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Abstract
Recently, more evidence supporting common nature of promoters and enhancers has been

accumulated. In this work, we present data on chromatin modifications and non-polyadeny-

lated transcription characteristic for enhancers as well as results of in vitro luciferase

reporter assays suggesting that PIWIL2 alternative promoter in exon 7 also functions as an

enhancer for gene PHYHIP located 60Kb upstream. This finding of an intragenic enhancer

serving as a promoter for a shorter protein isoform implies broader impact on understanding

enhancer-promoter networks in regulation of gene expression.

Introduction
Regulation of gene expression is a multilayer process, which involves such aspects as promot-
ers, enhancers, transcription factors, chromatin modifications, and spatial organization of the
nucleus. All these constituents interact through crosstalk and their complex interplay results in
different expression patterns across a range of tissues and cell types [1–3]. Nevertheless, recent
advances in studies of transcription regulation revealed common features specific to sites of
active gene expression: colocalization of transcribed genes in transcription factories [4, 5],
interaction of several enhancers with several promoters inside topologically associating
domains (TADs) [6], similar chromatin modifications within TADs [7–10], transcription initi-
ated at enhancers (enhancer RNA, eRNA) [11, 12]. Another emerging insight is the common
architecture of promoters and enhancers as platforms for initiation of transcription leading to
relatively stable protein-coding mRNA and transient eRNA, respectively [13–15]. These find-
ings point at the fact that enhancers could potentially act as promoters and vice versa, given the
right cellular environment. Among such previously reported instances are enhancers of murine
alpha-globin locus located in introns of gene Nprl3 which function as alternative promoters for
this gene giving rise to new mRNA products [16]. However, no alternative protein products
were detected in this case. Further genome-wide transcriptome analysis revealed that up to
50% of intragenic enhancers initiate transcription of eRNA and almost 10% produce alterna-
tive variants of mRNA for the corresponding genes in erythroid cells in mice [16]. Additionally,
between 1% and 7.5% of active transcription start sites (TSS) have apparent enhancer chroma-
tin modifications in human cell lines [16].
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In this work, we report a set of both indirect and direct evidence to demonstrate a similar
setting for the human testis-specific gene PIWIL2, which is a central player in piRNA/PIWI
pathway responsible for epigenetic silencing of retrotransposons [17, 18]. Specifically, the pre-
viously described alternative promoter of PIWIL2 in exon 7 appears to be able to act as an
enhancer for the gene PHYHIP located 60 Kb upstream. Although PHYHIP is highly expressed
in brain tissues [19] and was suggested to play a role in the development of neurological abnor-
malities observed in Down syndrome patients [20], it is also co-expressed with PIWIL2 in testis
tissues [21, 22]. Taken together, this observation implies that a switch between enhancer and
promoter functions could impact both mRNA and protein expression of some genes.

Methods and Materials

Ethics statement
Seven pairs of testicular germ cell tumor samples and corresponding adjacent normal testicular
parenchyma were obtained from orchiectomy specimens. The samples were immediately fro-
zen in liquid nitrogen. All patients provided written informed consent according to the federal
law, and the study was approved by the ethical committees of the Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry of the Russian Academy of Sciences and Blokhin Russian
Cancer Research Center after reviewing patients’ consent and information forms.

Cell lines
Cell lines used in experiments included TERA1 (ATCC HTB-105, testicular embryonal carci-
noma [23]), NT2/D1 (ATCC CRL-1973, pluripotent testicular embryonal carcinoma [24]) and
A549 (ATCC CCL-185, lung carcinoma [25]). Cells cultures were purchased from ATCC
(USA) and grown in DMEM/F12 (1:1) (Invitrogen, USA) supplemented with 10% FCS (Invi-
trogen, USA). TCam-2 cell line [26] was kindly provided by Prof. Dr. Huebert Schorle (Depart-
ment of Developmental Pathology, Institute of Pathology, Bonn Medical School, Germany).
TCam-2 cells were cultured in RPMI 1640 (Invitrogen, USA) supplemented with 10% FCS
(Invitrogen, USA).

Chromatin immunoprecipitation
ChIP was performed as described earlier [27, 28] using antibodies to human histone modifica-
tions listed in S1 Table. DNA was purified using QIAquick PCR Purification Kit (Qiagen,
USA). qPCR was performed using qPCRmix-HS SYBR system (Evrogen, Russia) on Lightcy-
cler 480 (Roche, USA) in accordance with the manufacturers’ instructions. DNA fragments
were amplified for 40 cycles of 95°C for 20 s, 60°C for 20 s, 72°C for 20 s. Relative level of chro-
matin modification was quantified with “input control” serving as the reference. Biological and
technical duplicates were used to ensure reproducibility. Primer pairs used in amplification are
listed in S2 Table.

qRT-PCR
Total RNA extraction and purification from cell lines, TGCTs and normal testis samples was
performed with Trizol (Thermo Scientific, USA) according to manufacturer’s instructions.
First strand cDNA synthesis was carried out with either random hexanucleotide (Promega,
USA) or oligo-dT primer (5’-dT20V-3’) and MintReverse Transcriptase (Evrogen, Russia)
according to the manufacturers’ protocols. qRT-PCR reactions were performed using
qPCRmix-HS SYBR system (Evrogen, Russia) on Lightcycler 480 (Roche, USA) in accordance
with the manufacturers’ instructions. DNA fragments were amplified for 40 cycles of 95°C for
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20 s, 60°C for 20 s, 72°C for 20 s. Relative level of mRNA was quantified with beta-actin (gene
ACTB) mRNA serving as the reference. Technical triplicates were used to ensure reproducibil-
ity. Primer pairs used in amplification are listed in S3 Table.

Luciferase reporter vectors, transfection and reporter gene assay
Genomic DNA was extracted from one of the normal testis sample with Wizard Genomic
DNA Purification Kit (Promega, USA). Genomic regions were amplified using primers listed
in S4 Table. PCR products were ligated into pGL4.10[luc2], pGL4.13[luc2/SV40] or
pGL4.10mP2 (S1 File) with T4 DNA Ligase (Thermo Scientific, USA): as promoters–between
NheI and BglII sites, as enhancers–in either orientation in NotI site. Prior to transfection, the
constructs were linearized with PvuI or SalI restriction enzymes for forward and reverse orien-
tation, respectively. “No enhancer” controls were also linearized with the same restriction
enzymes. Transfections were performed using Lipofectamine 2000 (Invitrogen, USA) as rec-
ommended by the manufacturer. Cells were lysed 24 hours after the transfection and the activ-
ity of both firefly and Renilla reniformis luciferases was assessed using DualLuciferase Reporter
Assay System (Promega, USA) and Tecan GENios Pro Luminometer (MTX Lab Systems,
USA) according to the manufacturers’ protocols. Biological and technical duplicates were used
to ensure reproducibility.

Results and Discussion

In silico evidence for the regions around PIWIL2 exons 5 and 7 acting as
enhancers
PIWIL2 is a testis-specific protein involved in piRNA pathway, which regulates expression of
retrotransposons in spermatogenesis [17]. Ye et al have previously reported alternative pro-
moters of PIWIL2 gene, which they identified computationally [29]. Our group has also
mapped alternative transcription start sites in PIWIL2 exons 5 and 7 in testicular cancer cell
lines TERA1 and NT2D1 using conventional molecular biology approaches [30].

Importantly, alternative promoters in exons 5 and 7 were also identified in non-testicular
tissues by FANTOM5 consortium in their CAGE experiments (S1 Fig) [31]. Furthermore,
additional evidence was found while analyzing chromatin state tracks based on 127 samples in
the Roadmap Epigenomics Project [32]: region around PIWIL2 exon 7 harbors epigenetic
marks of a promoter in 10 primary and 4 imputed datasets (S2 and S3 Figs, respectively). Over-
all, these findings provide additional support for our discoveries of PIWIL2 alternative promot-
ers in testicular cancer cell lines.

However, closer examination of the Roadmap Epigenomics project data revealed that
between 6 and 28 primary datasets (S2 Fig) and between 44 and 55 imputed datasets (S3 Fig)
displayed combinations of epigenetic marks around PIWIL2 exons 1, 5 and 7 that are charac-
teristic for enhancers. Moreover, ENCODE data also suggests that PIWIL2 alternative promot-
ers both in exons 5 and 7 could function as enhancers [33]. Specifically, peaks of H3K4me1
were found in ENCODE data sets for both Tier 1 and Tier 2 cell lines (S4 and S5 Figs). Addi-
tionally, binding sites for proteins typically associated with enhancers, such as CTCF [34, 35]
and P300 [36], are also located adjacent to the alternative promoters in exons 5 and 7 (S4 Fig)
[37–39]. Furthermore, there is a range of putative transcription factor binding motifs around
these promoters (S5 Fig) and a significant number of both tissue-specific and ubiquitously
expressed transcription factors bound in various cell lines according to ENCODE ChIP-seq
experiments (S5 Fig).
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We additionally studied ENCODE genome segmentation data tracks which were generated
for 6 cell lines using different techniques (S4 Fig, [40–43]): at least one technique assigned the
region around promoter in exon 7 as an enhancer for all 6 cell lines and for 2 cell lines in case
of promoters in exons 1 and 5, respectively (S4 Fig).

Altogether, there is significant amount of evidence to suggest that PIWIL2 promoters in
exons 5 and 7 could also function as enhancers. In order to examine whether this is the case in
testicular tissues and cell lines, we looked at three properties of enhancers: eRNA production
(associated with some enhancers), specific chromatin modifications and ability to increase pro-
moter activity irrespective of orientation [43–47].

Chromatin modifications around PIWIL2 alternative promoter in exon 7
are characteristic for active enhancers
Whole-genome studies have attributed certain chromatin modifications to enhancer elements:
H3K4me1/H3K27ac for active enhancers and H3K4me1/H3K27me3 for poised/inactive
enhancers, unlike H3K4me3 for promoters [48]. To see whether these features are present at
PIWIL2 canonical promoter in exon 1 and alternative promoters in exons 5 and 7, we per-
formed ChIP experiments with antibodies to these modifications on three testicular cancer
related cell lines (TCam-2 –seminoma derived, TERA1 and NT2D1 –embryonal carcinoma
derived) and one lung carcinoma cell line (A549). The promoter of GAPDH (housekeeping
gene) was used as a positive control and PIWIL2 intron 8 as well as an intergenic locus on chro-
mosome 1 as negative controls.

Interestingly, though PIWIL2 canonical promoter in exon 1 harbors histone modifications
characteristic both for promoters (H3K4me3) and for enhancers (H3K4me1) in all cell lines
tested, it is likely to be inactive due to the presence of the silencing H3K27me3 mark (Fig 1).

Fig 1. Chromatin modifications around PIWIL2 canonical and alternative promoters.Relative level of H3K4me1 (Histone 3 lysine 4
monomethylated, enhancer mark), H3K4me3 (Histone 3 lysine 4 trimethylated, active promoter mark), H3K27ac (Histone 3 lysine 27 acetylated,
active regulatory element mark) and H3K27me3 (Histone 3 lysine 27 trimethylated, facultative heterochromatin mark) histone modifications
assessed by ChIP-PCR with two sets of primer pairs around PIWIL2 canonical promoter in exon 1 and alternative promoters in exons 5 and 7.
Results are are shown for four cell lines: TERA1 and NT2D1 –embryonal carcinoma, TCam2 –seminoma, and A549 –lung carcinoma. The negative
controls are PIWIL2 intron 8 and an intergenic locus on chromosome 1, the positive control isGAPDH promoter. P-value summary of Mann-Whitney
non-paired U test is presented for some peaks (ns–non-significant, *—p-value<0.05, **—p-value<0.01).

doi:10.1371/journal.pone.0156454.g001

Intragenic Locus in Human PIWIL2Gene Shares Promoter and Enhancer Functions

PLOS ONE | DOI:10.1371/journal.pone.0156454 June 1, 2016 4 / 13



Lack of promoter activity at exon 1 is also supported by previous findings showing that
PIWIL2 is expressed as its N-truncated protein isoforms in the majority of cell lines and cancer
tissues [29, 30].

Further, unlike the genomic region around exon 5, the alternative promoter in exon 7 dem-
onstrates statistically significant enrichment of H3K4me1 mark in comparison with the nega-
tive controls in all cell lines except TCam-2 (Fig 1). Moreover, the level of H3K27ac marks
around exon 7 is also higher than in the negative control (Fig 1), which suggests that it could
be an actively functioning enhancer, at least, in TERA1, NT2D1 and A549 cell lines.

PIWIL2 alternative promoters in exons 5 and 7 produce abundant non-
polyadenylated transcripts
Recently, some enhancers were found to be transcribed by Pol II and produce eRNA (enhancer
RNA), which are either polyadenylated or non-polyadenylated short transcripts (both spliced
and non-spliced) arising around enhancers uni- or bidirectionally [49]. In one of the first stud-
ies reporting non-polyadenylated eRNA production, these enhancer associated transcripts
were identified by analyzing total RNA [50]. Therefore, we attempted to use a similar approach
and assessed the presence of non-polyadenylated transcription around PIWIL2 alternative pro-
moters using qRT-PCR on total RNA and compared it with results on its polyA+ fraction. We
designed 15 primer pairs evenly covering the whole length of the PIWIL2 gene and targeting
specifically exon-exon junctions in order to minimize the contribution of possible residual
genomic DNA in samples. The results were normalized to the efficiency of each primer pair
and a ratio of total RNA to polyA+ fraction was calculated. This way we established the tran-
scriptional profile along the gene and the contribution of non-polyadenylated transcripts at
each point along PIWIL2 gene.

Results for 7 normal/tumor pairs of testicular cancer samples (both seminomatous and non-
seminomatous) are quite heterogeneous (Fig 2 and S6 Fig), which is consistent with previously
published data indicating that both normal testis tissues and testicular cancers feature signifi-
cant variability among individuals [51]. However, the data clearly demonstrate that all tumor

Fig 2. Non-polyadenylated transcription across exon-exon junctions of PIWIL2 gene. qRT-PCRwas
used to assess the level of total RNA and its polyA+ fraction and the ratio of total RNA to polyA+ fraction was
calculated. Seminoma and nonseminoma testicular cancer samples as well as adjacent normal testis tissues
were assayed. P-value summary of Mann-Whitney non-paired U test is presented for 4–5 and 8–9 exon-exon
junction peaks (ns–non-significant, ***—p-value<0.001).

doi:10.1371/journal.pone.0156454.g002
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samples and some adjacent normal testis tissues feature prominent and statistically significant
peaks for some exon junctions, particularly 4–5 and 8–9 (Fig 2 and S6 Fig). A less pronounced
but similar picture was observed for TERA1, NT2D1 and A549 cell lines (S7 Fig). This finding
apparently points at the presence of a significant fraction of non-polyadenylated transcripts
around exons 5 and 7, which could be the eRNA transcripts.

Luciferase reporter assays demonstrate that PIWIL2 alternative
promoter in exon 7 can function as an enhancer for PHYHIP gene
promoter
Although chromatin modifications and eRNA production are regarded as indirect evidence,
the essential property of an enhancer is to increase activity of a promoter in cell type-specific
manner [47]. To test whether PIWIL2 canonical and alternative promoters are able to act as
enhancers, we cloned them in both orientations into luciferase reporter vectors downstream of
the luc gene driven by either SV40 or CMV promoter (Fig 3, S5 Fig and S4 Table) and equimo-
lar quantities of the constructs were probed in two cell lines (TERA1 and NT2D1). Impor-
tantly, the genomic regions, which we tested for enhancer properties, were previously shown to
possess promoter activity as well. Therefore, in order to distinguish between promoter and
enhancer properties, we linearized the luciferase reporter vectors by cutting them downstream
(forward orientation) or upstream (reverse orientation) of the site where we placed the candi-
date enhancers under study (Fig 3). Importantly, after linearization the candidate enhancer will

Fig 3. Structure of luciferase reporter vectors used in the assays. pGL4.10 plasmid was used to
construct vectors with luc gene expression driven by various promoters (upper part in brackets) and a
candidate enhancer in either orientation (lower part). Because the candidate enhancers also possess
promoter activity, to discern between those, the vectors were linearized by cutting at the sites shown with red
arrows. Note that after such linearization the candidate enhancer will be located either upstream (reverse
orientation) or downstream (forward orientation) of the luc gene and its promoter.

doi:10.1371/journal.pone.0156454.g003
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be located either downstream (forward orientation) or upstream (reverse orientation) of the
luciferase reporter gene with the promoter (Fig 3). It allows us to test another aspect of
enhancer function: ability to increase promoter’s activity regardless of its position (upstream or
downstream).

Interestingly, more than two-fold increase of the activity of only CMV promoter and exclu-
sively in NT2D1 cell line was detected for PIWIL2 genomic region around exon 7 (Fig 4A),
which confirms its ability to act as an enhancer.

We further wanted to find an in vivo target of this enhancer/alternative promoter in
PIWIL2 exon 7. As most enhancers exert their activity within about 100Kb and typically inside
a topologically associating domain (TAD) [52], we looked at a recently generated Kilobase-res-
olution Hi-C map of genomic interactions (S8 Fig, [53]). PIWIL2 is located within the bound-
aries of a contact domain also containing genes POLR3D (RNA polymerase III subunit [54])
and PHYHIP (Phytanoyl-CoA 2-Hydroxylase Interacting Protein [19]) (S8 Fig). Luciferase
reporter vectors with luc gene expression driven by these promoters (S9 Fig) and the genomic
region around PIWIL2 exon 7 as a candidate enhancer were designed. Two more control con-
structs with the candidate enhancer and luc expression driven by promoters of two genes situ-
ated outside PIWIL2 containing contact domain were also used (S8 and S9 Figs): KIAA1967
(Cell Cycle And Apoptosis Regulator 2 [55]) and PPP3CC (testis-specific serine/threonine-pro-
tein phosphatase [56]).

Fig 4. PIWIL2 alternative promoter in exon 7 acts as an enhancer in luciferase reporter constructs.Relative promoter activity of SV40 and CMV
promoters was assessed in luciferase reporter vectors from Fig 3 in two cell lines: TERA1 and NT2D1 (embryonal carcinoma, panel A). PPP3CC and
PHYHIP (panel B) promoters were assessed in luciferase reporter vectors from Fig 3 in four cell lines: TERA1 and NT2D1 –embryonal carcinoma, Tcam2 –

seminoma, and A549 –lung carcinoma. P-value summary of Mann-Whitney non-paired U test is presented for peaks showing more than two-fold increase
(above horizontal dashed lines) for both forward and reverse orientation of the candidate enhancer compared to “no enhancer” controls (*—p-value<0.05, **
—p-value<0.01).

doi:10.1371/journal.pone.0156454.g004
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Surprisingly, PIWIL2 alternative promoter in exon 7 increased activity by more than two-
fold of only PHYHIP promoter (Fig 4B), but not POLR3D and the two controls, which exem-
plifies promoter-specific action of enhancers–one of their intrinsic features. Notably, we could
also observe that this enhancer activity was stronger in case of forward orientation. In fact,
such instances have been reported earlier and were attributed to the possibility that one or
more discrete cis-regulatory elements within the enhancer could confer such orientation
dependence [57, 58]. Nevertheless, relying on the most conservative definition of an enhancer,
which is increasing promoter activity regardless of its orientation, we could claim that PIWIL2
alternative promoter in exon 7 is able to function as an enhancer only for PHYHIP promoter.

We also examined Polymerase II ChIA-PET data (Chromatin Interaction Analysis by
Paired-End Tag Sequencing [59]) from ENCODE [60, 61] and found evidence that PIWIL2
alternative promoter in exon 7 and PHYHIP promoter interact in human K562 cell line (K562
Pol2 ChIA-PET Interactions Rep 1 from ENCODE/GIS-Ruan, chr8:22086341..22087865-
chr8:22143618..22145421,2). Although TAD structure is relatively stable across cell types,
development stages and even organisms [62–64], the specific interaction between PHYHIP
promoter and PIWIL2 exon 7 and, in particular, its dynamics should be further explored in fol-
low-up experiments.

Conclusion
Altogether, the data presented here provide both indirect (chromatin modifications and
eRNA) and direct (luciferase reporter assays) evidence suggesting that genomic area around
exon 7 of PIWIL2 gene acts as an enhancer for PHYHIP promoter. As a byproduct of eRNA
transcription, this intragenic enhancer also produces an alternative PIWIL2mRNA isoform,
which, in turn, is translated into a new PIWIL2 protein isoform [30]. Importantly, this short
PIWIL2 isoform devoid of N-terminal domain exerts different properties and could promote
tumorigenesis unlike its full-length counterpart ([29] and our unpublished data). Although fur-
ther experiments are necessary to dissect the details and dynamics of PIWIL2 canonical and
alternative promoters function, to our knowledge, this is the first report of a regulatory element
being transcribed and, concomitantly, giving rise to an mRNA template for an alternative pro-
tein isoform.

From a broader perspective, this finding unveils a new form of interplay between intragenic
enhancers and gene expression. Possible shift in genomic enhancer landscape in disease could
contribute to deregulation of cellular processes through generating novel protein isoforms [65,
66]. Whole-genome and proteome studies are required to provide answers to these questions.

Supporting Information
S1 Fig. FANTOM5/ENCODE CAGE data around PIWIL2 gene. PIWIL2 gene transcript
variants are shown as green horizontal bars in the upper panel (equal to Gencode annotations:
ENST00000356766.6, ENST00000521356.1, ENST00000454009.2, ENST00000519884.1).
FANTOM5 CAGE peaks are depicted as arrows in the middle panel (green–sense strand, pur-
ple–antisense strand) and accompanied by either the number of the peak (e.g., p1@PIWIL2) or
its exact genomic coordinates (e.g., p@chr8:22140624–22140625). ENCODE CAGE raw signal
is shown in the lower panel in TMP (CAGE tags per million reads).
(PDF)

S2 Fig. The NIH Roadmap Epigenomics Mapping Consortium Data. Chromatin state learn-
ing using ChromHMM, which is based on a multivariate Hidden Markov Model. Core 15-state
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model (5 marks, 127 epigenomes) based on primary data around PIWIL2 gene.
(PPTX)

S3 Fig. The NIH Roadmap Epigenomics Mapping Consortium Data. Chromatin state learn-
ing using ChromHMM, which is based on a multivariate Hidden Markov Model. 25-state
model (12 marks, 127 epigenomes) based on imputed data around PIWIL2 gene exons 1–14.
(PPTX)

S4 Fig. Chromatin segmentation based on ENCODE datasets on histone modifications,
open chromatin data and specific TF binding data. Using two different unsupervised
machine learning techniques (ChromHMM and Segway), the genome was automatically seg-
mented into disjoint segments. A consensus unified segmentation (Combined) was also gener-
ated by reconciling results from the individual segmentations. Layered track of H3K4me1
chromatin modification in ENCODE Tier 1 and Tier 2 cell lines (upper part) and transcription
factor ChIP-seq (lower part) are also presented.
(PPTX)

S5 Fig. Canonical and alterative promoter regions of PIWIL2 used in luciferase reporter
vector assays.UCSC Genome Browser view of promoter regions (marked with red arrows)
along with layered tracks of H3K4me1, H3K27ac and H3K4me3 chromatin modifications in
ENCODE Tier 1 and Tier 2 cell lines (upper part), DNaseI hypersensitivity clusters, transcrip-
tion factor ChIP-seq and putative transcription factor binding sites (middle part), as well as
raw H3K4me1, H3K4me3, H3K27ac and H3K27me3 ChIP-seq signals for K562, HeLa-S3 and
NT2D1 cell lines from ENCODE (lower part, two experiments for K562 cell line performed at
different laboratories are shown).
(PPTX)

S6 Fig. Non-polyadenylated transcription across exon-exon junctions of PIWIL2 gene in
cancer samples. qRT-PCR was used to assess the level of total RNA and its polyA+ fraction
and the ratio of total RNA to polyA+ fraction was calculated. Seminoma and nonseminoma
testicular cancer samples as well as adjacent normal testis tissues were assayed.
(PDF)

S7 Fig. Non-polyadenylated transcription across exon-exon junctions of PIWIL2 gene in
cell lines. qRT-PCR was used to assess the level of total RNA and its polyA+ fraction and the
ratio of total RNA to polyA+ fraction was calculated. Four cell lines were assayed: TERA1 and
NT2D1 –embryonal carcinoma, TCam2 –seminoma, and A549 –lung carcinoma.
(PDF)

S8 Fig. Contact domains around PIWIL2 from the 1 kb resolution Hi-C map (Rao et al,
2014). The heatmap of the genomic contacts along chr8:21,880,000–22,470,000 (hg19) is pre-
sented. The contact domains are depicted as yellow boxes and the positions of PHYHIP,
POLR3D, PIWIL2 genes belonging to the same contact domain are shown. PPP3CC and
KIAA1967 are also presented in the neighboring contact domain.
(PDF)

S9 Fig. Promoter regions of PHYHIP, POLR3D, PPP3CC and KIAA1967 used in luciferase
reporter vector assays. UCSC Genome Browser view of promoter regions (marked with red
arrows) along with layered tracks of H3K4me3 chromatin modification in ENCODE Tier 1
and Tier 2 cell lines (active promoter mark, upper part of each panel) and DNaseI hypersensi-
tivity clusters (lower part of each panel).
(PPTX)
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S1 File. Sequence of pGL4.10mP2 construct based on pGL4.10[luc2] with CMV promoter
driving expression of luc gene.
(GB)

S1 Table. Antibodies used for ChIP-PCR.
(XLSX)

S2 Table. Primers used for qPCR to quantitate the level of histone marks.
(XLSX)

S3 Table. Primers used in qRT-qPCR. immunoprecipitation.
(XLSX)

S4 Table. Primers used for cloning genomic regions corresponding to PIWIL2 canonical
promoter in exon 1, PIWIL2 alternative promoters in exons 5 and 7, and promoters of
genes PHYHIP, POLR3D, PPP3CC and KIAA1967.
(XLSX)
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