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A Personalized Arrhythmia 
Monitoring Platform
Sandeep Raj   & Kailash Chandra Ray

Arrhythmia detection is the core of cardiovascular disease diagnosis. Though, there is no such generic 
solution for detecting the arrhythmias at the moment they occur which is due to the non-stationary 
nature and inter-patient variations of ECG signals. The feature extraction and classification techniques 
are significant tools widely used in the automated classification of arrhythmias. This study aims to 
develop a personalized arrhythmia monitoring platform allowing real-time detection of arrhythmias 
from the subject’s electrocardiogram (ECG) signal for point-of-care usage. A novel method, i.e. discrete 
orthogonal stockwell transform (DOST) technique for feature extraction is employed to capture the 
significant time-frequency coefficients to constitute the feature set representing each of the ECG 
signals. These coefficients or features are classified using artificial bee colony (ABC) optimized twin 
least-square support vector machine (LSTSVM) for classifying the different categories of ECG signals. 
The ABC optimizes the dimension of the feature set and the learning parameters of the classifier. The 
proposed method is prototyped on the commercially available ARM-based embedded platform and 
validated on the benchmark MIT-BIH arrhythmia database. Further, the prototype is evaluated under 
two schemes, i.e. class and personalized schemes which reported a higher overall accuracy of 96.29% 
and 96.08% in the respective schemes than the existing works to the state-of-art CVDs diagnosis.

The world health organization places the cardiovascular diseases (CVDs) as the leading cause of deaths globally. 
These CVDs occur due to the long-term effect of cardiac arrhythmias. Generally, the cardiac arrhythmias are not 
often life-threatening but can lead to cardiac death or heart failure in long run and required to be detected on 
time. Computerized electrocardiography (ECG) is a widely used diagnostic measure to interpret the function of 
subject’s heart. The automatic monitoring of heartbeats is divided into four stages (i) pre-processing (ii) R-peak 
detection and ECG signal segmentation (iii) feature extraction and classification. The initial two stages i.e. pre-
processing and R-peak detection and heartbeat segmentation are widely explored in the literature. However, 
the improvements can be done in the feature extraction and classification stages. Several methods have been 
throughly studied in the domain of efficient and automatic monitoring of heartbeats. The detection and recog-
nition of ECG signals mainly consist of the combination of an efficient feature extraction technique followed 
by the machine learning algorithms1–13. In the feature extraction stage, time domain7,14, frequency domain8, 
time-frequency domain9,10, and statistical techniques15–17 are commonly used to capture the significant features 
of the heartbeats. However, each of these techniques exhibit certain limitations in their domain of analysis. For a 
time-domain input signal, the classical Fourier transform (FT) fails to provide any information regarding the time 
of occurrence of the frequency components. The ambiguity of FT is overcome by short-time Fourier transform 
(STFT), however it is limited to stationary signals only due to the constant window length. The shortcoming of 
STFT is overcome by Wavelet transform (WT), however the choice of mother wavelet and the levels of decompo-
sition of an input signal remains a challenge. The S-transform overcome the challenge in WT, however it provides 
a redundant representation of the time–frequency plane and hence, is computationally expensive. Therefore, an 
efficient version of ST i.e. DOST is employed in this study to extract significant characteristics from the ECG 
signals. These feature extraction methods are combined with the classification tools which include the artificial 
neural network (ANN)11,18, support vector machines (SVMs)10, k-nearest neighbor and many more. However, 
these techniques fail to provide a generic solution and suffer from the drawbacks such as (1) a general purpose 
modeling is infeasible due to high inter-subject variation of heartbeats (2) due to the non-stationary nature of 
ECG, the QRS complex, P waves, and RR-intervals vary from one signal to another depending upon the lifestyle 
of subject3 and (3) the discriminative capability of the extracted features vary significantly for different heartbeat 
patterns (4) the training and testing dataset consists of heartbeats from the same patient which is not feasible for 
practical applications.
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This paper addresses the aforementioned issues by presenting a novel analysis method i.e. discrete orthogo-
nal stockwell transform (DOST) based artificial bee colony (ABC) optimized least-square twin support vector 
machines (LSTSVMs) to detect and classify different categories of ECG signals. The DOST localizes the spec-
trum and retains the phase properties by extracting the time-frequency features from an input ECG signal. The 
artificial bee colony (ABC) technique gradually optimizes the learning parameters for the LSTSVM classifier to 
develop an efficient model for the extracted features. The proposed method is implemented on the commercially 
available ARM-based embedded platform and validated on the benchmark MIT-BIH arrhythmia database19. The 
developed platform is evaluated under two assessment schemes i.e. class and personalized schemes. The person-
alized scheme is suitable for practical applications, since the training and testing datasets comprises of records of 
different patients (i.e. considering the inter-individual variability in the data). The prototype is trained in off-line 
mode while the results are reported on the testing dataset. More particularly, this study proposes the validation of 
developed platform on the MIT-BIH data for real-time verification of the proposed method allowing monitoring 
of arrhythmias for point-of-care applications.

Results
Database Setup. The proposed method is validated over the benchmark MIT-BIH arrhythmia database19 
and evaluated under two analysis schemes i.e. setup I (class-oriented) and setup II (personalized) schemes 
respectively.

Setup I (Class-oriented scheme): In this scheme, all the 48 records of the database comprising beat 110109 
labels are utilized for analysis. The experiments are carried out on the training and testing datasets constituted by 
randomly selecting a fraction of ECG signals from each class and further divided into sixteen clusters where each 
class of ECG signal represents each cluster. Here, each class of heartbeat is represented using each cluster. The 
training dataset comprises of 23996 signals, (i.e. 21.26%) while rest of heartbeats are utilized for the testing pur-
pose. Table 1 presents the training and testing datasets utilized for the experimental purpose. Further, the optimal 
parameters for the classifier are determined by performing 14 fold cross-validation on the training dataset, while 
the testing is performed on the testing dataset7. The final accuracy is computed by averaging the accuracy of all 
the folds.

Setup II (Personalized scheme): In this scheme, the AAMI standard14,20–22 is followed where four records i.e. 
102, 104, 107, and 217 are excluded from the datasets, i.e. the analysis is carried out on the remaining 44 records. 
The 16 classes of ECG signals from the MIT-BIH arrhythmia database are mapped into five bigger classes namely 
N (beats originating in the sinus mode), S (supraventricular ectopic beats (SVEBs)), V (ventricular ectopic beats 
(VEBs)), F (fusion beats), and Q (unclassifiable beats). Under this scheme, two experiments are performed fol-
lowing Ince et al.21 (Setup IIA) and Chazal et al.7 (Setup IIB). In the setup IIA, the first 20 records (within a range 
of 100–124), which include representative samples of routine clinical recordings, are used to select representative 
beats to be included in the common training data. The rest 24 recordings (within a range of 200–234) contain 
ventricular, junctional, and supraventricular arrhythmias. A total of 83648 beats from all 44 records are used as 
test patterns for performance evaluation. a stopping criterion is decided which is the minimum train classification 
error level that is set to 1% to prevent over-fitting. In setup IIB, the training and testing datasets are constituted 
by equally splitting the records i.e. each dataset comprises of 22 records. Further, the optimal parameters for 
the classifier are determined by performing 22 fold cross-validation on the training dataset, while the testing is 
performed on the testing dataset7. The final accuracy is computed by averaging the accuracy of all the folds. Both 
these experiments are performed to have a fair comparison among the existing methods in the literature.

ECG signal Type - Annotation Total Training TR(%) Testing

Normal (NOR) - N 75017 11253 23 63764

Left Bundle Branch Block (LBBB) - L 8072 2825 35 5247

Right Bundle Branch Block (RBBB) - R 7255 2539 35 4716

Atrial Premature Contraction (APC) - A 2546 891 35 1655

Preventricular Contraction (PVC) - V 7129 2495 35 4634

Paced Beat (PACE) - P 7024 2458 35 4566

Aberrated Atrial Premature Beat (AP) - a 150 75 50 75

Ventricular Flutter (VF) - ! 472 236 50 236

Fusion of Ventricular and Normal Beat (VFN) - F 802 401 50 401

Blocked Atrial Premature Beat (BAP) - x 193 97 50 96

Nodal (Junctional Escape Beat) - j 229 115 50 114

Fusion of Paced and Normal Beat (FPN) - f 982 491 50 491

Ventricular Escape Beat (VE) - E 106 53 50 53

Nodal (Junctional) Premature Beat (NP) - J 83 42 50 41

Atrial Escape Beat (AE) - e 16 8 50 8

Unclassificable Beat (UN) - Q 33 17 50 16

Total 110109 23996 21.79 86113

Table 1. Summary of datasets in category based analysis scheme.
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Proposed Method Flow. The block diagram of the proposed method flow is depicted in Fig. 1.

•	 Data Acquisition Unit: The real-time input ECG signals are generated using MIT-BIH arrhythmia data and 
provided as input to the embedded platform for processing and analysis. Since, the monitoring platform is 
trained in off-line mode, therefore ECG signal from the testing datasets only for both the schemes i.e. setup 
I and II are generated.

•	 ARM based embedded platform: The proposed method is implemented on the ARM embedded platform 
to provide real-time monitoring of electrocardiogram signals. The real-time input ECG signals are input of 
the ARM based embedded platform. The median filters and low-pass filter to remove the baseline wander 
and high-frequency noise from the corresponding ECG signals. Thenafter, the R-peak in the ECG signal is 
detected within the input ECG signals. The discrete orthogonal stockwell transform features (i.e. 1 × 256) are 
computed to represent the input ECG signals. The selection of features and tuning of the least square twin 
SVM classifier is done using the artificial bee colony (ABC) method. Once the feature reaches the classifica-
tion stage, the computation gets started and the input signal is assigned to a particular class.

•	 Displaying Device: The output class detected by the embedded platform is displayed on the 16 × 2 liquid 
crystal display (LCD).

Performance metric evaluation. The classification performance for each class of heartbeat is computed 
using five standard metric parameters i.e. sensitivity (SE), positive predictivity (PP), accuracy (AC), error rate (ER) 
and F-score (Fs). The sensitivity is the rate of correctly classified events among all of the events, SE = TP/(TP + FN). 
The PP is the rate of correctly classified events in all of the detected events, PP = TP/(TP + FP). The AC is the 
ratio of the number of correctly classified patterns to the total number of patterns classified, AC = (TP + TN)/
(TP + TN + FP + FN) and F-score (Fs) is defined as (2TP/2TP + FN + FP). These three aforesaid parameters are 
computed for each category of ECG signal over the MIT-BIH database.

The class of heartbeats detected by the developed platform for each tested signal is compared with the anno-
tations file to formulate the results and reported in the confusion matrix as in Tables 2, 3 and 4 for setup I, IIA 
and IIB i.e. class-oriented and personalized assessment schemes respectively. This matrix maps the correctly 
classified and misclassified signals into their subsequent classes. In the confusion matrix, the column represents 
the predicted signals detected by the platform while the row represents the ground truth (i.e. labels provided in 
the database). In Table 2, among the 86113 testing signals, 82918 signals are correctly detected achieving a high 
accuracy of 96.14% with an error rate of 3.86%. In the personalized scheme (Setup IIA), an accuracy of 96.08% 
is achieved i.e. out of 83648 signals 80379 signals are correctly detected by the prototype summarized in Table 3. 
While in setup IIB as in Table 4, the platform reported an accuracy and error rate of 86.89% and 13.11% respec-
tively i.e. out of 49711 signals, 43194 signals are correctly detected. The accuracy reported for the classes ‘e’ and 
‘Q’ as in Tables 2, 3 and 4 is very low i.e. which is due to the less amount of data considered for training purpose.

Further, other metrics such as true positives (TP), false positives (FP) and false negatives (FN) parameters are 
computed for each of the schemes and are summarized in Tables 2, 4 and 3. In setup I scheme, the overall SE, PP, 
Fs metrics for the 16 classes of ECG signals is computed and presented in Table 2 which is 96.29%, 96.29% and 
76.06% respectively. In the personalized scheme i.e. setup IIA following the Ince et al.21, the overall SE, PP, Fs are 
96.08%, 96.08% and 96.08 respectively summarized in Table 3. In setup IIB following the Chazal et al.7, the overall 
SE, PP, Fs is 86.89%, 86.89% and 86.89% respectively presented in Table 4.

These results reported under both the setup I, IIA and IIB (i.e. class and personalized schemes) are directly 
compared with the existing methods reported in the literature and presented in Tables 5 and 6. It can be con-
cluded from Tables 5 and 6, that the proposed method reported higher classification accuracy under both the 
analysis schemes. In addition, the study classifies more number of ECG signals in the class-oriented scheme. 
It is evident that the features extracted are significant enough to efficiently represent the input ECG signal in 
time-frequency space for the developed classifier model, leading to higher accuracy and improved performance 
achieved by the prototype.

Figure 1. Proposed method flow.



www.nature.com/scientificreports/

4Scientific REPORTS |  (2018) 8:11395  | DOI:10.1038/s41598-018-29690-2

Discussion
As expected, the performance of developed personalized arrhythmia monitoring platform evaluated under 
setup II (i.e. personalized scheme) reported worse results than the setup I (i.e class-oriented) scheme, due 
to inter-individual variability in physiological characteristics between the data of different subjects. The 
personalized-analysis scheme is suitable for practical applications due to the fact that the training and testing 
dataset comprises of records of different patients. Further, due to a huge variation in the number of ECG signals 
among various classes used for training and testing purpose, the performance metrics can be considered as highly 

Predicted Labels

Total
SE
(%)

PP
(%)

FS
(%)N L R A V P a ! F x j f E J e Q

Ground Truth

N 61910 130 0 1193 311 0 61 23 57 0 33 27 0 0 11 8 63764 97.09 99.11 98.09

L 122 5051 0 0 74 0 0 0 0 0 0 0 0 0 0 0 5247 96.26 94.02 95.13

R 157 0 4461 71 19 0 0 0 0 0 0 0 0 8 0 0 4716 94.59 100 97.22

A 32 23 0 1487 14 0 0 4 95 0 0 0 0 0 0 0 1655 89.85 53.78 67.28

V 86 15 0 0 4369 0 0 79 71 0 0 14 0 0 0 0 4634 94.28 90.59 92.4

P 23 109 0 0 0 4357 0 0 0 0 0 77 0 0 0 0 4566 95.42 99.89 97.6

a 13 0 0 7 3 0 52 0 0 0 0 0 0 0 0 0 75 69.33 46.02 55.32

! 14 32 0 0 19 0 0 171 0 0 0 0 0 0 0 0 236 72.46 60.64 66.02

F 41 0 0 0 11 0 0 0 349 0 0 0 0 0 0 0 401 87.03 61.01 71.74

x 11 0 0 3 0 0 0 5 0 77 0 0 0 0 0 0 96 80.2 100 88.34

j 14 0 0 0 0 0 0 0 0 0 96 0 0 4 0 0 114 84.21 74.42 79.01

f 23 11 0 0 0 4 0 0 0 0 0 453 0 0 0 0 491 92.26 78.92 85.07

E 8 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 53 84.91 100 91.84

J 3 0 0 4 2 0 0 0 0 0 0 0 0 32 0 0 41 78.05 72.73 75.29

e 4 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0 8 25 15.38 19.05

Q 6 0 0 0 1 0 0 0 0 0 0 3 0 0 0 6 16 37.5 42.86 37.5

Total 62467 5372 4461 2765 4823 4362 113 282 572 77 129 574 45 44 13 14 86113 96.29 96.29 76.06

Table 2. Confusion matrix and performance metrics in setup I (class scheme).

Predicted Labels

N S V F Q Total TP FN FP
SE
(%)

PP
(%)

FS
(%)

Ground Truth

N 73242
(40648)

863
(707)

439
(342)

77
(48)

29
(21)

74650
(41766)

73242
(40648)

1408
(1118)

1207
(1186)

98.11
(97.32)

98.38
(97.16)

98.24
(97.24)

S 649
(661)

1614
(1461)

191
(189)

7
(4)

9
(5)

2470
(2320)

1614
(1461)

856
(859)

1178
(1009)

65.34
(62.97)

57.80
(59.14)

61.35
(61.00)

V 395
(353)

287
(281)

5128
(4083)

63
(72)

26
(31)

5899
(4820)

5128
(4083)

771
(737)

679
(572)

86.93
(84.71)

88.30
(87.71)

87.61
(86.18)

F 156
(166)

27
(21)

45
(40)

394
(386)

3
(3)

625
(616)

394
(386)

231
(230)

148
(125)

63.04
(62.66)

72.69
(75.54)

67.52
(68.50)

Q 7
(6)

1
(0)

4
(1)

1
(1)

1
(0)

14
(8)

1
(0)

13
(8)

67
(60)

7.14
(0)

1.14
(1.66)

2.44
(0.00)

Total 74449
(41834)

2792
(2470)

5807
(4655)

542
(511)

68
(60)

83658
(49530)

80379
(46578)

3279
(2952)

3279
(2952)

96.08
(94.04)

96.08
(94.04)

96.08
(94.04)

Table 3. Confusion matrix and performance metrics in setup IIA (personalized scheme) based on datasets in25. 
†Classification results for the testing dataset only (24 records from range 200–234) are shown in parenthesis.

Predicted Labels

N S V F Q Total TP FN FP
SE
(%)

PP
(%)

FS
(%)

Ground Truth

N 39168 935 1295 2767 93 44258 39168 5090 579 88.50 98.54 93.25

S 311 1328 181 14 3 1837 1328 509 1223 72.29 52.06 60.53

V 89 275 2628 142 87 3221 2628 593 1587 81.59 62.35 70.68

F 176 12 109 69 22 388 69 319 2923 17.78 02.31 04.08

Q 3 1 2 0 1 7 1 6 205 14.28 0.48 0.94

Total 39747 2551 4215 2992 206 49711 43194 6517 6517 86.89 86.89 86.89

Table 4. Confusion matrix in setup IIB (personalized scheme) based on datasets in10.
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significant. The higher accuracy reported under both the schemes i.e. setup I, IIA and setup IIB implicitly signifies 
the relevance of discriminative features extracted for various categories of heartbeats using discrete orthogonal 
stockwell transform technique along with the developed classifier model leading to an efficient detection and 
classification of ECG signals. Further, the prototyping of the proposed method on the hardware platform allows 
real-time monitoring of ECG signals at the place of patients for direct point-of-care use. The developed hardware 
platform can be utilized for clinical analysis in hospitals for monitoring different classes (i.e. sixteen classes in 
class based and five classes in personalized scheme) of arrhythmias with higher accuracy. In this study, the clinical 
environment scenario is presented by generating real-time signals from the digital data into analog domain for 
processing and analysis. This kind of implementation provides an assistive diagnostic solution for the cardiovas-
cular diseases which can be utilized by users to lead a health life-style.

This study aims (a) to develop a feature extraction technique to efficiently represent the input ECG signals 
(b) to propose an efficient classifier for classifying the features into their subsequent categories (c) to evaluate the 
proposed method for practical applications i.e. in case of personalized assessment scheme (d) hardware imple-
mentation of the proposed method to facilitate real-time monitoring of arrhythmias. All these aims on together 
provide automatic, efficient, universal, fast and reliable solution for general population. The proposed solution 
have the following advantages such as: (1) one lead used (2) evaluation of the proposed methodology under two 
schemes i.e. classification of 16 classes and 5 classes in category and personalized scheme respectively (3) high 
accuracy and sensitivity, (4) lower classification time and (5) more number of classes can be classified using the 
proposed method.

Cardiac Summary Report and Storage. The classes of arrhythmias detected by the platform under both 
the schemes (i.e. setup I and setup II) are stored in a text (‘.txt’) file to generate a daily cardiac summary report 
regarding the status of heart. The report provides the total number of ECG signals detected by the prototype, 
along with the number of ECG signals detected in each class. A 1 Gb memory SD card is provided to store the 
cardiac report summary report, thus allowing off-line analysis by an cardiology expert. In the off-line analysis, 
the expert can analyze the ECG data (i.e. in digital form) and their classes detected by the platform, thus allowing 
the reduction in time consumption required for providing preventive measures to the patients. It is to note that 
a 1 GB card can store the ECG data for 40 days1 while the length of recording depend on the memory size of SD 
card used. Further, during the detection of an arrhythmia by the platform, an alarm is triggered which is a pop-up 
message warning notification to alert the user. This allows the user to do not continuously monitor the cardiac 
summary reports and provides a no emergency condition by detecting an arrhythmia at a earlier stage to prevent 
the users from serious ailments for cardiovascular diseases. The developed prototype can be fabricated to develop 
a wearable or handheld device for point-of-care use providing real-time feedback regarding the condition of heart 
to the end users.

Methods
In this study, a novel ECG signal recognition scheme, i.e. discrete orthogonal stockwell transform (DOST) based 
artificial bee colony optimized twin least-square support vector machine (ABC-LSTSVM) is explored for auto-
mated recognition of cardiac arrhythmias. The block diagram representation of the proposed method is depicted 
in Fig. 2. Further, the proposed method is implemented on the microcontroller platform to monitor the different 
categories of ECG signals validated on the benchmark MIT-BIH arrhythmia database.

Study [Ref.] Classes Features Classifier
Accuracy 
(%)

Oresko et al.1 5 RR-interval NN 90

Cvikl et al.30 2 RR-interval OSEA 92.36(Sp)

Rodriguez et al.31 all MIT Waveform Decision Tree 96.128

Jeon et al.32 3 WT SVM 95.1

Proposed 16 DOST LSTSVM-ABC 96.29

Table 5. Comparison table for setup I (class scheme). †NN: Neural Networks, SVM: Support Vector Machine, 
WT: Wavelet Transform, OSEA: Open Source ECG Analysis Software, ABC: artificial bee colony.

Study [Ref.] Classes Features Classifier Accuracy(%)

Hu et al.18 5 Time-domain MOE 94.8

De Chazal7 5 RR-interval + Morphology LDA 81.9

Ye33 5 WT + ICA + RR SVM 86.4

Proposed 5 DOST LSTSVM-ABC 96.08

Table 6. Comparison table for setup II (personalized scheme). †LDA: Linear Discriminant Analysis, WT: 
Wavelet transform, ICA: Independent component analysis, SVM: Support Vector Machines, MOE: Mixture of 
Experts.
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MIT-BIH Database. The benchmark MIT-BIH database is chosen to provide the real clinical situation. The 
database comprises of 48 different subjects. The data are band-pass filtered at 0.1 H–100 Hz and sampled with a 
rate of 360 Hz which is acquired with 11-bit resolution over 10 mV range. Further, the data acquired is bandpass 
filtered at 0.1–100 Hz while the database comprises a total of 110109 beat labels. The database also provides the 
class annotations. In this study, modified limb lead II (MLII) signals are used for the validation while their class 
annotations are used as ground truth to formulate the results. It is to note that the all the 48 records of the data-
base are utilized to evaluate the proposed method.

Pre-processing. There are several kinds of noise associated with the raw ECG signal. Among them include 
the artifacts due to muscle contraction, power-line interference, baseline wander. Hence, pre-processing is essen-
tial for an efficient fiducial point detection and recognition of ECG signals. The pre-processing is applied to the 
noisy ECG signals to improve the signal-to-noise ratio (SNR) and remove the noise. Initially, to remove the base-
line wander, the ECG signals are passed through two median filters. The first median filter of 200 ms removes the 
QRS complex and P wave while the second median filter of 600 ms removes the T wave within the ECG signal. 
The output signal of the second filter contains the baseline associated with the ECG signal and hence, it is sub-
tracted from the original signal to generate baseline corrected signal. A 12-tap FIR low-pass filter with a cut-off 
frequency of 35 Hz with equal ripple in the pass and stop bands is used here to remove the high-frequency noise 
and power-line interference. Finally, the filtered ECG signal is used for processing and analysis.

R-peak detection and ECG Segmentation. In the practical scenario, the automatic detection of R-peak 
is essential to evaluate the proposed method entirely for ECG signal analysis. For this purpose, a well established 
Pan-Tompkins (PT) method23 is adopted for the subsequent detection of R-peak in the corresponding ECG sig-
nals. The PT method has reported good performance in noisy conditions with less complexity achieving a sensi-
tivity of 99.87% than24,25. Therefore, the method is used as a ready-made solution for the R-peak detection in the 
consecutive ECG signals.

A window of length 0.512 ms is taken across each R-peak to determine the size of each ECG signal. Here, each 
ECG signal consists of 256 samples i.e. 110 samples before and 145 samples after detected R-peak of the heartbeat. 
The R-peak detection stage is followed by the feature extraction and classification stages for an efficient recogni-
tion of heartbeats.

Feature extraction using DOST. The application of discrete orthogonal stockwell9,26 transform yields 
time-frequency morphological coefficients for the different classes of heartbeats. The steps involved in the com-
putation of DOST coefficients are (i) a N-point FFT is applied to compute the fourier spectrum of the N-length 
ECG signal z(n). (ii) a rectangular window function V[p] = Π[−β/2, β/2−1](n) is multiplied with z[n + p] (iii) A 
β-point inverse FFT is applied to V[p]z[n + p], for each central frequency m = 0, 1, 3, …, 3β/2,… to compute 
the DST coefficients where p = 0, L/β, 2L/β, …, (β − 1)L/β ensuring that the decomposition is orthogonal. In the 
inverse-DOST case, a β-point FFT is applied to s[q,p] with respect to time index q to obtain the windowed fourier 
spectrum V[p]z[n + p] for each central frequency m = 0, 1, 3, …, 3β/2,…. Here, s[q, p] is the DOST coefficient 
corresponds to the point <q, p>. Note that V[p] = 1, for nε[−β/2, …, −β/2 − 1] that returns z[p], p = β, β + 1, 
…, 2β−1, β fourier coefficients of the signal. A N-point inverse FFT to z[n] is applied to recover the original 
signal z[l]. The total time complexity of DOST algorithm is of the order of Θ(NlogN + NlogN + N). The data flow 
of the DOST algorithm is depicted in Fig. 3. The time-frequency coefficient vectors are extracted from the cor-
responding heartbeats that are used as final feature set to recognize the heartbeats into different classes using the 
ABC-LSTSVM classifier model.

Figure 4 shows the reconstruction of the normal and the abnormal i.e. LBBB and PVC signals. Here, the error 
in reconstruction for all the three classes is of the order of 10−15. The DOST features of vector of size N×1 are 
extracted for different categories of heartbeats. Therefore, it can be concluded from Fig. 4 that DOST coefficients 
exhibits better performance while reconstructing the ECG signals. Therefore, the DOST can be considered as a 
potential tool for extracting significant features from the corresponding ECG signals.

Feature classification using ABC Optimized least-square twin SVM. An optimal artificial bee col-
ony optimized least-square twin SVM (ABC-LSTSVM) classifier model is developed to classify the DOST fea-
tures into various categories under the two schemes. In this study, the radial basis function (RBF) kernel is 
adopted to perform non-linear analysis of the input data by mapping them into the high-dimensional feature 
spaces. In the recognition phase, directed acyclic graph (DAG) technique27 is adopted to provide the multi-class 
solution to the classifier model. The DAG approach is suitable for practical applications due to the fact that its 
computational complexity is −O P l

P

( 1) 3

2 , (where P is the number of class and l is the length of input vector) which is 
significantly less than the conventional SVM i.e. −K l

K

4( 1) 3

2
. The cost function of both the two hyperplanes are con-

sidered as equal i.e. c1 = c2 = C for significant reduction in computational load of selecting the parameters. The 

Figure 2. Block diagram of the proposed method.
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testing time involved is less than those of one-against-one and one-versus-all approaches27. In the training phase 
of DAG-SVM, N(N − 1) non-parallel hyper-planes and binary classifiers are constructed for a total number of N 
classes. While in testing phase, a binary rooted DAG is used consisting N(N − 1)/2 internal decision nodes (binary 
classifiers) and N leaves. The searching range of penalty C and kernel argument γ parameters are in the range of 
[2−5, 210] and [2−10, 25] respectively. The artificial bee colony (ABC)28 technique is employed to search the optimal 
learning parameters for the least-square twin support vector machine classifier.

The ABC aims to gradually optimizes the least-square twin SVM classifier by a) employing the best features 
to distinguish between different categories of heartbeats automatically and b) selecting best learning parameters 
for the classification model. The flowchart of the ABC technique is presented in Fig. 5 and its pseudo code is 
summarized here.

In the ABC algorithm, the parameters considered for performing the experiments are summarized in 
Table 7. ABC evaluates the fitness of each food source at each iteration and determines the optimal network. In 
the training phase, the classifier parameters i.e C and γ are gradually tuned using the ABC algorithm following 
the m-fold cross-validation strategy29 where the simple SV count is employed as a fitness criteria. The ten-fold 
cross-validation is performed on the training as well as testing dataset i.e. entire dataset using the optimal param-
eter values of C and γ to achieve better accuracy. It is to note that the whole procedure is performed for the data-
sets under both the analysis schemes presented in section 0 i.e. for both the schemes different values of C and γ are 
obtained. During testing phase, the testing dataset is utilized for estimating the classification accuracy for ECG 
signal class which is reported in terms of confusion matrix.

Figure 3. Dataflow of proposed DOST.

Pseudo code of ABC algorithm.
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Figure 4. Input, reconstructed signal and error for (a) Normal (b) LBBB (c) PVC signal using DOST.

Figure 5. Flowchart of ABC technique.
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Hardware prototyping and implementation of proposed method. This study aims to develop 
microcontroller-based platform technology having the capability to perform real-time ECG reception, extraction 
of features, and heartbeat recognition. To demonstrate the feasibility of the idea, a proof-of-concept prototype is 
developed using commercially available ARM9 platform in the laboratory experimental setup.

Laboratory prototype. The proposed method is implemented on the ARM based hardware test platform in real 
scenario. The experiments are performed to evaluate the proposed method and monitor the different classes of 
ECG signals. The #C++ programming language is used to develop the proposed method while the debugging 
environment is linux to program the ARM processor. The gcc compiler compiles the program to generate the 
output file. While the output file of the program is executed, the processor platform starts predicting the ECG 
signals. The real-time ECG signals are generated using the arbitrary function generator (AFG 3252) while their 
class detected by the platform is observed on the liquid crystal display (i.e. 16 × 2) interfaced with the processor 
platform. The AFG 3252 provides two-channel analog output system from which these real-time signals using 
channel I are taken through BNC crocodile connection cable (i.e. with an impedance of 50 Ω) to the platform as 
input for further processing and analysis. In addition, the morphology of the signals can be seen on mixed signal 
oscilloscope (i.e. MSO 2024B). Figure 6 depicts the laboratory experimental setup for the developed hardware 
test platform.

Implementation of the proposed method. Initially, the training of the hardware test platform is per-
formed in off-line mode. In off-line mode, all the parameters are computed using MATLAB software package 
[R2014a; Version 7.14.0.739 installed on PC]. Once the model has been determined, the training of the model is 
performed and the parameters such as support vectors (SVs), alphas (αi) and variables are stored in the memory 
of the hardware test platform through a serial port. The experiments performed on the datasets under both the 

Parameters In the ABC Technique

Number of Bees (Onlooker + Employed Bees) 200 (50 + 150)

Maximum Number of cycles (MCN) 500

No. of Iterations for Onlooker Bees 200

No. of Food sources 25

Table 7. Parameters in the ABC Technique.

Figure 6. Experimental laboratory setup.

Figure 7. Noisy ECG signal and its pre-processing.
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schemes i.e. case I and case II will yield different values of C and γ. The platform is evaluated on the testing dataset 
signals to estimate the performance.

The ECG signals from the testing dataset are randomized, re-annotated and generated in a text file which is 
transferred to the arbitrary function generator (i.e. AFG 3252) for real-time generation of input signals. In the 
MIT-BIH arrhythmia database, the ECG data available have a maximum dynamic range of ±5 mV. The data is 
converted in the range of 0–5 V using the AFG for its processing by a typical 10-bit analog-to-digital (ADC) con-
verter. The sampling rate of the ADC is set to 500 Hz. Further, a pause is added; so that the packages should arrive 
at the same sampling rate as the ADC. The data is encoded with a fixed point math by using 32-bit representation. 
Thenafter, the proposed method is applied for processing the acquired input signal. The raw ECG signals are 
preprocessed to remove noise and improve the SNR of the ECG signals. In Fig. 7, shows the two channel mixed 
signal oscilloscope (MSO) in which the noisy along with the filtered ECG signals are observed in channels I and 
II respectively. Further, the R-peak of the filtered ECG is detected using the PT algorithm23 which is depicted 
in Fig. 8(a). Figure 8(a), shows the R-peak detection in the consecutive ECG signals on the digital signal oscil-
loscope. The R-peak detection is followed by a window of length 256 samples, i.e. 0.712 ms chosen across each 
R-peak to determine the length of ECG segments and depicted in Fig. 8(b).

Further, the ECG segments are passed through the feature extraction and classification stages. In the feature 
extraction stage, the time-frequency features are extracted. The twin SVM model is developed and exploited in 
off-line mode for training purpose. The performance of SVM classifier is presented at convergence during the 
optimization procedure using ABC. The real-time testing is performed on the testing dataset where once the 
features reaches this stage, the computation gets started and the input ECG signals are recognized by the test 
platform. During testing, the category of ECG signals detected is displayed on the liquid crystal display (i.e. 16 × 2 
LCD) module while their morphology is displayed on mixed signal oscilloscope (i.e. MSO 2024B) in the experi-
mental laboratory setup depicted in Fig. 6. In Fig. 6, a right bundle branch block (RBBB) signal is detected at that 
instant of time and consequently, the other classes of the ECG signals are detected by the developed platform.

Conclusions
This study presents a novel method i.e. discrete orthogonal stockwell transform for feature extraction and arti-
ficial bee colony (ABC) optimized least-square support vector machines for the classification of the features 
extracted for each of the ECG signals into their subsequent categories. The proposed method is implemented on 
ARM processor platform, validated on the MIT-BIH arrhythmia database and evaluated under two schemes i.e. 
class and personalized schemes to monitor the different classes of arrhythmias. The evaluation under personal-
ized scheme is suitable for practical scenario. A higher accuracy of 96.29% and 86.89% is reported under class and 
personalized schemes respectively than the existing works in the literature. The platform can be utilized by end 
users to maintain a daily record of the cardiac health status to enhance the healthcare for cardiovascular diseases 
and lead a healthy life style. Further, the platform can also be utilized in hospitals to analyze the long-term ECG 
recordings, thus reducing the time of cardiologist in providing the necessary preventive measures to the patients.
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