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Background: A major limitation of circulating tumor DNA (ctDNA) for somatic mutation detection has been the low level of
ctDNA found in a subset of cancer patients. We investigated whether using a combined isolation of exosomal RNA (exoRNA)
and cell-free DNA (cfDNA) could improve blood-based liquid biopsy for EGFR mutation detection in non-small-cell lung cancer
(NSCLC) patients.

Patients and methods: Matched pretreatment tumor and plasma were collected from 84 patients enrolled in TIGER-X
(NCT01526928), a phase 1/2 study of rociletinib in mutant EGFR NSCLC patients. The combined isolated exoRNA and cfDNA
(exoNA) was analyzed blinded for mutations using a targeted next-generation sequencing panel (EXO1000) and compared with
existing data from the same samples using analysis of ctDNA by BEAMing.

Results: For exoNA, the sensitivity was 98% for detection of activating EGFR mutations and 90% for EGFR T790M. The
corresponding sensitivities for ctDNA by BEAMing were 82% for activating mutations and 84% for T790M. In a subgroup of
patients with intrathoracic metastatic disease (M0/M1a; n¼ 21), the sensitivity increased from 26% to 74% for activating
mutations (P¼ 0.003) and from 19% to 31% for T790M (P¼ 0.5) when using exoNA for detection.

Conclusions: Combining exoRNA and ctDNA increased the sensitivity for EGFR mutation detection in plasma, with the largest
improvement seen in the subgroup of M0/M1a disease patients known to have low levels of ctDNA and poses challenges for
mutation detection on ctDNA alone.

Clinical Trials: NCT01526928
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Introduction

A growing understanding of the molecular complexity of cancer

and the role of oncogenic drivers has ushered in the current era of

targeted therapies [1]. The molecular analysis required to inform

appropriate choice of targeted therapy is typically carried out on

tumor tissue acquired from biopsy at diagnosis. However, tumor

biopsy has several limitations, including the invasiveness of the

procedure and the risk of false-negative results due to tumor het-

erogeneity or low tumor cellularity. In addition, as many as 49%

of advanced or metastatic non-small-cell lung cancers (NSCLC)

do not have accessible tumor tissue [2, 3]. The noninvasive iden-

tification of tumor-associated mutations through body fluids

such as blood or urine thus represents an attractive alternative to

tissue-based methods [4, 5].
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Circulating tumor DNA (ctDNA), the component of circulating

cell-free DNA (cfDNA) released from tumor sites into the blood of

cancer patients, has shown great promise as an alternative to tumor

tissue in NSCLC and other cancer indications [6]. This has led to the

recent regulatory approval in the United States and Europe of

blood-based EGFR companion diagnostic tests [7, 8]. Moreover,

highly sensitive and selective technologies have been developed to

overcome the inherent challenge posed by the very low fraction of

tumor-derived DNA relative to wild-type that is often found in the

blood of cancer patients [9]. In this regard, BEAMing (Beads,

Emulsion, Amplification, and Magnetics), a technology based on

digital PCR, can identify mutations at a mutant allele fraction

(MAF) of down to 0.02% and has previously been demonstrated to

be among the most sensitive for mutation detection from ctDNA

[10], and next-generation sequencing (NGS) technologies are now

reaching similar levels (0.05% MAF) [11]. One remaining hurdle is

the identification of somatic alterations in patients whose tumor

biology does not result in sufficient levels of ctDNA to allow detec-

tion. The proportion of patients with detectable ctDNA varies by in-

dication [12], stage of disease [12, 13], tumor burden and other

clinical characteristics [14]. In NSCLC, patients with activating

EGFR mutations, including deletions in exon 19 and the L858R

point mutation in exon 21, are eligible for treatment with various

EGFR inhibitors and the first FDA-approved liquid biopsy is avail-

able [15]. In patients with relapsed NSCLC, where third-generation

EGFR tyrosine kinase inhibitors (EGFR-TKI) are in development or

approved for the EGFR T790M resistance mutation, the false-nega-

tive rate for T790M is often >30% due to limiting levels of ctDNA

in the blood of this patient population [16, 17]. Accordingly, the first

FDA-approved Roche cobasVR EGFR Mutation Test v2 for T790M

achieves a sensitivity of only 58.4% and a specificity of 80.4% [7].

One means to overcome the challenge of mutation detection in

patients with limiting ctDNA could be to include the tumor-

associated RNA derived from exosomes. Exosomes are small ves-

icles that are actively released by living cells, including tumor cells

[4, 18] and which carry RNA, DNA and proteins [19–22]. The

use of exosomal RNA (exoRNA) to identify somatic mutations of

tumor origin has previously been demonstrated [19], but the ex-

traction of both exoRNA and cfDNA combined (exoNA) has not

been explored yet and may offer advantages over ctDNA alone.

An important feature of exosomes is that nucleic acids in the

lumen of these vesicles are protected from nucleases present in

plasma and other biofluids, which allows for isolation of intact,

good quality RNA [23]. Additionally, exosomes are actively

released from living cells as opposed to ctDNA, which is released

from dying cells through apoptosis or necrosis [24]. We speculate

that the additional mutations present on the exoRNA as well as

their origin from actively growing tumor cells could help to im-

prove a plasma-based test for EGFR mutations.

In this study, we analyzed 84 plasma samples from stage IIIB and

IV NSCLC patients enrolled in TIGER-X (NCT01526928), a phase 1/

2 trial of the third-generation EGFR inhibitor rociletinib. We co-

isolated exosomes and ctDNA and extracted the nucleic acids and

used a targeted NGS assay (EXO1000) to screen for EGFR mutations.

The primary objective was to investigate if the co-isolation of

exoRNA and ctDNA would increase copy number and sensitivity of

EGFR mutation detection, especially in those patients known to be

EGFR mutation positive by tumor biopsy but not identified as such

by ctDNA analysis alone. The data were compared with matching

tissue data and with matching ctDNA results obtained previously

with BEAMing. We also investigated whether changes in EGFR muta-

tion levels during treatment was associated with treatment outcome,

by analyzing plasma collected at baseline and after 15 days of therapy.

Materials and methods

Patient selection and collection of plasma samples

All patients (n¼ 84) were enrolled in TIGER-X (NCT01526928), a phase
1/2 trial of rociletinib in advanced NSCLC patients, and had documented
evidence of an activating mutation in the EGFR gene [25] from central la-
boratory tissue testing (Supplementary material S1, available at Annals of
Oncology online). Matched baseline plasma and tissue biopsy samples
were collected within 28 days before initiating therapy. A subgroup of pa-
tients (subgroup A, n¼ 56) was chosen from the entire TIGER-X patient
population (N¼ 548) using a randomizer (https://www.random.org).
Additional analytically challenging patients (n¼ 28) were included with-
out randomization that had previously been determined to have low
amounts of EGFR T790M ctDNA by BEAMing (< 10 copies/mL). All pa-
tients signed an Ethics Committee/Institutional Review Board (EC/
IRB)–approved consent form before enrolment. Further details of the
TIGER-X study design have been published previously [25, 26].

Blood samples were collected in K2 EDTA tubes (up to 4 � 6 mL
VACuettes), processed into plasma within 30 min (1800 g for 10 min at
18–23 �C), and stored at�70 �C or below until further processing.

Plasma nucleic acid extraction and analysis

Extraction and analysis of the plasma samples was carried out in one cen-
tral laboratory by Exosome Diagnostics GmbH. Plasma samples were
prefiltered using a 0.8 mm filter to exclude cellular material, platelets and
other large debris. Plasma exoNA (exosomal DNA and RNA, along with
present cfDNA) was co-isolated from the samples using ExoLutionTM Plus
extraction technology (Exosome Diagnostics, Inc.) on a median plasma in-
put of 3 mL per patient. ExoLutionTM Plus uses spin-columns capturing
both cell-free DNA and extracellular vesicles smaller than 0.8 lm in diam-
eter, followed by nucleic acid purification. The captured exosomes are
roughly 50–200 nm in size and enriched in known exosomal protein
markers [27]. The exoNA was reverse transcribed using VILOTM cDNA
Synthesis Kit (Invitrogen) and the cfDNA/cDNA mixture was analyzed
using EXO1000, a custom, targeted NGS assay (Supplementary material
S2, available at Annals of Oncology online). During this process, molecular
barcodes, attached to the exon targeting assays, were used for individual
sample identification. The libraries were sequenced using 150 bp paired-
end reads on a MiSeq System (Illumina CA, USA). Samples were called
positive for a mutation if the allelic frequency and copy number passed the
thresholds of a predefined assay-specific background model.

For ctDNA analysis by BEAMing (Sysmex Inostics GmbH, Germany) and
the cobasVR EGFR mutation test v2 (Roche Molecular Systems, Inc.), the
ctDNA extraction and subsequent analysis was carried out in separate labora-
tories as described previously [10, 28]. All laboratories were blinded to the
EGFR status and patient characteristics of the samples at the time of analysis.

Results

Patient characteristics

The subjects in this study (n¼ 84) fell into three partially overlap-

ping subgroups as illustrated in Figure 1. Patients in subgroup A

(n¼ 56) were chosen to be representative of the TIGER-X study

population, and an additional n¼ 28 analytically challenging
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patients were selected based on prior BEAMing data to make up

subgroup B (n¼ 50) consisting of cases with low-copy T790M

(<10 copies/mL). Patients in subgroup C (n¼ 21) all have intra-

thoracic metastatic disease (M0/M1a), a clinical feature which has

been shown previously to be especially challenging for EGFR muta-

tion detection using ctDNA [13, 17]. Patient demographics of the

three subgroups were similar to each other and to the patient

demographics of the entire clinical study population (Table 1).

Concordance of tumor and plasma mutations

All 84 plasma samples were tested with EXO1000, using exoNA,

and compared with existing data by BEAMing, using ctDNA

only. In 54 samples with valid tumor tissue, from subgroup A, the

sensitivity of using exoNA (98%, 53/54) was significantly higher

(P¼ 0.004, Supplementary material S3, available at Annals of

Oncology online) than ctDNA (82%, 44/54) for activating EGFR

mutations. Similarly, the sensitivity for the T790M mutation was

higher for exoNA (90%, 44/49) than for ctDNA (84%, 41/49)

(Table 2). This difference in sensitivity between the two methods

increased in subgroup B (n¼ 50), with sensitivity 81% (39/48)

for exoNA and 58% (28/48) for ctDNA for activating EGFR mu-

tations (P¼ 0.003), and 61% (23/38) over 53% (20/38) for

T790M (P¼ 0.5, Supplementary material S4, available at Annals

of Oncology online). The difference between the two approaches

was greatest in subgroup C (n¼ 21) of patients with intrathoracic

(M0/M1a) disease, where the sensitivity for activating mutations

was 74% (14/19) for exoNA and only 26% (5/19) for ctDNA

(P¼ 0.003), and 31% (5/16) and 19% (3/16), respectively, for

T790M, although not significant (P¼ 0.5, Table 2). We also

Tiger-X Representative

Subgroup A

Low Copy

Subgroup B

n = 21

Patients with 

intrathoracic

disease 

(M0/M1a)

M0/M1a

Subgroup C

n = 50

Patients with low 

levels of T790M

plasma ctDNA

(<10 copies/ml)

n = 84 NSCLC patients
All patients are enrolled in TIGER-X

n = 56 

Patients 

representative of the 

entire TIGER-X cohort

34 12

1710

11

Figure 1. NSCLC patient subgroups. Overview of the n¼ 84 patients in this study, in three partially overlapping subgroups: the TIGER-X rep-
resentative subgroup A, the low copy subgroup B and the M0/M1a subgroup C.
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compared a subset of 22 cases to data previously generated using

the cobasVR EGFR Mutation Test v2 on cfDNA and, consistent

with the results from BEAMing, found the sensitivity to be lower

than when using exoNA (Supplementary material S5, available at

Annals of Oncology online).

The increase in sensitivity when using exoNA was not accom-

panied by a significant difference in specificity (Supplementary

material S6, available at Annals of Oncology online). Notably,

among three patients with L858R-negative/del19-positive tumor

results and for which exoNA detected L858R, one was also

L858R-positive by ctDNA, suggesting that this case was indeed

L858R-positive in plasma and might rather have been wrongly as-

sessed by tissue analysis (Supplementary material S7, available at

Annals of Oncology online).

Despite the observed differences in sensitivity between the two

methods, both had a good overall agreement and especially in pa-

tients with a mutation negative or invalid result from tumor,

both plasma tests agreed in the majority of cases (Supplementary

materials S8 and S9, available at Annals of Oncology online).

Quantitative comparison of exoNA (EXO1000)
versus ctDNA-only (BEAMing)

We next explored the extent to which the addition of exoRNA

impacted the overall quantity of EGFR mutations in plasma.

Overall, there was a good correlation between plasma EGFR mu-

tant copy numbers in exoNA compared with ctDNA (Figure 2A).

However, there were more false negatives in the BEAMing ana-

lysis, concordant with some patients having no or very few de-

tectable mutations on ctDNA alone (Figure 2). There was a

significantly higher number of activating EGFR mutation copies

in exoNA (234 copies/mL plasma) than in ctDNA alone

(24 copies/mL plasma) (Figure 2C). Also, T790M mutation cop-

ies were significantly more abundant in exoNA (12 copies/mL

plasma) than in ctDNA (6 copies/mL plasma). For both T790M

and activating EGFR mutations, the MAF were higher in exoNA

than in ctDNA only (Supplementary material S10, available at

Annals of Oncology online). Overall, this is in agreement with

other studies where the gene copy number as well as the mutation

Table 1 Patient characteristics

Groups analyzed with exoNA

Patient demographics TIGER-X study TIGER-X Representative
Subgroup A

Low Copy
Subgroup B

M0/M1a
Subgroup C

N ¼ 548a n ¼ 56 n ¼ 50 n ¼ 21
Median age 63 years 63 years 60 years 61 years
Female 68% 79% 82% 76%
Asian ethnicity 21% 16% 14% 7%
ECOG PS grade 0 31% 23% 33% 29%
M0 or M1a 27%b 18% 42% 100%

aThe total number of patients treated at therapeutic doses.
bn¼ 461 patients were assessable for M stage analysis.
ECOG PS, Eastern Cooperative Oncology Group Performance Status.

Table 2 Concordance between tumor and plasma EGFR status

Tissue Biopsy Result

Activatinga T790M Activating T790M

TIGER-X Representative Subgroup A (n¼ 56 total, 54 with valid tumor status)
exoNA (EXO1000)b þ 53 44 Sensitivity (exoNA) 98% 90%

� 1 5
ctDNA (BEAMing)b þ 44 41 Sensitivity (ctDNA) 82% 84%

� 10 8

M0/M1a Subgroup C (n ¼ 21 total, 19 with valid tumor status)
exoNA (EXO1000)c þ 14 5 Sensitivity (exoNA) 74% 31%

� 5 11
ctDNA (BEAMing)c þ 5 3 Sensitivity (ctDNA) 26% 19%

� 14 13

aAll activating mutations were EGFR L858R or del19.
bP-value (exoNA versus ctDNA) is 0.004 for activating mutations and 0.25 for T790M.
cP-value (exoNA versus ctDNA) is 0.003 for activating mutations and 0.5 for T790M.
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detection is higher on exoNA than on ctDNA, even when ana-

lyzed on the same EXO1000 platform (Supplementary material

S11, available at Annals of Oncology online).

Prediction of treatment response using mutation
levels in exoNA

In addition to mutation detection for stratification, liquid biopsies

also have the potential to monitor patients’ response to treatment

(4) or predicting treatment outcome early, potentially allowing for

a change in treatment regimen. To demonstrate the feasibility of

such a diagnostic test in our dataset, we examined changes in

plasma mutation levels within the first 2 weeks of treatment. Using

only two time-points, exoNA was able to identify all non-

responders to rociletinib, potentially allowing to switch these pa-

tients to a different treatment, while ensuring 100% response rate

in the patients that continue on treatment (100% Negative

Predictive Value (NPV), 45% specificity; see Supplementary mate

rial S12, available at Annals of Oncology online).

Discussion

Tissue biopsy remains the primary method for molecular genotyp-

ing in NSCLC but liquid biopsies are becoming an important com-

plement. The limitations of tissue biopsies are well known and

include the risk of bleeding, infection and other complications for

the patient [29]. The average cost of a lung biopsy has been re-

ported at $14,587 (19% of patients with biopsies had some adverse

events) [30]. Recent studies have highlighted the feasibility of li-

quid biopsies [4, 31], and the FDA recently approved the first

ctDNA-based plasma test for EGFR mutations [7]. ctDNA, circu-

lating tumor cells (CTCs) or exosomes derived from tumor cells

have all been explored as a means to identify somatic alterations of

tumor origin from body fluids [21, 32, 33]. In this study, we have

investigated the benefit for liquid biopsies of co-isolating the nu-

cleic acids carried in exosomes, originating from living cells, and

ctDNA released by dying cells [18, 24]—in contrast to current li-

quid biopsy applications that only use ctDNA. To our knowledge,

this is the first report that investigates the added value of using a

combined exoRNA and ctDNA (exoNA) extraction.

A plasma test that seeks to detect low, emerging fractions of the

tumor, monitor recurrence or diagnose early stages of disease is

likely to benefit from an isolation method that increases the avail-

able molecules by co-extracting exoRNA and ctDNA. One of the

subgroups in this study was enriched for low-copy plasma

ctDNA samples. In this challenging subgroup of low-copy sam-

ples, the sensitivity was much higher using exoNA (81% com-

pared with 58% for ctDNA), and this difference was even more

pronounced in subgroup C of patients with intrathoracic disease

(M0/M1a cases), showing 74% sensitivity on exoNA for activat-

ing mutations compared with 26% on ctDNA.

The low sensitivity of plasma ctDNA-based methods for muta-

tion detection in intrathoracic disease patients (M0/M1a) has

been reported previously using a number of different techniques

ranging from BEAMing [17], PNA-ZNA-PCR [13], NGS [34],

droplet digital PCR (ddPCR) [35], to qPCR [35, 36].

Intrathoracic disease constitutes approximately one-third of all

advanced NSCLC cases [17, 37], so this improved performance

with exoNA is critical to maximize the clinical sensitivity of the li-

quid biopsy assay. However, the generally good concordance of

both platforms in this study highlights the feasibility of liquid

biopsies as an alternative to tissue testing.

A consistently lower sensitivity was observed for the T790M

mutation than for activating mutations by both plasma tests in
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Figure 2. Comparison between exoNA (EXO1000) and ctDNA-only (BEAMing) platforms. Combined exosomal RNA and cell-free DNA
(exoNA) was analyzed using the EXO1000 liquid biopsy platform and compared with ctDNA analysis by BEAMing. (A) EGFR mutant copies
found in exoNA compared with copies in ctDNA within the complete patient cohort. The triangles represent del19, hollow circles L858R, full
circle L861Q (activating mutations) and squares T790M mutations; identity line shows equal copies/mL plasma. (B) Summary of EGFR detec-
tion in plasma within all tumor EGFR positives. (C) Summary of mutant copies found in exoNA and ctDNA. P-values were derived from a
paired, one-tailed t-test comparing the two groups. ND, not detected; cps, copies; MUT, mutations.
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this study, in line with previous reports [17, 35]. This points to a

generally lower allelic load and lower copy number of the T790M

resistance mutation compared with the corresponding EGFR

driver mutation in plasma, reflecting intra- and intertumoral het-

erogeneity [38].

Another distinctive feature of the T790M mutation is the ap-

parent lower specificity when compared with tissue. Out of 11

cases that were reported as T790M negative in tumor by central

laboratory testing, only 4 were negative both by analysis of

exoNA and cfDNA alone. For the remaining seven cases, one or

both plasma tests detected T790M, as expected for patients pro-

gressing after first-line treatment with EGFR-TKI. The occur-

rence of a relatively high rate of T790M tumor negatives that are

consistently plasma positive has been observed before [35, 39]

and suggests that tumor heterogeneity or divergent metastatic le-

sions [40, 41] lead to false-negative results in tissue. While this

may well be specific to the emergence of T790M resistance, local-

ized tumor sampling is likely to limit the use of tissue biopsies

also in other cases. Ultimately, interventional studies comparing

tissue biopsy and liquid biopsy will be needed to establish the

clinical utility of both approaches.

The exoNA-based liquid biopsy platform described in this

study can be used and will add significant value for any cancer pa-

tient where a liquid biopsy is appropriate. It could be especially

beneficial in cases with low levels of nucleic acids in circulation,

such as patients with low tumor burden, intrathoracic disease or

for early detection of cancer.
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