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Abstract

Semi-automated genome annotation methods such as Segway take as input a set of genome-wide measurements
such as of histone modification or DNA accessibility and output an annotation of genomic activity in the target cell
type. Here we present annotations of 164 human cell types using 1615 data sets. To produce these annotations, we
automated the label interpretation step to produce a fully automated annotation strategy. Using these annotations,
we developed a measure of the importance of each genomic position called the “conservation-associated activity
score.” We further combined all annotations into a single, cell type-agnostic encyclopedia that catalogs all human
regulatory elements.
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Introduction
Sequencing-based genomics assays can measure many
types of genomic biochemical activity, including
transcription factor binding, chromatin accessibility,
transcription, and histone modifications. Data from
sequencing-based genomics assays is now available from
hundreds of human cellular conditions, including varying
tissues, individuals, disease states, and drug perturbations.
In this paper, we use the term “cell type” to refer to any
such cellular condition that admits genomics assays. The
availability of these data sets necessitates the development
of integrative analysis algorithms to utilize them.
A class of methods known as semi-automated genome

annotation (SAGA) algorithms are widely used to perform
such integrative modeling of diverse genomics data sets.
These algorithms take as input a collection of genomics
data sets from a particular cell type. They output (1) a
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set of integer state labels, such that each state label puta-
tively corresponds to a type of genomic activity (such as
active promoter, active transcription or repressed region),
and (2) a partition of the genome and annotation of each
genomic segment with one state label. These methods
are “semi-automated” because a human performs a func-
tional interpretation of the state labels after the anno-
tation process. In this interpretation step, the human
assigns an interpretation term to each state label, such as
“Promoter” or “Repressed”, indicating its putative func-
tion. Examples of SAGA methods include HMMSeg [1],
ChromHMM [2], Segway [3], and others [4–10]. Genome
annotation algorithms have had great success in interpret-
ing genomics data and have been shown to recapitulate
known functional elements including genes, promoters,
and enhancers.
The wide availability of genomics data sets necessitates

the development of SAGA strategies that can be applied to
many cell types. The primary strategy previously used to
annotate multiple cell types has been concatenated anno-
tation, in which a shared model is trained across all cell
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types [11–15]. However, concatenated annotation has two
limitations. First, it requires that all cell types have exactly
the same assays available. Second, this annotation strat-
egy is very sensitive to artifactual differences between data
from different cell types, resulting in bias for or against
each label. Later methods aim to achieve better accuracy
by sharing position-specific information across cell types;
these methods include imputing results of unperformed
assays [16], 2D annotation [17–19], and graph-based reg-
ularization [20]. However, sharing information in this way
complicates the interpretation of the resulting annota-
tions because the annotation of a particular locus includes
information from its activity in other cell types. Hence,
in principle, these methods could annotate a cell type
without any data (or very little data) in that cell type.
To avoid these limitations, in this work, we use an inde-

pendent annotation approach, training one model sepa-
rately for each cell type (Fig. 1). This strategy allows us to
use all available data in every cell type and removes the
potential for issues resulting from experimental artifacts.
Using this approach, we were able to annotate 164 human

cell types using a total of 1615 genomics data sets. In con-
trast, a concatenated approach applied to these data can
use at most 570 data sets, which is achieved by annotating
114 cell types with a panel of five assay types each.
A downside of the independent annotation approach

is that it requires the state interpretation step to be per-
formed independently for each cell type. To handle this
issue, we automated the state interpretation step by using
an algorithm that takes as input a state label and out-
puts an interpretation term, chosen from a controlled
vocabulary of ten such terms. To do this, we used pre-
vious human-interpreted annotations to train a machine
learning classifier to recapitulate the human interpreta-
tion process. The classifier takes as input a set of 16
features that represent the information typically used in
manual interpretation. This classifier allows the annota-
tion process on each new cell type to proceed from raw
data to final annotation in a fully automated way.
In addition to the annotations themselves, we present

three innovations that make genome annotations more
useful. First, we propose a measure of the regulatory and

Fig. 1 Schematic of annotation pipeline. All available data for a given cell type is input to Segway, which produces an annotation with integer state
labels. A machine learning classifier then assigns an interpretation to each state, using features derived from all segments with that state in the
genome
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transcriptional importance of each position, called the
conservation-associated activity score. The conservation-
associated activity score is defined based on the enrichment
of each annotation state for evolutionary conservation,
and therefore aims to separate functional activity (such
as genes, promoters and enhancers) from non-functional
activity (repressed regions).We use the term “conservation-
associated activity” to emphasize that the biochemical activ-
ity observed at this locus is frequently associated with
conservation. Importantly, a high conservation-associated
activity score at a given locus does not necessarily imply
that this particular locus shows high evolutionary conser-
vation. In this way, the score has the potential to detect
loci exhibiting recently acquired transcriptional or reg-
ulatory activity. The aggregated conservation-associated
activity score provides a measure of importance that is
directly attributable to a specific activity in a specific
set of cell types. In addition, because the conservation-
associated activity score locally depends only on observed
patterns in genomic data sets, it is not biased to detect
only elements shared with related species.
Second, the conservation-associated activity score

enables a new way of visualizing the activity of a locus
across cell types that we call a conservation-associated
activity plot. This plot simultaneously displays the
putative importance of each genomic position as well
as what type of activity is responsible for this impor-
tance. We have set up a publicly available server where
a user can produce a conservation-associated activ-
ity score visualization of any target genomic locus
(http://noble.gs.washington.edu/proj/encyclopedia).
Third, we combine our cell type-specific annotations to

produce a single, cell type-agnostic encyclopedia using the
aggregated conservation-associated activity score. Past
SAGA annotations simply characterize biochemical activ-
ity, producing a separate annotation for each cell type.
However, when a researcher or clinician is interested
in a given locus—for example, when studying a disease
variant—they often do not know which cell type is most
relevant. These users are often more interested in a cell
type-agnostic view of genome function, such as the gene
annotations produced by Ensembl [21] or GENCODE
[22]. In this view, there is a common, cell type-agnostic set
of elements (genes or regulatory elements), and each ele-
ment is annotated with its pattern of activity across cell
types. We call this type of annotation an “encyclopedia”
to distinguish it from a cell type-specific annotation and
because it represents the goal of ENCODE (Encyclopedia
of DNA Elements). We produce an encyclopedia of regu-
latory elements by collecting all segments with high aggre-
gated conservation-associated activity scores and labeling
each with its pattern of activity across cell types. This
encyclopedia catalogs all measured human regulatory
elements, enabling easy and intuitive interpretation of the

effect of genome variants on phenotype, such as loci that
are disease-associated, evolutionarily conserved, or under
positive selection.

Results
Annotation of 164 human cell types
Weobtained all available ChIP-seq, DNase-seq, and Repli-
seq data from the ENCODE and Roadmap Epigenomics
consortia (Fig. 1, Data Sources). Because we are interested
in transcriptional regulation, we excluded measurements
of post-transcriptional activity, such as RNA-seq, CAGE,
and RNA-binding protein assays. We also excluded mea-
sures of methylation because they are defined on only
a subset of the genome (i.e., CpG loci) and 3C-based
assays of chromatin conformation because they cannot be
directly represented as a genomic signal track. We chose
to annotate every cell type with sufficient data; specifi-
cally, we annotated any cell type that has either (1) five
histone modification data sets or (2) at least one data set
each from two of the following categories: histone ChIP-
seq, transcription factor ChIP-seq, or DNA accessibility.
We used the SAGA method Segway to annotate each

cell type (Methods, [3, 23]). Segway is based on a dynamic
Bayesian network model. In order for the number of states
to scale with the amount of data, we used the formula
(10 + 2 · √

number of tracks) to determine the number of
states for a given cell type, which is roughly in line with
previous SAGA annotations.
In order to evaluate the quality of the encyclopedia

annotations, we evaluated how well RNA-seq expression
data can be predicted from the annotation states around
the promoter. This analysis follows a previous work, which
used a similar approach to compare the quality of dif-
ferent annotation methods [19]. For each annotation, we
defined a set of regression features for each gene repre-
senting the states in a 10-kbp region around the gene’s
promoter, and we trained a linear regressor to predict
the gene’s expression from these features. Accurate pre-
dictions from this approach indicate that the annota-
tion’s states around a gene’s promoter are informative of
the gene’s regulatory state. Our encyclopedia annotations
had a similar distribution of expression predictiveness as
reference annotations, albeit one withmuchmore variable
predictiveness (Additional file 1: Figure S1). This increase
in variability likely resulted from the variable number of
input tracks used here. The similarity is expected, as our
annotation pipeline is very similar to a previous work.
It would be valuable to evaluate the effect on annota-
tion quality of hyperparameters such as the number of
labels or segment length priors. Unfortunately, doing so
would require training large numbers of annotations, each
of which requires an expensive computation. Thus, it
remains possible that future work will identify improved
hyperparameter settings.

https://noble.gs.washington.edu/proj/encyclopedia/
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Amachine learning approach recapitulates manual
interpretation of annotation states
Previously, SAGA annotations have generally been inter-
preted manually, but doing so individually for all 164
annotations would be impractical. A previous strategy
for automating this process [15] involved a hand-tuned

rule-based strategy, but such hand-tuning is very labor
intensive and sensitive to tuning choices. To solve this
problem, we developed a machine learning framework
that automates state interpretation (Methods, Fig. 2a). We
did this by training a random forest classifier to reca-
pitulate human interpretation, using existing interpreted

(a)

(b)

(c) (d)
Fig. 2 Results of state interpretation classifier. a Schematic of machine learning-based automatic classification strategy. b Association of
interpretation terms and classifier features. Color indicates mean feature value (standard deviation units). c State classification confusion matrix.
Numbers and colors indicate the number of reference states with a particular term assigned to a predicted term by the classifier under leave-one-out
cross-validation. Classifications off of the diagonal indicate misclassifications. d Overlap enrichment of reference annotations with our annotations,
in the cell types that have a reference annotation. Numbers and colors indicate the enrichment, calculated as the log2 of the number of bases that
overlap between a given reference and new term, divided by the number expected if the states were distributed independently. Note the difference
between c and d: cmeasures whether the interpretation classifier assigns the same term as the reference annotation, for a fixed state, whereas d
measures the genomic similarity of two entirely separate genome annotations. That is, the units of c are states and the units of d are base pairs
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SAGA annotations as training data. For each state, we
derived a set of 16 features that encompass the information
that has typically been used to interpret these states in the
past, and used these features as the input to the classi-
fier. Note that a single training example in this framework
corresponds to thousands of segments. We collected 10
existing Segway or ChromHMM annotations and manu-
ally interpreted four more from this work, for a total of
14 annotations and 294 manually interpreted annotation
states. We curated the biological interpretations of these
states into a unified vocabulary of eight interpretation
terms (listed in Table 1, and described in detail in the next
section). We assigned the placeholder term “Unclassified”
to 26/294 reference states that do not fit one of the eight
terms. We trained the random forest classifier on the 294
reference states, then applied the classifier to each state
from our 164 new annotations to obtain an interpretation
term for each new state. We assigned the term “Low-
Confidence” to new states that the classifier predicted as
Unclassified and to states not assigned with more than
25% confidence to any of the other terms.
This classifier recapitulated human interpretation very

accurately (Fig. 2c). Using a leave-one-out cross-validation

Table 1 Description of each interpretation term

Interpretation term Description Characteristic activity

Quiescent Inactive region None

ConstitutiveHet Constitutive
heterochromatin

H3K9me3, HP1

FacultativeHet Facultative
heterochromatin

H3K27me3, PRC

Transcribed Transcribed region H3K36me3

Promoter Promoter H3K4me3, H3K9ac

Enhancer Enhancer H3K4me1, H3K27ac,
P300

RegPermissive Region with weak
marks of regulation

H3K4me1

Bivalent Regulatory
element with
marks of both
activation and
repression

H3K4me3 or H3K27ac,
H3K27me3

Unclassified Placeholder
assigned to
reference states
that do not fit the
above vocabulary

−

LowConfidence Placeholder
assigned to new
states that were
not classified with
high confidence.
(Note: Unclassified
applies only to
reference states;
LowConfidence
only to new states)

−

strategy, the classifier achieved an accuracy of 226/294
(77%; 19% expected by chance). Moreover, most errors
either involved the “Unclassified” placeholder term (33/70
errors) or involved mistaking similar types of activity
for one another. The classifier based its assignments on
the expected feature patterns (see next section; Fig. 2b).
Where one of our cell types was previously annotated
by another SAGA effort, the annotations largely match
(Fig. 2d, Additional file 1: Note S1). This level of consis-
tency is similar to the level of consistency between differ-
ent reference annotations (Additional file 1: Figure S3).

Annotations accurately recover known genome biology
Our classification strategy assigns each state to one of
nine interpretation terms (Table 1). To characterize these
terms, we compared each with annotated genes (Fig. 3a),
the signal data sets used as input (Fig. 3b), and a number
of other existing reference annotations, including SAGA
annotations [13, 18, 24], promoter/enhancer predictions,
and human-accelerated regions [25] (Additional file 1:
Note 1, Figure S2). We also evaluated the fraction of the
genome covered by each label (Fig. 3c). Our terms are
largely consistent with previous annotation efforts (with
a few differences described as follows) and capture most
known types of genomic activity.

• Quiescent regions are characterized by a lack of any
marks (Figs. 2b, 3b) and cover about 60% of our
annotations (Fig. 3c). The high prevalence of
quiescent regions in our annotations is partly due to
the fact that many of the cell types we annotated have
only 5–10 available data sets. Quiescent regions are
highly depleted around genes (Fig. 3a).

• Constitutive heterochromatin (ConstitutiveHet) is
characterized by the histone modification H3K9me3,
is regulated by the HP1 complex, and is thought to
repress permanently silent regions such as centromeres
and telomeres [26]. Our annotations of constitutive
heterochromatin cover about10%of thebasesweannotated
(Fig. 3c) and are depleted around genes (Fig. 3a).

• Facultative heterochromatin (FacultativeHet ; also
known as Polycomb-repressed chromatin) is
characterized by the histone modification
H3K27me3, is regulated by the Polycomb complex,
and is thought to carry out cell type-specific
repression [27, 28]. Facultative heterochromatin
covers about 15% of bases we annotated (Fig. 3c).
This type of element is only slightly depleted for
annotated genes and evolutionary conservation
(Fig. 3a, d), indicating that many regions repressed by
facultative heterochromatin in a given cell type are
active in a different cell type.

• We annotate active genes with the Transcribed label.
Transcribed regions are characterized by the
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(a)

(b)

(c) (d)
Fig. 3 Relationship of annotations to known genomic elements. a Enrichment of each label over an idealized gene. We calculated enrichment as
the base-2 logarithm of the observed frequency of a label at a particular position along an annotation divided by the expected frequency of the
label from its prevalence in the genome overall. Enriched positions are shown in red, and depleted positions are shown in blue. b Relationship of
labels to selected input data sets. Color corresponds to the mean signal value of a given assay type at positions annotated with a given label,
aggregated over cell types where the given assay type is available. Values are normalized such that the maximum and minimum in each column are
1 and 0, respectively. Columns are ordered by hierarchical clustering for readability. c Fraction of the genome covered by each label. d Distribution
of conservation-associated activity scores for states with interpretation term. Note that the units of the histogram are states, not base pairs
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transcription-associated marks H3K36me3 and
H3K79me2 (Figs. 2b, 3b) and are highly enriched in
annotated gene bodies (Fig. 3a). The first exon of
some genes is annotated as Promoter rather than
Transcribed (Fig. 3a); this is likely due either to
promoter-associated marks extending into gene
bodies or to imprecise transcription start site
annotations. The input data sets do not distinguish
exons from introns, so Transcribed labels include
both types. For this reason, even though Transcribed
regions contain highly conserved coding exons, they
exhibit only a moderate level of conservation as a
whole (Fig. 3d).

• Promoter regions are characterized by the promoter-
associated marks H3K4me3 and H3K9ac, the binding
of many transcription factors, and the binding of the
RNA polymerase POL2RA (Fig. 3b). They are highly
enriched at the transcription start sites of annotated
genes (Fig. 3a) and are highly conserved (Fig. 3d).

• Enhancer regions are characterized by the
enhancer-associated marks H3K27ac and H3K4me1
and the binding of many transcription factors,
including EP300 and CTCF (Fig. 3b). Enhancer
regions are enriched at the transcription start sites of
annotated genes; this may be due to some enhancers
residing close to transcription start sites, promoters
acting as enhancers in cell types where their proximal
gene is inactive, or the mis-annotation of some
promoters as enhancers (Fig. 3a).

• Bivalent regions are regulatory elements with both
activating and repressive marks and are believed to be
“poised” for activation in response to a developmental
signal [29]. While both promoters and enhancers can
be bivalent, we found that the two types of bivalent
regions were difficult to distinguish, so we use a
single term for both types. These regions are
characterized by both the activating marks H3K4me3
and H3K27ac as well as the repressive marks
H3K27me3 and EZH2 (Figs. 2b, 3b).

• Previous annotation efforts have reported regulatory
elements with marginal strength characterized by
H3K4me1 without H3K27ac, which they have
typically described as “weak enhancers” [2, 23]. This
terminology has caused confusion [30] because it
suggests that these elements either are called with
low confidence, or promote expression to a lesser
degree than “strong enhancers”. In fact, it has not
been verified that this pattern of activity (+H3K4me1,
–H3K27ac) corresponds to either of these
hypotheses. To avoid this confusion, we apply the
term “permissive regulatory region” (RegPermissive)
to these regions instead. Our RegPermissive
annotations are mildly enriched in the vicinity of
genes and are mildly enriched for conservation.

• As described above, we assigned the term
“LowConfidence” to states that do not fit easily into
one of the other terms. These tend not to simply be
inactive regions, as those types would likely be
confidently categorized as Quiescent. As such, in
aggregate, LowConfidence regions are neither
enriched nor depleted relative to genes, and their
level of conservation ranges from extremely
un-conserved to a level comparable to promoters
(Fig. 3a, d). These regions may correspond to new
element types or subtypes, and more work will be
necessary to ascertain the function of each such state.

The conservation-associated activity score measures the
importance of a given type of activity to the organism’s
phenotype
To understand the regulatory or transcriptional impor-
tance of a given locus, it is important to distinguish
activity that is relevant to phenotype from non-functional
biochemical activity. For this purpose, we use evolution-
ary conservation as a guide: if positions with a given type
of activity are usually conserved, then this type of activ-
ity is probably of regulatory or transcriptional importance.
To measure the putative importance of a given annotation
state, we define its conservation-associated activity score
as the 75th percentile of conservation of the positions
annotated with that state. We chose the 75th percentile
because, intuitively, we expect that regulatory or tran-
scriptionally active regions will be enriched for conserva-
tion but that not every base will be conserved, so we would
expect an upper quantile to be a more precise measure
of regulatory or transcriptional activity than the mean or
median. We define this conservation-associated activity
score on the original integer states, thereby isolating this
analysis from any imprecision in the interpretation step.
As expected, the conservation-associated activity score

differs greatly between states with different interpreta-
tion terms (Fig. 3d). Regulatory elements are directly
involved in gene regulation, and they typically have a
high conservation-associated activity score. In contrast,
repressed regions generally have a low conservation-
associated activity score because these regions are inac-
tive. Even though coding regions are generally the most
conserved positions in the genome, transcribed regions
have only an intermediate conservation-associated activ-
ity score because these regions include introns as well as
exons. Even though bivalent regions are likely repressed
in the cell types they are active in, the conservation-
associated activity score accurately reflects the fact that
this regulation is important to phenotype, and assigns a
high score to these states.
The conservation-associated activity score offers two

advantages over conservation as a measure of the impor-
tance of a given locus. First, the conservation-associated
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activity score is directly attributable to a specific activ-
ity in a specific set of cell types; in contrast, conserva-
tion indicates only that a position is important, with no
way to determine how it acts. Second, the conservation-
associated activity score has the potential to mark ele-
ments that began to exhibit regulatory or transcriptional
activity only in recent human evolution and therefore do
not show conservation relative to other mammals. Hence,
the conservation-associated activity score can potentially
detect recently developed regulatory or transcriptional
elements that are not conserved compared to other mam-
mals. Applying the score for this purpose requires devel-
oping a statistical model that can account for biases such
as mappability and biased gene conversion, so we leave
this for future work.
In addition, we propose the conservation-associated

activity plot as a way to succinctly view the activity of
a locus across all cell types (Fig. 4a). Like a traditional
annotation plot (Fig. 4a), a conservation-associated activ-
ity plot displays the pattern of annotation labels across a
given genomic locus, but a conservation-associated activ-
ity plot additionally scales each label by its conservation-
associated activity score. This scaling makes it easy to
see which positions show regulatory or transcriptional
activity. For example, at a transcription start site, a
conservation-associated activity plot clearly shows the
promoter region and the downstream transcription and
upstream enhancers, while de-emphasizing the upstream
inactive region (apart from the enhancers), because it
shows no regulatory activity (Fig. 4a). Other visualization
tools that emphasize important activity have been pro-
posed, but we believe that the importance of a position to
phenotype, as represented by the conservation-associated
activity score, is the feature of a locus that a viewer is most
frequently interested in (Discussion).

The Segway encyclopedia is an easy-to-use catalogue of
regulatory and transcriptional elements
We leveraged the conservation-associated activity score
to produce a cell type-agnostic encyclopedia of regulatory
and transcriptional elements. This type of encyclopedia is
inspired by a gene annotation in that it contains a single
set of genomic elements, where each element is marked
with its pattern of activity across cell types. In that way,
the encyclopedia differs from the 164 cell type-specific
annotations we presented above: each cell type-specific
annotation annotates all bases of the respective cell type.
We defined contiguous segments with high conservation-
associated activity scoreas encyclopedia segments (Methods).
This encyclopedia covers about 5% of the genome, and its
segments range in size mostly between 300 and 10,000 bp.
To demonstrate the utility of the Segway encyclopedia,

we used it to interpret the mechanism of action of known
disease variants.We used known disease variants from the

GWAS Catalog [31]. Each variant is a single nucleotide
polymorphism (SNP) significantly associated with a given
disease according to a genome-wide association study
(GWAS). These SNPs are known to be genetically linked
to a causative variant, but the causative variant is generally
not immediately clear because genetic association stud-
ies cannot disentangle linkage disequilibrium and gener-
ally do not genotype all variation. Moreover, even when
the causal variant is known, it is not easy to tell what
activity and tissue this variant acts through. The median
conservation-associated activity score of GWAS SNPs is
higher than the conservation-associated activity score of
74% of the genome as a whole (Fig. 4d). Moreover, the
conservation-associated activity score derived from all cell
types is much more highly enriched for GWAS SNPs than
using the annotation of any single cell type (Fig. 4d). Note
that GWAS tag SNPs are usually not the causative variant
themselves, but because genome segments are hundreds
of base pairs each, the conservation-associated activity
score is similar within the linkage disequilibrium region
around each SNP. Results were similar when using a fixed-
width window around each GWAS SNP (not shown). This
analysis demonstrates that the encyclopedia is a power-
ful and easy-to-use tool for interpreting the function of a
genomic position.

Discussion
In this work we applied the unsupervised genome annota-
tionmethod Segway to annotate 164 human cell types.We
proposed a newmachine learning classifier that automati-
cally assigns biological semantics to each state, converting
annotation from a semi-automated to fully automated
process. The resulting annotations represent the largest
consistent annotation to date, encompassing 1615 data
sets. We were able to use this large number of input data
sets because, unlike previous “concatenated” annotations,
our strategy of training separate models in each cell type
does not require that each cell type have the same set of
available data. We also defined a conservation-associated
activity score that measures the putative importance
of each type of activity to an organism’s phenotype.
This score can be used to facilitate visualization of the
genome through a conservation-associated activity plot
and enabled the construction of the Segway encyclopedia.
This encyclopedia forms a cell type-agnostic catalogue

of regulatory and transcriptional elements, analogous to
widely used cell type-agnostic catalogues of genes such
as GENCODE [22]. The catalogue aims to be complete,
with the caveat that some elements may not be detectable
with the data sets used here. For example, regulatory ele-
ments controlling developmental processes in rare cell
populations may not be detected using data generated
from cell lines or mixtures of cell types fromwhole organs.
Nonetheless, by providing an easily accessible collection
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(a) (b)

(c) (d)
Fig. 4 Encyclopedia and conservation-associated activity score. a Conservation-associated activity plot of a promoter and surrounding region. Color
indicates annotation label at a given position. In conservation-associated activity plots, labels are vertically scaled by their conservation-associated
activity score, so that the overall height corresponds to a position’s total conservation-associated activity score. The vertical axis indicates the
conservation-associated activity score at a given position, colored proportionally to the fraction of the score that derives from each label type. Black
boundary bars indicate encyclopedia segments. Black phyloP area indicates the 75th percentile of phyloP scores within 100 bp of a given genomic
position. Box-and-arrow pictograms indicate genes, where boxes indicate exons and arrows indicate the direction of transcription. Genome
coordinates are relative to genome assembly GRCh37. b Conservation-associated activity plots for additional loci (top to bottom): gene with
upstream enhancers; gene with distant enhancer; distal enhancer; regulatory element that is repressed in many cell types; large regulatory domain.
In the bottom-left cell type-specific annotation plot, cell types are clustered on the vertical axis. c Distribution of lengths of encyclopedia segments.
d Enrichment of conservation-associated activity score at GWAS SNPs from the GWAS Catalog. We ordered genomic positions by their
conservation-associated activity score. The solid line indicates the number of GWAS SNPs that fall in the top fraction X of this list. The dashed line
indicates the average performance when this ordering is performed using a single annotation (standard deviation over annotations indicated by
gray area). The dotted line indicates random performance

of genomic elements that exhibit activity associated with
evolutionary conservation, we believe that the Segway
encyclopedia will provide a useful resource for interpret-
ing genome activity.
A downside of the supervised classification approach to

state interpretation is that, by definition, it cannot be used
to discover new types of biochemical activity. However,

this is likely a relatively minor issue for these annota-
tions, for several reasons. First, many diverse cell types
have now been annotated using SAGA methods, and the
discovered states have almost entirely fit into our set of
eight terms (with the exception of a small number of states
that we assigned as “Unclassified”). Moreover, previous
annotations were generally performed on the most well-
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studied cell types and took up to one hundred data sets as
input; in contrast, the majority of our cell types have less
than ten input data sets. Second, our annotations use just
13–32 annotation states. To the extent that novel types
of genomic activity exist, they are most likely subtypes of
known types and therefore will become apparent when
annotating the genome with more states. Third, our clas-
sifier was able to confidently assign all but a small fraction
of annotation states to one of these terms; only those
that we assigned as LowConfidence could not be assigned
this way. These LowConfidence states may represent cur-
rently unknown categories, and investigating them is a
promising direction for future work.
Although the state interpretation classifier is highly con-

sistent withmanual interpretation, the two interpretations
are far from identical. Part of the inconsistency may indi-
cate mistakes on the part of the classifier or errors by
the SAGA algorithms, but it is likely that some of the
inconsistency also results from fundamental ambiguity in
the terminology used for genomic elements. Classifying
genomic elements inherently involves drawing hard
boundaries between fuzzy categories, so even accurate
annotations are likely to disagree on related categories. In
such a situation, two human researchers may give differ-
ent interpretations to the same set of annotations. In the
future, one way to understand and quantify this ambiguity
in meanings ascribed to genome element terms would be
to ask a number of experts to each interpret a set of anno-
tation labels, and then evaluate the differences among the
human annotations.
Our conservation-associated activity score is in some

ways analogous to methods that predict the impact of a
mutation at a given position, such as GERP [32], CADD
[33], and others [34, 35]. On this specific prediction
task, these methods are almost certainly more sensi-
tive than the conservation-associated activity score; how-
ever, the scores themselves are more difficult to interpret
because most such scores are based on complex machine
learning classifiers that weigh many factors. In contrast,
the conservation-associated activity score can be directly
traced to a specific genomic element with a known pattern
of activity across cell types. Thus, a variant effect predic-
tor is most effective when trying to determine whether
a given variant is deleterious, whereas the conservation-
associated activity score (and the Segway Encyclopedia) is
most effective for understanding the variant’s function.
The proposed conservation-associated activity plot

has some similarities to an epilogos visualization
(http://compbio.mit.edu/epilogos). In particular, both
types of plots show the annotation labels over a given
genomic position and scale the label axis by a measure of
each position’s importance. An epilogos plot differs from
a conservation-associated activity plot in that the former
scales the label axis by the “surprisal score,” a measure

of the rarity of a distribution of labels, rather than the
conservation-associated activity score. Both scores have
the effect of magnifying promoter and enhancer regions
while shrinking quiescent regions. However, many users
of genome annotations—such as those in medicine or
population genetics—are generally interested in the
regulatory or transcriptional importance of a given posi-
tion. The surprisal score does not directly measure this
importance because not all rare labels are important and
not all common labels are unimportant. For example,
in our annotations, ConstitutiveHet and Transcribed
regions have similar prevalence and therefore an epil-
ogos plot would display them with similar importance.
In contrast, the conservation-associated activity score
accurately reflects the fact that transcribed regions are
usually functional, whereas constitutive heterochromatin
is virtually always non-functional. Moreover, the sur-
prisal score actually gives a higher score to a position
that is quiescent in all cell types than one that is labeled
as promoter or enhancers in a few cell types, because
the latter distribution most closely matches the genomic
average. The conservation-associated activity score is
thus a more accurate measure of importance because it is
based on conservation, which is the most direct measure
of functionality that we have access to.

Methods
Genomics data
We obtained genomics signal data sets from the
ENCODE and Roadmap Epigenomics consortia (https://
www.encodeproject.org/). These data sets were processed
by the two consortia into real-valued data tracks, as
described previously [13, 23, 36]. Briefly, the sequenc-
ing reads were mapped to human reference genome
GRCh37/hg19 [21], reads were extended according to
inferred fragment lengths, the number of reads overlap-
ping each genomic position was computed, and assay
type-specific normalizations were performed, such as
computing fold enrichment over an input control for
ChIP-seq.Wemanually curated these assays to unify assay
type and cell type terminology and, when multiple assays
were available, we arbitrarily chose a representative assay
for each (cell type, assay type) pair. We applied the inverse
hyperbolic sine transform asinh(x)= ln(x + √

x2 + 1) to
all signal data [3, 37]. This transform is similar to the log t
ransform in that it decreases the magnitude of extremely large
values, but unlike a log transform, asinh is defined at zero
and amplifies the magnitude of small values less severely
than the log transform does. Finally, we applied a Z-score
normalization to each data set by subtracting the genome-
wide mean and dividing by the standard deviation.
We used all available data sets that measure features

of chromatin state: histone modification ChIP-seq, tran-
scription factor ChIP-seq, measures of DNA accessibility

http://compbio.mit.edu/epilogos/
https://www.encodeproject.org/
https://www.encodeproject.org/
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(FAIRE-seq, DNase-seq), and replication time (Repli-seq,
Repli-chip). We chose not to include measures of the
cell’s RNA state such as RNA-seq and measures of RNA-
binding proteins because doing so would convolve reg-
ulatory and transcription state into a single annotation
and would thereforemake interpretationmore difficult. In
order to remove cell types that had only one or two avail-
able assays, we chose to annotate a given cell type only if
it satisfied the criterion that either (1) there were at least
five histone modification ChIP-seq assay available or (2)
there was at least one assay each in at least two of the cat-
egories transcription factor ChIP-seq, histone ChIP-seq,
and DNase-seq. After performing these filtering steps, we
had 1615 total tracks composed of 196 assay types and 164
cell types (median 7 tracks per cell type).

Segwaymodel
We used Segway, a semi-automated genome annotation
method, to produce annotations of the genome with inte-
ger state labels [3]. Segway takes as input a set of genomics
data sets represented as real-valued tracks defined over
the genome. The software simultaneously partitions the
genome into segments and assigns an integer state label to
each segment such that genomic positions with the same
state exhibit similar patterns in the genomics tracks. The
Segway method is described in detail in previous work
[3, 23, 38].
We ran Segway on each of the 164 cell types to pro-

duce annotations. For a cell type with M available data
sets, we asked Segway to assign 10+2

√
M different states.

We chose this number of states to let the complexity of
the model vary with the amount of input data, following
previous work. We performed all annotations at 100-bp
resolution, allowing Segway to train for a maximum of 25
iterations. At each iteration, we chose a random 1% of the
genome (a “mini-batch”) to use to update parameters—
this speeds up training while allowing the model to
use all available data. We used ten random parameter

initializations for each cell type and selected the model
with the highest likelihood after training. We then used
the trained models to annotate the whole genome of each
cell type.

Reference annotations
For use in training our interpretation classifier, we curated
a collection of published manually interpreted SAGA
annotations. We obtained five Segway annotations and
five ChromHMM annotations, for a total of 294 anno-
tation states that have an interpretation term assigned
(Table 2). We additionally manually annotated four of
our annotations in order to provide more training data,
resulting in 71 additional states.

State interpretation classifier
We mapped the interpretation terms from each of the
294 reference states to a unified vocabulary of eight terms
(Table 1) by combining synonyms for the same activ-
ity (such as “Polycomb repressed region” and “Facultative
heterochromatin”) and combining interpretation terms
referring to the same type of activity that were artifactually
divided by the simple single-component Gaussian models
used by previous SAGA methods (such as “Weak tran-
scription” and “Transcription”). Notably, we designated
the term “RegPermissive” for regions that exhibit some
signs of regulatory activity but that do not have the char-
acteristic marks of either promoters or enhancers. These
regions were previously designated as “weak enhancers”
or “promoter flanking.”We avoided using vocabulary indi-
cating strength (such as “weak enhancer”) because these
terms have been inconsistently used in the past to refer to
either (1) weak enrichment for the associated data sets or
(2) enrichment for some but not all of the characteristic
tracks (such as “weak enhancers” enriched for H3K4me1
but not H3K27ac). These strength-associated terms can
be misinterpreted as indicating a level of confidence of
strength of biological activity of the associated element,

Table 2 Reference SAGA annotations used to train interpretation classifier

Reference Method Multi-cell type annotation type Cell types States per
cell type

Interpreted
states

[23] Segway Independent GM12878, H1-hESC, HepG2,
HUVEC, K562

25 125

[23] ChromHMM Concatenated GM12878, H1-hESC, HeLa-S3,
HepG2, HUVEC, K562

25 25

[39] ChromHMM Concatenated GM12878, H1-hESC, HepG2, HMEC,
HSMM, HUVEC, K562, NHEK, NHLF

15 15

[13] ChromHMM Concatenated GM12878, H1-hESC, HMEC, HUVEC,
K562, NHLF

15,18,25 58

This work Segway Independent H1-hESC, AG04449, HSMM,
RIGHT_ATRIUM

13-27 71

The annotations from [13] were performed on 111 cell types, so we chose a representative six from which to compute features
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neither of which we have sufficient evidence to claim
[30]. For the 26/294 interpretation terms that did not
fit into our vocabulary (including “Artifact”, “Insulator”,
“Genic enhancer” and “FAIRE”), we assigned the classifi-
cation “Unclassified.” This process resulted in 294 training
examples, each associated with one of eight interpretation
terms.
For each annotation state, we defined features that

encompass the information typically used to inter-
pret annotation states. Specifically, we used the follow-
ing 16 features: mean value of H3K27me3, H3K4me3,
H3K36me3, H3K4me1, H3K4me3, and H3K9me3 (six
features), and log enrichment of the state in the follow-
ing positions relative to GENCODE genes: 1–10 kbp 5′
flanking, 1 bp–1 kbp 5’ flanking, initial exon, initial intron,
internal exons, internal introns, terminal exon, 1 bp–
1 kbp 3’ flanking, and 1–10 kbp 3′ flanking (https://www.
gencodegenes.org/, version 24, [22]). The enrichment of a
given state l at a set of loci c is defined as

log2
noverlap + 1
(nlnc/n) + 1

, (1)

where nl and nc are the number of bases that l and c
cover respectively, noverlap is the number of bases that they
overlap, and n is the total number of bases in the genome.
For the 69 cell types missing one of these histone mod-

ifications, we substituted data from the most-similar cell
type with that data set available. To find a substitute for
a given assay type A and cell type C, we calculated the
similarity between each cell type C′ that had data for A.
Specifically, we calculated the similarity between C and C′
as the mean Pearson correlation between all assay types
that are present in both cell types. We chose the instance
of A from the most similar cell type as the substitute.
Note that, while imputing missing data using methods like
this is likely too noisy to produce good position-specific
measures of chromatin state, doing so likely preserves the
genome-wide patterns of thesemarks and therefore can be
used for the interpretation of genome-wide states derived
from Segway.
We trained a multi-class decision tree classifier to

predict the interpretation term of each state from its
16 features. We used the random forest implementa-
tion from scikit-learn [40] using the “entropy” split-
ting criterion and regularized such at least 10 training
examples were associated with each decision tree leaf
(min_samples_leaf=10). We chose this regulariza-
tion parameter using leave-one-out cross-validation. We
applied the trained classifier to each of our new annota-
tions, deriving features for these new annotations in the
same way as for the reference annotations. For a given
state, if the classifier assigned the term “Unclassified” or
assigned less than 25% probability to any one term, we
assigned the term “LowConfidence”.

Conservation-associated activity score and encyclopedia
We defined a conservation-associated activity score for
each annotation state that indicates the degree to which
the state is likely to mark elements with regulatory or
transcriptional activity. For a given annotation state �,
we collected the 46-species placental mammal phyloP
scores, a measure of evolutionary conservation, for all
genomic positions annotated by � [41]. We defined the
conservation-associated activity score of � to be the 75th
percentile of the absolute values of these phyloP scores.
Conservation-associated activity scores range from 0.365
to 1.215. We defined the conservation-associated activ-
ity score of a genomic position p to be the sum of the
conservation-associated activity score for all 164 states
that cover p.
We used the conservation-associated activity score to

define encyclopedia segments. We defined an encyclope-
dia segment to be any contiguous genomic segment with
a high total conservation-associated activity score. Specif-
ically, we defined the score of a given position k as s(k) =
fk−Zwhere fk is the conservation-associated activity score
of k, and the total score of a segment [i, j] as s([i, j]) =
∑j

k=i s(k). We then defined an encyclopedia segment to
be any segment [i, j] such that s([i, j] ) > S and s

([
i′, j′

]) ≤
s([i, j] ) for all i′ < i, j′ > j. To avoid merging neighboring
segments, we required that each segment have no subseg-
ment

[
i′, j′

]
(i′ > i; j′ < j) such that s

([
i′, j′

]) ≥ D. We
further placed a minimum on the mean segment score
s([i, j] )/(j−i) ≥ M and aminimum on the segment length
j − i ≥ L. We chose Z = 0.775, D = 1, S = 5, M = 0.02,
and L = 500 bp. The choice of these parameters trades
off the simplicity of the encyclopedia (number and length
of segments) with accuracy, and therefore, the choice is
arbitrary by nature. As further work, it may be useful to
produce several versions of the encyclopedia with varying
levels of detail.

RNA-seq prediction evaluation
Following previous work [19], we used a regression
approach to determine how predictive our annotations
are of gene expression. For each gene-annotation pair, we
defined regression features by sampling 38 positions in a
10-kbp region around the gene’s promoter: 2 kbp centered
on the gene’s promoter at 100-bp intervals, and 10k–1 kbp
upstream and downstream at 1-kbp intervals. We used a
one-hot feature encoding, defining one feature per state
per position, letting that feature be 1 if that position has
the corresponding state and 0 otherwise. This results in
a feature vector of length 38 × num_states. As the pre-
diction label, we used RNA-seq data from Roadmap (Data
Sources) in 57 cell types, transformed log(x+1) to stabilize
variance. We divided genes into five quintiles accord-
ing to their variance in expression across cell types and
trained a separate regressor on each quintile. We trained

https://www.gencodegenes.org/
https://www.gencodegenes.org/
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a regressor to predict RNA-seq value from the annotation
feature vectors. We used a linear regression model with
L2 regularization λ = 103 (chosen according to accuracy
on a development set). We measured prediction accu-
racy according to the fraction of variance explained by the
regressor on genes in the test set.
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