DNA samples from subjects in 16 cohorts. 
By comparing current smokers (N = 2,433) with never smokers (N = 6,956), 18,760 CpG sites annotated to 7,201 
genes were found to be differentially methylated at a genome-wide false discovery rate (FDR) <0.05. Although 
these results replicated many previously reported loci, including CpGs annotated to AHRR, RARA, and F2RL3, 
the authors did not use an independent sample to replicate most of the identified CpG loci. By performing an 
enrichment analysis for smoking-related phenotypes in the NHGRI-EBI GWAS Catalog, these authors found that 
these smoking-related methylated genes were significantly overrepresented in all types of cancer (P = 8.0 × 10−15), 
lung adenocarcinoma (P = 1.5 × 10−3), and colorectal cancer (P = 1.4 × 10−3), which is in line with our findings. 
In comparison, we found that 95.6% (306/320) of the genes identified in blood samples and 68.7% (454/661) of 
those in buccal samples overlapped with the genes (N = 7,201) of Joehanes’ study, which offers supportive evi-
dence of the importance of the smoking-related methylated genes used in current study.

Figure 6.  Associations between smoking and methylation of DUSP4 in LUAD samples. (a) Methylation probe 
of cg07151117. (b) Methylation probe of cg24379915. *P < 0.05, **P < 0.01, and ***P < 0.001.
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By employing a systematic statistical analysis, several intriguing findings emerged from our analyses, which 
probably never would have been identified in any individual epigenetic association study, including EWAS. Our 
analysis of methylated genes from blood corroborated the view that many oncogenic pathways were signifi-
cantly associated with smoking, including non-small-cell lung cancer signaling, small-cell lung cancer signaling, 
prostate cancer signaling, and renal-cell carcinoma signaling. Furthermore, many other enriched pathways, for 
example MSP-RON signaling, RAR activation, rac signaling, and actin cytoskeleton signaling, which have been 
associated with the etiology of cancer in previous studies (Supplementary Table S5), were remarkably linked with 
smoking. For instance, the retinoic acid receptors (RARs) have potent anti-proliferative and anti-inflammatory 
properties, suppressing the activity of transcription factors AP-1 and NF-κB. Our findings thus suggest that 
abnormalities in the pathway of “RAR activation” confer susceptibility to cancer. Recently, Guilhamon et al.32 
reported that the “RAR activation” pathway is affected by differential methylation in cancers.

To confirm our findings using blood samples, we conducted an independent pathway-based analysis of meth-
ylated genes from buccal cells, which validated 11 cancer-related pathways. This confirmation indicates that these 
common oncogenic pathways play important roles in the pathology of smoking-attributable cancer. Particularly, 
the pathway of aryl hydrocarbon receptor signaling plays a crucial role in detoxification of the toxic components 
of cigarette smoke, including PAHs, nitrosamines, and aromatic amines33. If there were aberrant modifications 
in this biological regulation, these toxic substances could directly influence the epigenetic profile of circulating 
whole blood cells or other tissues. Using mice lacking the aryl hydrocarbon receptor (AhR), several studies34 have 
shown that AhR regulates angiogenesis by activating vascular endothelial growth factor in the endothelium and 
inactivating tumor growth factor-β in the stroma; both are important in supporting the proliferation of tumor 
cells by supplying nutrients and oxygen. Together, abnormal smoking-related DNAm in the aryl hydrocarbon 
receptor signaling pathway may induce more DNA adduct formation that leads to miscoding of the sequence of 
DNA (see Fig. 1). With long-term smoking exposure, the DNA sequence suffers persistent miscoding that triggers 
epigenetic changes in various vital oncogenes, such as NOTCH1, ATK3, DUSP4, SMAD6, and SMARCA4, in the 
major enriched pathways (see Fig. 2) and leads to carcinogenesis, indicating that the aryl hydrocarbon receptor 
signaling pathway probably is implicated in the initiation of smoking-induced cancers.

Because pathway-based analysis cannot identify genes that work across different pathways, network analysis 
has been widely used to search for groups of functionally related genes that may collectively convey susceptibility 
to diseases such as cancer. In addition, because abnormal methylation may be implicated in cancer development 
through regulation of gene expression, we explored whether the smoking-associated methylation loci were corre-
lated with RNA expression of genes identified in LUAD and LUSC. Thus, by using the web-based tool STRING35, 
we offer a subnetwork for the 48 non-redundant genes among the 11 common oncogenic pathways. Of note, 47 
of the 48 genes (97.9%) in the subnetwork overlapped with the genes mapped by smoking-related CpG loci at a 
genome-wide FDR < 0.05 in Joehanes’s study31. Many of the 48 genes play essential roles and have been implicated 
in a variety of cancers. For example, the hub gene of NOTCH1, encoding one of the four Notch receptors, has an 
important role in a signaling pathway that is involved in multifaceted regulation of cell survival, proliferation, 
tumor angiogenesis, and metastasis36. A substantial body of research shows that NOTCH1 is correlated with 
the pathology of cancer37. By cross-talking with many other critical cancer genes and pathways, NOTCH1 plays 
a fundamental role in cancer pathogenesis. Aberrant methylation of NOTCH1 may thus lead to a greater risk 
of smoking-induced cancer. Besides, the SWI/ShNF chromatin-remodeling complex, which has been linked to 
lung, pancreas, breast, and colon cancer38, is comprised of a catalytic subunit of either SMARCA4 or SMARCA2. 
The product of SMARCA4 modulates gene expression by using the energy of ATP hydrolysis to modify chro-
matin structure. Both DNA mutation and methylation influence the expression of SMARCA4 in cancers such 
as Burkitt lymphoma39, ovarian carcinoma40, and lung cancer41. Consistently, two methylation loci (cg18040892 
and cg23963476) were significantly inversely correlated with RNA expression of SMARCA4 in LUSC samples. The 
extent of methylation of the cg23963476 probe, which is hypomethylated in smokers25, was significantly lower in 
LUSC tissues than in control tissues, suggesting that smoking-associated hypomethylation of SMARCA4 elicits 
the development of lung cancer.

Furthermore, the DUSP4 gene, which interacts with the hub genes TNF and EGR1, plays an important role 
in the subnetwork of 48 genes involved in oncogenesis. DUSP4, which belongs to dual-specificity phosphatase 
(DUSPs) family, regulating the activity and location of MAPKs, is a negative regulator of extracellular-regulated 
kinase activity and is upregulated in EGFR-mutant lung cancer cell lines compared with K-ras-mutant cells42. 
Coincidently, a group of investigators reported that allelic loss of DUSP4 led to underexpression of DUSP4 in 
EGFR-mutant lung adenocarcinoma43. In addition, numerous studies have shown that DUSP4 acts as a tumor 
suppressor44, 45 or promotes cancer progression46, 47 depending on cancer type. In the present study, we found 
that two smoking-associated methylation probes (cg07151117 and cg24379915) that are correlated with RNA 
expression of DUSP4 were significantly hypomethylated in both LUAD and LUSC cancer tissues compared with 
the control samples. These results indicate that hypomethylated DUSP4 is involved in smoking-induced lung 
cancer. Together, our proposed subnetwork of 48 genes is not only enriched for genes associated with cancer but 
also associates with smoking-attributable cancer.

There are several limitations to the present study. First, a number of human genes are uncharacterized or not 
mapped to manually curated or computationally predicated pathways. Therefore, the effects of these unique genes 
cannot be delineated in our pathway-based analysis. Second, smoking-associated or methylation-associated con-
founding factors, such as alcohol consumption and body mass index, which were not adjusted for in many of the 
studies we included, may contribute to the heterogeneity. Third, 661 genes were collected from two buccal-based 
studies with 1,002 subjects, whereas 320 genes were extracted from 26 blood-based studies with a much larger 
number of 17,675 subjects. This might imply that there were more false-positive methylated genes in buccal-based 
studies than in blood-based studies. Thus, we used the methylated genes from blood samples more extensively for 
pathway-based analysis and used the methylated genes from buccal samples only for replication. Finally, because 
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of the limitation of the cross-sectional design-based study, which was adopted by all the studies we examined, we 
could not determine whether changes in DNAm were direct consequences of smoking or part of its pathology.

In sum, the present study marks one of the first comprehensive pathway-based analyses of the abnormal 
methylation of DNA in adult smokers. Our findings indicate strongly that cigarette smoking causes prominent 
alterations in DNAm enriched in numerous genes and biologically meaningful pathways implicated in cancer 
pathology. This provides strongly and holistically epigenetics-based evidence in support of the carcinogenic effect 
of smoking on cancer. However, our understanding of the contribution of smoking-related DNAm to cancer 
pathogenesis is still in an early stage. More studies are warranted to reveal the specific function of aberrant meth-
ylation of particular genes in response to smoking in the development of cancer. Such understanding will have 
clinical implications for the personalized treatment of smoking-attributable cancer.

Methods
To identify all studies on the association of cigarette smoking with alterations in DNAm, a total of 1,447 studies 
published prior to June 13, 2015, were retrieved from the PubMed database. The key words used for the search 
were “smoking,” “smoke,” “tobacco,” “nicotine,” “cigarette,” and “methylation.” All abstracts of these reports were 
reviewed for potentially eligible papers. We also manually checked the references individually for additional stud-
ies not indexed by the PubMed database.

To eliminate or minimize false-positive findings, we narrowed our selection criteria by choosing genes with 
significant reported associations with smoking. Once a paper met the inclusion criteria, the full text of the arti-
cle was reviewed to ensure the conclusion was in accordance with the content. After rigorous and systematic 
screening, 28 epigenetic association studies consisting of 9 candidate GSM studies and 19 EWASs were included, 
among which 26 studies were conducted on DNA extracted from whole blood and 2 on DNA from buccal cells 
(Supplementary Table S1).

At first, we used the genes from the blood samples (Supplementary Table S2) to discover the underlying 
pathways associated with cigarette smoking. To enhance the reliability of our study, we included only those genes 
whose relevance is supported by at least two independent pieces of evidence (i.e., there are two or more sig-
nificant CpG loci within a gene or there is only one significant methylation locus in a gene but the finding has 
been replicated in two or more independent samples). Under the same inclusion criteria, we also extracted an 
independent list of genes from buccal cells (Supplementary Table S3) to validate the pathways identified from the 
blood samples.

Identification and validation of enriched biological pathways.  To obtain a comprehensive 
understanding of the influence of smoking on cancer from an epigenetic perspective, we conducted stepwise 
pathway-based analyses for the two types of samples using the bioinformatics tools of Ingenuity Pathway Analysis 
(IPA)48, EnrichNet49, and Genetrail50.

For IPA, the core part is the Ingenuity Pathways Knowledge Base (IPKB), which is a well-organized proprie-
tary database consisting of extensive information on the functions or interactions of each gene or protein. Based 
on defined biological knowledge, IPA can analyze a user-defined set of genes for molecular functions, canonical 
pathways, or cellular networks. With the IPA application, the significance of each identified pathway is calcu-
lated as follows: (1) the number of input genes mapped to a given pathway in the IPKB database, denoted by m; 
(2) the number of genes included in the pathway, denoted by M; (3) the total number of input genes mapped 
to the IPKB database, denoted by n; and (4) the total number of known genes included in the IPKB database, 
denoted by N. The significance of gene enrichment in the canonical pathways then is calculated using a one-tailed 
Fisher’s exact test51. A P value of <0.05 indicates a statistically significant link between the gene and a given 
pathway. Nevertheless, because many canonical pathways are examined simultaneously, we used the method of 
Benjamini-Hochberg52 to correct for multiple testing.

Two other web-based bioinformatics tools (i.e., EnrichNet and GeneTrail) for pathway analysis depend on 
popular public databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)53, Wiki pathways54, 
and Biocarta pathway55. By using overrepresentation analysis, these tools could be applied for identification, pri-
oritization, and analysis of functional associations between user-collected gene sets and specified canonical path-
ways. Furthermore, we used the Biological Networks Gene Ontology tool (BiNGO; v 2.44)56 for Gene Ontology 
(GO) analysis, where GO terms are significantly overrepresented in a set of genes calculated by the hypergeomet-
ric test57 (FDR Q value < 0.05). ReViGO with default parameters58 was used to remove the redundant GO terms 
according to the enrichment in molecular functions. After obtaining the common pathways from both blood 
and buccal samples, we selected the non-redundant genes among the pathways to construct a cancer-associated 
molecular subnetwork based on the database of STRING v 10.035. We used the software of Cytoscape59 to visualize 
the cancer-associated molecular subnetwork.

We also downloaded level 3 DNA methylation data (i.e., JHC_USC HumanMethylation450K)60, 61 and level 
3 RNA expression data (i.e., UNC IlluminaHiSeq_RNASeqV2)60, 61 on lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) from the large-scale database of TCGA62 to provide validation for the identified 
smoking-related oncogenes. The RNA expression data are log-transformed before being utilized for statistical 
analysis and data visualization. By using the web-based tool of MEXPRESS63, which has two main functions of 
Pearson correlation64 and the non-parametric Wilcoxon rank-sum test65, we determined whether methylation 
probes were correlated with the extent of expression of the associated genes in both LUAD and LUSC samples and 
the different status of methylation loci correlated with RNA expression between control and cancer in LUAD or 
LUSC samples. The R packages (http://www.r-project.org/), such as VennDiagram66 and ggplot267 were utilized 
for other statistical analyses and data visualization. By using multiple bioinformatics tools based on different 
databases, we were able to identify the important genes and biologically meaningful pathways contributing to the 
vulnerability to smoking-attributable cancer.
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