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1  | INTRODUC TION

Cyanobacterial blooms dominated by Microcystis and Dolichospermum 
(Anabaena) widely occur in eutrophic lakes worldwide (Paerl & Otten, 
2013). Such blooms undergo recruitment, formation, maintenance, 
and decline from the spring to winter seasons in temperate lakes 

(Kong & Gao, 2005). However, along with global change and human 
activities, the duration of cyanobacterial blooms has prolonged from 
only covering warm seasons previously to currently extending to 
almost an entire year. Such drastic alteration has greatly changed 
the entire ecosystem in Lake Taihu, a typical eutrophic lake in China 
(Qin, Xu, Wu, Luo, & Zhang, 2007). The long-term duration and high 
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Abstract
Worldwide cyanobacterial blooms greatly impair ecosystems in many eutrophic lakes 
and impact the microbial environment. In particular, large cyanobacterial colonies 
that are buoyant on the water surface may provide a distinct habitat for bacteria 
from other small particles that are suspended stably in the water column. To test this 
hypothesis, bacterial communities (excluding cyanobacteria) attached to large parti-
cles dominated by cyanobacterial colonies (>120 μm, LA), small particles (3–36 μm, 
SA), and free-living bacteria (0.2–3 μm, FL) were investigated monthly for a year in 
Lake Taihu, China. Results confirmed that the Shannon diversity index of LA was 
significantly lower than that of FL, which was lower than that of SA. Cytophagia and 
Alphaproteobacteria were specially enriched in LA. Although samples in each habitat 
collected during high- (May to November) and low-bloom seasons (December to 
April) were separated, all samples in LA were clustered and separated from SA and 
FL, which were also clustered during the same sampling seasons. In addition, the 
bacterial communities in LA were correlated with nitrate level, whereas FL and SA 
were correlated with nitrate level and temperature. Mantel analysis revealed that 
bacterial composition significantly correlated with the cyanobacterial composition in 
LA and FL but not in SA. These results indicate that LA provides distinct niches to 
bacteria, whereas the differentiation of bacterial communities in FL and SA is season-
ally dependent.
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biomass of cyanobacterial blooms result in the domination of cya-
nobacterial colonies in the lake’s particle composition (Shi et al., 
2017). Compared with other abiotic particles and the water column, 
these colonies are rich in organic matter produced by cyanobacte-
rial cells and offer a “hotspot” for bacterial colonization (Worm & 
Sondergaard, 1998). Interactions such as nutrient transference 
(Yuan, Zhu, Xiao, & Yang, 2008), growth promotion or inhibition 
(Berg et al., 2009; Shi, Cai, Li, et al., 2009; Xie et al., 2016), and toxin 
production and degradation between bacteria and cyanobacteria 
are intense in these colonies (Maruyama et al., 2003). Furthermore, 
these bacteria are closely associated with cyanobacterial bloom for-
mation and nutrient cycling, which greatly affect the development 
and decline of cyanobacterial blooms (Rashidan & Bird, 2001; Wang, 
Zhang, Shen, Xie, & Yu, 2015; Wang et al., 2016).

In particular, large cyanobacterial colonies exhibit different phys-
iological and ecological characteristics from small particles com-
posed of eukaryote algae, single-cell/small cyanobacterial colonies, 
algal detritus, and abiotic particles. First, cyanobacterial colonies 
larger than 120 μm are often buoyant on water surface (Wu et al., 
2010), whereas small particles encounter more difficulty rising onto 
the water surface and are mainly suspended in the water column 
(Wu & Kong, 2009; Zhu et al., 2014). Second, large Microcystis col-
onies (>100 μm) have higher proportions of microcystin-producing 
genotypes, whereas the smallest size class of Microcystis colonies 
(<50 μm) has a low proportion of microcystin-producing genotypes 
(Kurmayer, Christiansen, & Chorus, 2003; Wang et al., 2013). This 
case is similar to that for other small particles. Third, compared with 
small particles suspended in the water column, large cyanobacterial 
colonies have higher polysaccharide content, are more effectively 
resistant to high-light inhibition (Zhang, Shi, Yu, & Kong, 2011), have 
higher affinity for low levels of phosphorus (Shen & Song, 2007), 
and have stronger defense against grazing (Nielsen, 2006; Yang, 
Kong, Shi, & Cao, 2006). Small particle-attached bacteria may face 
a considerably different environment from that embedded in large 
buoyant cyanobacterial colonies. Furthermore, bacteria free living in 
the water column may be affected by dissolved substances, such as 
dissolved organic matter and toxins. Therefore, the compositions of 
bacterial community attached to large cyanobacterial colonies and 
small suspended particles may differ due to different characteris-
tics, compositions, and positions in the water column; they may also 
be different from free-living bacteria in the water column (Schmidt, 
White, & Denef, 2016).

Many works have focused on bacterial communities associated 
with cyanobacterial blooms (Berg et al., 2009; Berry et al., 2017; 
Dziallas & Grossart, 2011; Eiler & Bertilsson, 2004; Niu et al., 2011; 
Tang et al., 2010; Woodhouse et al., 2016). Some works revealed 
the transition of particle-attached bacteria to free-living bacteria 
during a 4-month investigation (Tang et al., 2015, 2017), and others 
investigated the difference between particle-attached bacteria and 
free-living bacteria (Zhao et al., 2017). The bacteria attached to me-
dium- and small-sized cyanobacterial aggregates during August and 
September were clustered, whereas large- and medium-sized aggre-
gate communities in the October sample were grouped together and 

appeared distinct from the small-sized aggregate community (Cai, 
Jiang, Krumholz, & Yang, 2014; Cai, Yan, Wang, Krumholz, & Jiang, 
2013). Different bacteria attached to Microcystis colonies from free-
living bacteria for several months were also documented (Parveen 
et al., 2013; Shi, Cai, Kong, & Yu, 2012). However, bacteria involved 
in three habitats, including large buoyant cyanobacterial colonies, 
small particles, and free-living bacteria in the water column, have yet 
to be compared in a duration of 1 year. Therefore, whether this con-
troversial conclusion results from the lack of differentiation among 
these habitats or sampling season still needs to be determined. In 
addition, the detailed response of bacterial communities from differ-
ent habitats to cyanobacterial blooms remains unknown.

In this study, we resolved this problem in Lake Taihu, which is 
shallow eutrophic, well-mixed, and known for having a long history 
of cyanobacterial blooms (Qin et al., 2007). Satellite images revealed 
that cyanobacterial blooms are even more intense and occur year-
round in Lake Taihu, especially in Meiliang Bay, which is a hyper-
trophic area of the lake (Ma et al., 2016). Thus, we can obtain large 
cyanobacterial colonies even in winter. Our goal is to determine 
whether large buoyant cyanobacterial colonies and small particles 
provide different habitats for bacterial communities and how they 
are different from free-living bacteria.

2  | MATERIAL S AND METHODS

2.1 | Sample site description

Lake Taihu is located in the Yangtze Delta in Eastern China 
(30°55′40″–31°32′58″N, 119°52′32″–120°36′10″E). With a total 
area of 2338 km2 and an average depth of 2 m, Lake Taihu is the 
third largest freshwater lake in China. With increased nutrient in-
puts into the lake during the past decades, Lake Taihu is eutrophic 
with blooms of Microcystis (cyanobacteria) occurring annually during 
warm seasons (Chen, Qin, Teubner, & Dokulil, 2003). Meiliang Bay, 
located in the northern part of Lake Taihu (Figure S1), is the most 
eutrophic area where cyanobacterial blooms break out and last for 
almost a whole year (Ma et al., 2016; Qin et al., 2007).

2.2 | Sampling procedure

Sampling was performed monthly from July 2014 to July 2015 near 
the regular monitoring stations of the Taihu Laboratory for Lake 
Ecosystem Research in Meiliang Bay of Lake Taihu. Because Taihu 
Lake is shallow and well-mixed (McCarthy et al., 2007), sampling of 
the following two parts was considered as originated from the same 
environment. For bacteria attached to large cyanobacterial colonies 
(LA, >120 μm), samples were collected by towing a phytoplankton 
net (64 μm mesh) through water surface, then the top buoyant cy-
anobacterial colonies were pipetted and filtered through 120 μm 
mesh net, and then collected into sterile polypropylene tubes. For 
bacteria attached to small particles (SA, 3–36 μm) and free-living 
bacteria (FL, 0.2–3 μm), lake water at 0–0.5 m depth was collected 
with a water sampler, and was sequentially filtered through 36 μm 
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mesh, 3 and 0.2 μm polycarbonate filters (GTTP, 47 mm diameter; 
Millipore). The tubes and filters were immediately frozen in liquid 
nitrogen. Water temperature, pH, and dissolved oxygen (DO) were 
monitored with a multiparameter meter (model 6600; Yellow Spring 
Instruments, OH, USA). For analysis of nutrient concentrations in-
cluding ammonium (NH4

+), nitrate (NO3
−), nitrite (NO2

−), and phos-
phate (PO4

3−), water samples were filtered through precombusted 
GF/F glassfilbers (47 mm diameter; Whatman), and then the fil-
trates were analyzed with a continuous flow analyzer (Skalar San++, 
Netherlands). Total phosphorus (TP) and total nitrogen (TN) were 
quantified using standard methods (Jin & Tu, 1990). Chlorophyll a 
(Chl a) was extracted from the GF/F filters with 90% acetone and 
analyzed with a spectrofluorophotometer (RF-5301PC; Shimadzu, 
Japan).

2.3 | Microscopic examination of LA and SA

Particle composition of LA and SA, representative samples were 
examined under a JSM-5610LV/Vantage IV scanning electronic 
microscope (SEM). All samples for SEM were prepared with direct 
freeze–drying to minimize changes on the cell surfaces induced by 
chemical reactions such as the chemical fixation and ethanol dehy-
dration, and minimize the in-hand manipulation time (Lee & Chow, 
2012). The dried samples were then coated with gold and viewed 
on the SEM.

2.4 | DNA extraction and MiSeq sequencing of the 
16S rRNA genes

Nucleic acid extraction was conducted following the xanthogenate-
SDS extraction protocol (Tillett & Neilan, 2000). PCR amplification 
of the V3–V4 region of the 16S rRNA gene was performed with the 
bacterial universal primers 338F (5′-barcode-ACTCCTACGGGAGG
CAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Gohl 
et al., 2016; Lee, Barbier, Bottos, McDonald, & Cary, 2012). The 
barcode was an eight-base sequence that is unique to each sample. 
PCR amplification was performed by GeneAmp® PCR System 9700 
(Applied Biosystems, USA). Thermal cycling conditions were as fol-
lows: initial denaturation at 95°C for 3 min, and 25 cycles at 95°C for 
30 s, 55°C for 30 s, and 72°C for 45 s, with a final extension at 72°C 
for 10 min. Successful amplification was confirmed via agarose gel 
(1%) electrophoresis with 2 μL of PCR product. Purified amplicons 
were sequenced with Illumina Miseq PE300 by Majorbio Bio-Pharm 
Technology Co., Ltd. (Shanghai, China). The sequence data were de-
posited in the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/Traces/sra/) 
under accession numbers SRP108467, BioProject PRJNA386411, 
and BioSamples SAMN07178582- SAMN07178620.

2.5 | Statistical analyses

The raw data were first quality filtered with QIIME (Caporaso 
et al., 2010) to remove reads that did not meet the quality control 

standards. Any chimeric sequence was identified and removed 
with UCHIME (Edgar, Haas, Clemente, Quince, & Knight, 2011). 
Operational taxonomic units (OTUs) were clustered with 97% 
similarity cutoff using UPARSE version 7.1 http://drive5.com/
uparse/) (Edgar, 2013). The taxonomy of each 16S rRNA sequence 
was analyzed by RDP Classifier (http://rdp.cme.msu.edu/) against 
the SILVA 16S rRNA database (SSU123; Max Planck Institute, 
Germany) using a 70% confidence threshold. Coverage, Chao 1 
index (a species richness index), and Shannon index (a diversity 
index that accounts for abundance and evenness) were calculated 
with QIIME.

To compare the samples, the dataset was randomly subsampled 
to an equal number of sequences. Nonmetric multidimensional scal-
ing (NMDS) analysis based on Bray–Curtis algorithm distance matrix 
was performed for all samples on the OTU level. At the same time, 
weighted pair group method for the arithmetic means (WPGMA) 
cluster analysis based on Jaccard’s Coefficient analyzed using the 
MultiVariate Statistical Package (MVSP) software (Package 3.1; 
Kovach Computing Services, UK). Analysis of similarities (ANOSIM) 
was used to directly compare bacterial communities in three differ-
ent habitats including LA, SA, and FL. Taxa that were significantly 
different between the three different habitats were detected 
using the Bioconductor-edgeR package (version 3.2.4) (Robinson, 
McCarthy, & Smyth, 2010; Robinson & Oshlack, 2010). Distance-
based redundancy analysis (dbRDA) was used to examine the influ-
ence of detected environmental factors including NH4

+, NO3
−, NO2

−, 
PO4

3−, TOC, Chl a, temperature, pH, DO, and TN on the dynamics of 
bacterial communities. Significance of variables was assessed with 
Monte–Carlo permutation tests (999 unrestricted permutations). 
Mantel analysis with Bray–Curtis dissimilarity matrix was used to an-
alyze correlation between cyanobacterial and bacterial composition 
in each habitat. All these analyses were performed with the “vegan” 
package (Oksanen et al., 2008) of R software (R Development Core 
Team 2012)A. Furthermore, to identify characteristic community 
members on genus level in the three different habitats (LA, SA, FL), 
we applied the linear discriminant analysis (LDA) coupled with effect 
size measurements (LEfSe) method (Segata et al., 2011).

3  | RESULTS

3.1 | Temporal dynamics of environmental factors 
and particle composition

From July 2014 to July 2015, water temperature decreased gradually 
from 32°C in July to 5°C in December, and then gradually increased 
to 26°C (Figure 1a). Pearson correlation analyses revealed that pH 
was positively correlated with temperature (R = .864, p < .001), 
whereas DO was negatively correlated with temperature (R = −.686, 
p = .01). Chl a varied from 9.7 μg/L in December 2014 to 332.6 μg/L 
in July 2015 (Figure 1a), and was significantly correlated with TN 
(R = .735, p = .004) and TP (R = .788, p = .001). So, it was low-bloom 
seasons from December to April, and was high-bloom seasons from 
May to November in this lake.

http://trace.ncbi.nlm.nih.gov/Traces/sra/
http://drive5.com/uparse/
http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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SEM analysis confirmed that LA was overwhelmingly dominated 
by cyanobacterial colonies, whereas SA was dominated by diatoms, 
single-cell/small cyanobacterial colonies, chlorophyta, algal detritus, 
and sediment particles. Bacteria attached to these particles can also 
be viewed via SEM (Figure 2).

3.2 | Sequence analyses and cyanobacterial 
composition

We analyzed the sequence data at two levels and normalized the 
analysis before and after elimination of the cyanobacterial se-
quences. The primary result was normalized to 25,123 sequences 
in each sample. In LA, the relative abundances of cyanobacterial 
sequences in the total sequences varied from 43.2% to 96.7%, and 

the proportion tended to be higher from December to April (low-
bloom seasons) compared with other months (Figure 1b). In SA, 
the relative abundances of cyanobacterial sequences in the total 
sequences varied from 7.4% to 89.6%, which is a wider range than 
that in LA (Figure 1b). The proportion also tended to be higher 
from December to April (low-bloom seasons) compared with other 
months; this result is similar to that in LA. Only 0.1%–13.8% of the 
total sequences corresponded to cyanobacteria in FL (Figure 1b). 
Furthermore, a shift of the dominant cyanobacterial taxa was ob-
served. In LA, Dolichospermum was dominant from January to April 
(67.7%–77.2%) (low-bloom seasons), whereas Microcystis was ab-
solutely dominant during the other months (37.0%–86.5%) (high-
bloom seasons). However, in SA, Dolichospermum was only dominant 
in April (54.1%); Microcystis was dominant in November (79.3%) and 

F IGURE  1 Dynamics of temperature, 
Chl a, and cyanobacterial composition. 
(a) Changes in temperature and Chl a 
concentration in the Meiliang Bay of Lake 
Taihu, China. (b) Relative abundances 
of cyanobacterial taxa in the three 
habitats during July 2014 and July 2015 
in Meiliang Bay of Lake Taihu, China. LA 
represents large cyanobacterial colonies 
(>120 μm), SA represents small particles 
(3–36 μm), and FL represents free-living 
bacteria (0.2–3 μm) in the water column

(a)

(b)

Low-bloom seasons High-bloom seasons High-bloom seasons 
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(a)

(b)

LA1407 LA1409 LA1411

LA1501 LA1503 LA1505

SA1407 SA1409 SA1411

SA1501 SA1503 SA1505

F IGURE  2 SEM examinations of LA (a) and SA (b). LA represents large buoyant cyanobacterial colonies (>120 μm), and SA represents 
small particles (3–36 μm). 1407, 1409, 1411, 1501, 1503, and 1505 are the representative samples collected in July, September, November 
2014, and January, March, May 2015, respectively
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December (48%); and uncultured cyanobacteria 1 was dominant 
during the other months (3.3%–66.2%). In FL, Subsection III Family I 
was dominant in October (0.3%–9%), Microcystis was dominant from 
August to September 2014 and July 2015, uncultured cyanobacteria 
1 was dominant from December to April (1.9%–12.2%) (low-bloom 
seasons), and Synechococcus was dominant during the other months 
(1.0%–8.2%) (Figure 1b).

3.3 | Diversity of bacterial communities in three 
habitats (LA, SA, and FL)

To compare the bacterial communities among the three habi-
tats (LA, SA, and FL), cyanobacterial sequences were elimi-
nated, and the remaining were normalized to 2,561 sequences 
for each sample. The estimated coverage values of all samples 
were still higher than 0.88 [data not shown, calculated by the 
equation C = (1 − n i/N), where n i is the number of OTUs rep-
resented by one sequence and N is the number of sequences 
in each sample (Good, 1953)], suggesting a sufficient number 
of sequences for analyses that nearly embraced the entire 
dominant biodiversity. Among the 2385 OTUs for all samples, 
17.1% (n = 409) was shared among the three groups, whereas 
some OTUs occurred exclusively in either FL (n = 248, 10.4%), 
LA (n = 270, 11.3%), or SA (n = 681, 28.6%). A total of 24.1% 
(n = 574) were only shared between FL and SA, whereas only 
2.2% (n = 54) was only shared between LA and FL or only be-
tween LA and SA (n = 149, 6.2%; Figure 3a). Shannon diversity 
and Chao1 indices were significantly higher in the bacterial 
communities of SA than in those of FL (using nonparametric 

Mann–Whitney U test, p < .001), which was higher than that 
of LA (using nonparametric Mann–Whitney U test, p = .003) 
(Figure 3b).

NMDS analysis of the 16S rRNA gene sequence frequency data 
clustered on the OTU level showed a clear separation between LA 
and both SA and FL (Figure 4). Cluster analysis based on Jaccard’s 
coefficient also revealed that LA was separated from SA and FL 
(Figure S2). Furthermore, most samples from May to November 
(high-bloom seasons) were clustered and separated from that 
from December to April (low-bloom seasons) in all three habitats 
(Figure S2). Moreover, samples collected during the same sea-
son (either high-bloom or low-bloom seasons) in SA and FL were 
much more similar to each other than among samples of the same 
habitat (Figure S2). ANOSIM results on the same data showed a 
significant difference between LA and FL (R = .911, p = .001), and 
LA and SA (R = .847, p = .001), whereas a small difference between 
SA and FL (R = .099, p = .031). Furthermore, edgeR analysis re-
vealed that OTUs affiliated with Cytophagia, Betaproteobacteria, 
Spartobacteria, and Actinobacteria contributed the top five taxa 
to the difference between LA and FL, and OTUs affiliated with 
Sphingobacteriia, Spartobacteria, Deltaproteobacteria, Clostridia, 
and Gammaproteobacteria contributed the top five taxa to the dif-
ference between LA and SA (Supporting Information Table S1). 
When comparing the SA and FL fractions, OTUs affiliated with 
Betaproteobacteria, Alphaproteobacteria, and Cytophagia were the 
top five significantly different taxa (Supporting Information Table 
S1).

dbRDA results illustrated that NO3
− was the most significant 

variable (Monte Carlo test, p < .05) in the community composition 

F IGURE  3 Bacterial phylogenetic alpha diversity. (a) Venn diagram showing the number and abundance of the bacterial OTUs found 
in the three habitats. (b) Shannon’s diversity index and Chao 1 index calculated individually for each sample presented as line charts. LA 
represents large cyanobacterial colonies (>120 μm), SA represents small particles (3–36 μm), and FL represents free-living bacteria (0.2–
3 μm) in the water column

Venn diagram

Unique objects: All = 2,385; FL = 1,285;
SA = 1,813; LA = 882

248 681

270

574

54 149

409

FL SA

LA

(a) (b)
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of LA, accounting for 53.5% of the changes. NO3
− and tempera-

ture were the most significant variables (Monte Carlo test, p < .05) 
in the community composition of SA, accounting for 44.9% of the 

changes, whereas NO3
− and temperature were the most signifi-

cant variables (Monte Carlo test, p < .05) in the community com-
position of FL, accounting for 51.4% of the changes (Figure 5). In 
addition, Mantel analysis with Bray–Curtis dissimilarity matrix 
revealed that cyanobacterial composition significantly correlated 
with bacterial composition in LA (Pearson’s r: .798, p = .002) and 
FL (Pearson’s r: .446, p = .005) but not in SA (Pearson’s r: .084, 
p = 0.23).

3.4 | Dynamics of bacterial communities in the 
three habitats (LA, SA, and FL)

In LA, bacterial communities were predominantly composed of 
members of the phylum Proteobacteria (42.0%–87.4%), followed 
by Bacteroidetes (10.1%–45.3%). Proteobacteria were predomi-
nant from March to August when the blooms increased, whereas 
the codominance of Proteobacteria and Bacteroidetes was ob-
served from September to December when the blooms reduced 
(Figure S3). In SA, the bacterial communities were generally 
characterized by codominance of Proteobacteria, Bacteriodetes, 
and Actinobacteria, which accounted for 16.4–66.8%, 5.7–
30.8%, and 4.1–52.5%, respectively. Proteobacteria dominated 
from November to April during low-bloom seasons, as well 
as in September 2014 and July 2015, whereas Actinobacteria 
dominated during the other months. In FL, Proteobacteria, 

F IGURE  4 Non-metric multidimensional scaling (NMDS) plot 
based on Bray–Curtis dissimilarity. The filled triangles, circles, and 
squares reflect bacterial community composition in the different 
samples corresponding to the different habitats LA, SA, and FL 
according to the legend. Symbols in brown color were the samples 
collected from December 2014 to April 2015 (low-bloom seasons)
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Bacteriodetes, and Actinobacteria were also the dominant phyla 
and occupied 22.2–64.4%, 8.2–43.6%, and 4.4–45.8%, respec-
tively (Figure S3). The bacterial community in FL was dominated 
by Actinobacteria from July 2014 to May 2015 but shifted to 
the dominance of Proteobacteria from June to July 2015 when 
cyanobacterial blooms were intense. The relative abundances 
of Proteobacteria and Bacteroidetes were significantly higher 
in LA than in SA and FL (using nonparametric Mann–Whitney 
U test, p < .05), whereas others such as Actinobacteria and 
Verrucomicrobia were significantly lower in LA than in SA and FL 
(using nonparametric Mann–Whitney U test, p < .05) (Figure 6).

LEfSe analysis based on genus level further revealed which bac-
terial taxa were significantly distinct among the habitats. Clostridia, 
Cytophagia, Caulobacterales, Xanthobacteraceae, Rhodobacteraceae, 
Acetobacteraceae, Erythrobacteraceae, Alcaligenaceae, Legionellales, and 
Nitrosomonadaceae were enriched in LA [linear discriminant analysis (LDA) 
>2.5, p < .05], whereas Acidobacteria, Saprospiraceae, Anaerolineae, 
Nitrospira, Rhodocyclaceae, Oligoflexaceae, and Verrucomicrobiaceae, 
were enriched in SA (LDA >2.5, p < .05) (Figure 7; Figure S4). 
Actinobacteria, Chlorobia, Planctomycetaceae, Burkholderiaceae, 
Chitinophagaceae, Acidimicrobiaceae, Mycobacteriaceae, Sporichthyaceae, 
Microbacteriaceae, Solirubrobacterales, and Spartobacteria were en-
riched in FL (LDA >2.5, p < .05) (Figure 7; Figure S4). As expected, more 

phylotypes were found to be enriched from the comparison between 
LA and SA, LA and FL, than when SA and FL were compared.

4  | DISCUSSION

4.1 | Particle composition and dynamics of 
cyanobacterial composition in the three habitats (LA, 
SA, and FL)

Both LA and SA were examined under SEM to confirm their com-
position. As expected, LA was mainly composed of cyanobacterial 
colonies. Cyanobacteria are the predominant phytoplankton in the 
Meiliang Bay of Lake Taihu (Chen et al., 2003; Ma et al., 2016), and 
large colonies always float to the water surface. Thus, the large 
particles collected by exploiting buoyancy can be assumed as large 
cyanobacterial colonies. SA was considerably more complex and 
mainly composed of diatoms, single cyanobacterial cells, and other 
suspended particles. Thus, if one aims to focus on the bacteria at-
tached to cyanobacterial colonies, SA must be excluded. However, 
few studies focused on the differentiation of the bacterial communi-
ties attached to these particles, which may coexist and be mixed.

Shifts of the dominant cyanobacterial genus from Microcystis 
in warm seasons to Dolichospermum in cold seasons were 

F IGURE  6 Distributions of the relative 
abundance (%) of the top 6 major taxa 
at the phylum level. The dashed line, 
square, and box indicate median, mean, 
and 25%–75% values, respectively. The 
diamond indicates outliers, and the 
whisker indicates the maximum and 
minimum values
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shown in Figure S4
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observed in LA. This observation may be explained by the fact that 
Dolichospermum is more favorable in lower water temperature than 
Microcystis (Robarts & Zohary, 1987). However, in SA, uncultured 
cyanobacteria 1 were predominant in addition to Microcystis in 
November and December, and to Dolichospermum in April. This find-
ing indicated the different compositions of cyanobacterial genera 
in LA and SA during the most investigated months. Phytoplankton 
composition can shape bacterial communities (Niu et al., 2011), and 
high velocity of large colonies enables them to rise readily onto the 
surface, whereas small particles are mainly suspended in the water 
column (Wu & Kong, 2009; Zhu et al., 2014). Therefore, large cya-
nobacterial colonies and small particles would have different phys-
iological characteristics, thereby providing different habitats for 
microbes.

4.2 | Comparison of bacterial diversity in the three 
habitats (LA, SA, and FL)

Interestingly, all the three habitats harbored specific bacterial taxa 
that were not observed in the other two; this result indicates that 
some bacterial species have high niche specificities (Bertos-Fortis 
et al., 2016). However, the number of overall OTUs that overlapped 
between SA and FL was higher than that between LA and FL and 
between LA and SA. This result indicated that the exchanges be-
tween FL and SA were relatively easy and intense, whereas the bac-
teria in LA were relatively isolated. Although the sampling method 
of sequential filtering for SA and FL and the specific colony isola-
tion method for LA used in this study may increase the overlaps 
between SA and FL, significant differences between them were 
also observed. These results can help exclude the effect of sequen-
tial filtering to some extent and assume biological reasons for this 
overlap, indicating that a narrower spectrum of bacteria can thrive 
on large colonies. Moreover, a lower diversity of bacterial com-
munities was observed in LA than in FL, which has lower diversity 
than SA. Consistent with our previous observation, the bacterial 
communities attached to buoyant Microcystis colonies had lower 
diversity compared with other bulk bacteria (Shi et al., 2012). These 
results indicated that LA was different from regular large particles, 
which may also harbor different communities compared with FL 
but had selectivity for the attached bacteria. Cyanobacteria can 
release antimicrobial substances surrounding algal cells (Casamatta 
& Wickstrom, 2000; Ostensvik, Skulberg, Underdal, & Hormazabal, 
1998); thus, some bacteria may not survive in LA. These results 
indicated that SA composed of diverse particles harbor broader 
bacterial communities, whereas LA can be assumed to be enriched 
in selected bacterial communities to some extent.

NMDS result further suggested the distinctive microenviron-
ment provided by LA. This result is consistent with the observa-
tion from the comparison of bacterial communities attached to 
size-fractioned Microcystis colonies collected from August to 
October 2012 (Cai et al., 2014). Furthermore, LA samples domi-
nated by Microcytsis were separated from the samples dominated 
by Dolichospermum, indicating that different cyanobacterial genera 

may also lead to separated bacterial communities, which is simi-
lar to the evidence from a previous experiment (Zhu et al., 2016). 
These results are consistent with our previous observation that 
specific bacterial communities are attached to Microcystis spp. (Shi, 
Cai, Yang, et al., 2009). Moreover, a higher similarity between SA 
and FL was noted during the same season (high-bloom season or 
low-bloom season) than that of the same habitat. This result indi-
cated that sampling season also affected the distribution of these 
two communities. Many studies compared particle-attached bac-
terial communities and free-living bacterial communities, but con-
troversial observations were also drawn. Some studies observed 
that particle-attached bacterial communities are phylogenetically 
distinct from free-living bacterial communities (Allgaier & Grossart, 
2006; Zhao et al., 2017), whereas some studies observed that these 
two communities are similar and may exchange in freshwater meso-
cosms (Riemann & Winding, 2001; Tang et al., 2015, 2017; Worm, 
Gustavson, Garde, Borch, & Sondergaard, 2001). However, this 
study further concluded that particles collected during different 
season may be a major reason for these controversial observations. 
The study also evidenced the influence of cyanobacterial compo-
sitions of particles on bacterial communities. This notion is similar 
to the conclusion that different sizes, origins, and phytoplankton 
compositions may account are responsible for the discrepancies 
(Schmidt et al., 2016). Furthermore, particles mainly composed of 
LA may be more distinctive compared with general particles, which 
may favor distinct bacterial communities.

In addition, dbRDA revealed that NO3
− significantly correlated 

with the distribution pattern of bacterial community in all three 
habitats. The effect of NO3

− on bacterial community structure was 
also shown in previous studies of Lake Taihu (Tang et al., 2017), 
Lake Tanganyika (De Wever et al., 2005), and the mesotrophic Lake 
Tiefwaren (Roesel, Allgaier, & Grossart, 2012). NO3

− may directly 
or indirectly affect bacterial proliferation through cyanobacterial 
abundance and composition, which are greatly affected by nutrient 
concentration (Xu, Paerl, Qin, Zhu, & Gaoa, 2010). Moreover, the 
bacterial communities in SA and FL rely more on the temperature in 
the water column compared with those in LA. In addition, the sam-
ples collected during low-bloom seasons (from December to April) 
formed a separate cluster from others during high-bloom seasons 
(from May to November) in all the three habitats (Figure S2). A sig-
nificant correlation was noted between bacterial composition and 
cyanobacterial composition in LA and FL but not in SA. These results 
indicated the seasonal dynamics of bacteria in all the three habitats 
and the close association of bacterial communities in LA and FL with 
cyanobacterial blooms. In contrast, the bacteria in SA faced a much 
more complex microenvironment.

4.3 | Phylogenetic composition and dynamics of 
bacterial communities in three habitats (LA, SA, and 
FL)

The result that Alphaproteobacteria and Cytophagia dominated in 
LA was similar to those of studies on bacterial community attached 
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with a diatom bloom (Riemann, Steward, & Azam, 2000). Some 
Proteobacteria and Bacteroidetes are well adapted to the phyco-
sphere of phytoplankton and are specialized for successive de-
composition of algal-derived organic matter (Teeling et al., 2012). 
Dominance of Proteobacteria over an entire year indicates that 
these bacteria play key roles in cyanobacterial bloom formation, 
whereas codominance of Proteobacteria and Bacteroidetes from 
September to December indicates that Bacteroidetes also play an 
important role during the decline of cyanobacterial blooms. In par-
ticular, Xanthobacteraceae, Rhodobacteraceae, Acetobacteraceae, 
and Erythrobacteraceae are dominant in Microcystis cultures (Shi, 
Cai, Yang, et al., 2009). Many Cytophagia degrade macromol-
ecules, such as proteins, chitin, pectin, agar, starch, or cellulose 
(Reichenbach, 2006). Most species of Burkholderiales utilize a va-
riety of organic and amino acids as carbon sources (Garrity et al., 
2005). Dominance of these bacteria, which vary in their ability to 
utilize different types of organic matters, suggested that LA may 
form a specific habitat, where intense bacteria algal interaction 
may facilitate organic matter cycling and nutrient generation, 
thereby benefitting algal growth.

In SA, Actinobacteria were predominant during most months, 
but Proteobacteria predominated from November to April when 
cyanobacterial blooms declined and began to form, indicating 
that the bacterial community in SA was also influenced by the dif-
ferent periods of cyanobacterial blooms. Moreover, the bacterial 
community in FL was predominated by Actinobacteria from July 
2014 to May 2015 but shifted to Proteobacteria from June and 
July 2015 when cyanobacterial blooms were intense, indicating 
the influence of cyanobacterial blooms on bacterial community in 
FL. The result that Actinobacteria were dominant in FL was con-
sistent with previous observations during the study of bacterial 
communities associated with organic aggregates in Lake Taihu 
(Tang et al., 2009). The result was also consistent with the results 
obtained from the comparison of free living and particle asso-
ciated bacterial communities in the four lakes of Northeastern 
Germany (Allgaier & Grossart, 2006). However, our result fur-
ther indicated that Actinobacteria are dominant in FL and in SA 
but not yet in LA. This result was different from some other data 
(Schmidt et al., 2016). Lake Taihu received a large amount of par-
ticles from surrounding terrestrial environment (Dokulil, Chen, & 
Cai, 2000), and these terrestrial particles may be involved in SA. 
Thus, the presence of Actinobacteria, which is well-known from 
soil environments, may be one reason for its dominance in SA. 
These results may facilitate further recognition of the ecotypes 
of Actinobacteria.

Particularly, Nitrospira was reported to complete nitrification 
process and is a key component of nitrogen-cycling microbial com-
munities (Daims et al., 2015; van Kessel et al., 2015). Enrichment 
of these bacteria in SA indicated that the nitrification process may 
be involved in this microenvironment. Interestingly, proportions 
of Planctomycetaceae were significantly higher in SA than that in 
LA. This result was consistent with our previous observation that 
Planctomycetaceae were few in buoyant Microcystis colonies (Shi 

et al., 2012). Although close associations between Planctomycetes 
and cyanobacterial colonies were observed (Cai et al., 2013; Tang 
et al., 2010), free-living Planctomycetes were also observed in hy-
poxic zone induced by Microcystis blooms (Li, Xing, & Wu, 2012). 
Actually, association of Planctomycetes and cyanobacterial blooms 
have only been observed in a lake in Sweden among the investi-
gated 32 sites in three continents (North America, Europe and Asia) 
(Dziallas & Grossart, 2011), and also only in Lake Erken and Lake 
Limmaren among the four Swedish lakes with cyanobacterial blooms 
(Eiler & Bertilsson, 2004). These findings suggested that the associ-
ation between Planctomycetes and cyanobacterial blooms is not so 
firm and stable.

In conclusion, this study highlights the dynamics of freshwa-
ter microbial communities in a eutrophic lake with cyanobacterial 
blooms during a whole-year investigation, with regard to both the 
cyanobacterial and bacterial species in LA, SA, and FL. The composi-
tions of cyanobacterial genera were different among the three hab-
itats. The diversity of bacterial communities in LA was lower than 
that in FL, which was lower than that in SA. Moreover, different and 
more narrow bacterial communities were present in LA relative to 
those in SA and FL. The samples in all three habitats were collected 
during high- (May to November) and low-bloom seasons (December 
to April) were separated. Furthermore, the effect of cyanobacterial 
composition on bacterial communities was observed in LA and FL 
but not in SA. This work further confirms that sampling season and 
particles with different characteristics may affect bacterial commu-
nity composition, and that large buoyant cyanobacterial aggregates 
harbor specific bacterial communities. Therefore, if we take all the 
bacterial communities in the water column together to analyze bac-
terial communities associated with cyanobacterial blooms, then dif-
ferences among large buoyant cyanobacterial colonies, other small 
particles, and free-living bacteria may be neglected. Thus, future 
studies should focus on bacterial communities attached to large 
buoyant cyanobacterial colonies to elucidate bacterial and cyano-
bacterial interactions.
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