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ABSTRACT
Weedy rye (Secale cereale subsp. segetale Zhukov 1928) is a problematic weed species in wheat field.
However, it can potentially provide valuable genetics resources to increase the genetic variations and
introduce desirable genes for rye and wheat breeding. Here, we assembled the complete chloroplast
genome of S. cereale subsp. segetale. The chloroplast genome is 137,051 bp in length, containing a
large single copy region (81,090 bp), a small single copy region (12,795 bp) and two separated inverted
repeat regions (21,583bp). A total of 131 unique genes were annotated, consisting of 82 protein-cod-
ing genes, 41 tRNA genes, and 8 rRNA genes. The phylogenetic analysis showed that Secale cereale
subsp. segetale (weedy rye) and S. cereale subsp. cereale (rye) clustered together as sisters to other
Secale species.
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Weedy rye occurs as a weed in cereal fields, mainly in the
Near East and Central Asia, and is fully interfertile with culti-
vated rye (Zohary et al. 2012). Although weedy rye is gener-
ally considered to be a malignant weed, as tertiary gene pool
of Triticum aestivum L. (Santos et al. 2016), it can potentially
provide valuable genetic resources (Sun et al. 2022), such as
resistance to insects and disease (rust, mildew, aphids, etc.),
high yield and resistance to abiotic stress (Che et al. 2008;
Hagenblad et al. 2016). In view of climate change and new
biotic and abiotic stresses, there is also a need to investigate
wild species of rye, which is critical to improve yields and
quality of that cereal (Feuillet et al. 2008). Chloroplast gen-
ome sequences are useful for understanding plant origin and
evolution. However, there is one chloroplast genome in
Secale currently.

In this study, we assembled the complete chloroplast gen-
ome of S. cereale subsp. segetale. The seed of S. cereale
subsp. segetale, collected in California (38.5475, �121.7393),
United States, was acquired from Germplasm Resources
Information Network (GRIN) (accession number: CISE 102)
and cultured in field (Hangzhou, Zhejiang Provience China).
The plant was deposited at Herbarium of Zhejiang University
(YuPing Ma, 3160105887@zju.edu.cn) under the voucher
number: HZU60244001. Total genomic DNA was sequenced
by DNBSEQ-T7 platform. Approximately 80.4 Gbp of clean
data was obtained in this study. NGSQCToolkit v2.3 (Patel
and Jain 2012) was used for quality control. The clean data
was applied in de novo assembly by NOVOPlasty v3.6
(Dierckxsens et al. 2017) using the complete chloroplast gen-
ome of Triticum aestivum (GenBank accession number
NC_002762) as a reference. GeSeq online (Tillich et al. 2017)

was used for genome annotation. The assembled genome
sequences and annotation information have been deposited
in GenBank under the accession number LC645358.1.

The total length of S. cereale subsp. segetale chloroplast
genome is 137,051 bp. The genome exhibited a distinct
quadripartite structure containing a pair of inverted repeats
(IRa and IRb, 21,583 bp each), a large single-copy region (LSC,
81,090 bp) and a small single-copy region (SSC, 12,795 bp).
The GC contents of the IR, LSC, and SSC regions are 43.86,
36.22, and 32.17%, respectively. A total of 131 unique genes
were annotated, including 82 protein-coding genes, 41 tRNA
genes, and 8 rRNA genes.

To understand the phylogenetic relationship between
Secale cereale subsp. segetale and other Triticeae species, we
built a phylogenetic tree of nine Triticeae species based on
complete chloroplast genome sequences (NC_024764.1
Triticum timopheevii, NC_046698.1 Triticum zhukovskyi,
NC_024831.1 Aegilops comosa, NC_021761.1 S. cereale,
NC_024831.1 Aegilops bicornis, LC_645210.1 S. strictum subsp.
kuprijanovii, LC_649171 S. sylvestre, NC_056985 Hordeum vul-
gare) downloaded from NCBI GenBank database. We first per-
formed multiple sequence alignments using MAFFT v7.310
(Katoh et al. 2002) with the parameter ‘–auto –reorder –phy-
lipout’. Then a maximum-likelihood tree was constructed
using IQ-tree v1.6.12 (Nguyen et al. 2015) with recommended
model TVMþ Fþ I and 1000 bootstrap values. The tree was
illustrated and modified by iTOL (Letunic and Bork 2019). The
phylogenic tree showed that S. cereale subsp. segetale was
first clustered with S. cereale forming as a monophyletic
group (Figure 1). Secale sylvestre and S. strictum subsp. kupri-
janovii are the wild types of S. cereal, and the phylogenetic
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relationship showed that these wild types may be the pro-
genitor of S. cereale subsp. segetale. The tree also supported
the schematic phylogeny of genus Secale rasied by Schreiber
et al. (2019). The complete chloroplast genome sequence of
S. cereale subsp. segetale will provide valuable information for
genetic studies of Secale species.
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Figure 1. Maximum-likelihood (ML) tree based on 9 Triticeae species, using Hordeum vulgare as an outgroup. The numbers on the node are the fast bootstrap value
based on 1,000 replications.
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