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Abstract: Evogliptin ((R)-4-((R)-3-amino-4-(2,4,5-trifluorophenyl)butanoyl)-3-(tert-butoxymethyl)-
piperazin-2-one), is a new dipeptidyl peptidase IV inhibitor used for the treatment of type II diabetes 
mellitus. The in vitro metabolic pathways of evogliptin were identified in human hepatocytes, liver 
microsomes, and liver S9 fractions using liquid chromatography-Orbitrap mass spectrometry  
(LC-HRMS). Five metabolites of evogliptin-4-oxoevogliptin (M1), 4(S)-hydroxyevogliptin (M2), 
4(R)-hydroxyevogliptin (M3), 4(S)-hydroxyevogliptin glucuronide (M4), and evogliptin N-sulfate 
(M5)—were identified in human liver preparations by comparison with authentic standards. We 
characterized the cytochrome P450 (CYP) enzymes responsible for evogliptin hydroxylation to  
4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) and the UGT enzymes responsible 
for glucuronidation of 4(S)-hydroxyevogliptin (M2) to 4(S)-hydroxy-evogliptin glucuronide (M4). 
CYP3A4/5 played the major role in the hydroxylation of evogliptin to 4(S)-hydroxyevogliptin  
(M2) and 4(R)-hydroxyevogliptin (M3). Glucuronidation of 4(S)-hydroxy-evogliptin (M2) to 4(S)-
hydroxyevogliptin glucuronide (M4) was catalyzed by the enzymes UGT2B4 and UGT2B7. These 
results suggest that the interindividual variability in the metabolism of evogliptin in humans is a result 
of the genetic polymorphism of the CYP and UGT enzymes responsible for evogliptin metabolism. 

Keywords: evogliptin metabolism; human hepatocytes; cytochrome P450; UDP-glucuronosyl- 
transferases 

 

1. Introduction 

Type II diabetes mellitus (DM) is a chronic metabolic disorder, characterized by relative insulin 
deficiency due to disorders of insulin secretion and insulin resistance, the prevalence of which has 
increased continually in the majority of countries [1]. Various classes of oral antidiabetic drugs can 
be used to control the blood glucose level and to prevent diabetic complications such as diabetic 
nephropathy and retinopathy [1,2]. 

Dipeptidyl peptidase IV (DPP-IV) inhibitors reduce the blood glucose level by inhibiting  
DPP-IV, a ubiquitous enzyme which rapidly degrades glucagon-like peptide 1 and glucose-dependent 
insulinotropic polypeptide, and many DPP-IV inhibitors—including alogliptin, anagliptin, gemigliptin, 
linagliptin, saxagliptin, sitagliptin, teneligliptin, and vildagliptin—have been developed as oral 
antihyperglycemic agents for the treatment of type II DM [1–5]. 

Evogliptin (DA-1229, trade name: Sugarnon®), a new, potent, and selective DPP-IV inhibitor [6–11], 
was approved by the Ministry of Food and Drug Safety of Korea as an oral antihyperglycemic drug 
for the treatment of type II DM on October 2 2015. Although the pharmacokinetic properties of evogliptin 
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in humans have been reported [9,10], there is no report of its in vitro metabolism in humans. Metabolite 
identification and characterization of drug-metabolizing enzymes—such as cytochrome P450 (CYP) 
and UDP-glucuronosyltransferase (UGT)—responsible for the metabolism of drugs can facilitate 
prediction of interindividual variations in drug metabolism and pharmacokinetics, together with 
drug–drug interactions [12–14]. The purposes of the present study were to identify the metabolites of 
evogliptin formed after incubation with human hepatocytes, liver microsomes, and liver S9 fractions in 
the presence of cofactors using liquid chromatography-Orbitrap mass spectrometry (LC-HRMS), and 
to characterize the CYP and UGT enzymes responsible for evogliptin metabolism. 

2. Results and Discussion 

2.1. In Vitro Metabolic Profiles of Evogliptin in Human Hepatocytes, Liver Microsomes, and Liver  
S9 Fractions 

LC-HRMS analysis following incubation of evogliptin with human hepatocytes resulted in the 
formation of five evogliptin metabolites M1–M5 (Figure 1A). Following incubation of evogliptin with 
liver S9 fractions in the presence of NADPH and PAPS, three metabolites—M2, M3 and M5—were 
identified by LC-HRMS (Figure 1B). The retention time (tR) and accurate mass of protonated or 
deprotonated molecular ions ([M + H]+ or [M − H]−) and the characteristic fragment ions for evogliptin 
and five metabolites (M1–M5) are summarized in Table 1. 

 
Figure 1. (A) Extracted ion chromatograms (EIC) of evogliptin and possible metabolites after 
incubation of evogliptin with human hepatocytes; (B) EIC of evogliptin and possible metabolites after 
incubation of evogliptin with pooled human liver S9 fractions in the presence of NADPH and PAPS; 
(C) EIC of 4(S)-hydroxyevogliptin and possible metabolites after incubation of 4(S)-hydroxyevogliptin 
(M2) with pooled human liver microsomes in the presence of NADPH and UDPGA; and (D) EIC of 
4(R)-hydroxyevogliptin and possible metabolites after incubation of 4(R)-hydroxyevogliptin (M3) 
with pooled human liver microsomes in the presence of NADPH and UDPGA. 



Molecules 2015, 20, 21802–21815 

21804 

Table 1. Retention time and exact mass of the molecular ion of evogliptin and five metabolites identified 
after incubation of evogliptin with human hepatocytes, liver microsomes, and S9 fractions. 

No. Compound Name Formula 
Electrospray 

Ionization Mode 
Detected Exact 

Mass (m/z) 
Error 
(ppm) 

Retention 
Time (min) 

 Evogliptin C19H26F3N3O3 Positive 402.19922 −1.7 7.51 
M1 4-Oxoevogliptin C19H24F3N3O4 Positive 416.17871 −1.1 4.97 
M2 4(S)-Hydroxyevogliptin C19H26F3N3O4 Positive 418.19446 −0.8 4.55 
M3 4(R)-Hydroxyevogliptin C19H26F3N3O4 Positive 418.19446 −0.8 5.83 
M4 4(S)-Hydroxyevogliptin glucuronide C25H34F3N3O10 Positive 594.22638 −0.9 2.27 
M5 Evogliptin N-sulfate C19H26F3N3SO6 Negative 480.14276 1.3 10.85 

Five metabolites, M1–M5, were identified by comparison with the retention time and fragment 
ions of the corresponding authentic standards. The product scan spectrum of evogliptin showed a 
[M + H]+ ion at m/z 402.19942 with characteristic fragment ions at m/z 346.13704 (loss of a tert-butyl 
group from the [M + H]+ ion), m/z 328.12633 (loss of water from m/z 346.13704), and m/z 155.08138 
(loss of 2-(2,4,5-trifluorophenyl)ethanamine from m/z 328.12633) (Figure 2). 

M1 showed the [M + H]+ ion at m/z 416.17832, which was 14 amu more than the [M + H]+  
ion of evogliptin, and yielded the product ions at m/z 360.11592 (loss of a tert-butyl group from the 
[M + H]+ ion), m/z 342.10548 (loss of water from m/z 360.11592), and m/z 155.08134 (loss of 2-(2,4,5-
trifluorophenyl)ethanamine from m/z 342.10548) (Figure 2). Incubation of 4(S)-hydroxyevogliptin 
(M2) and 4(R)-hydroxyevogliptin (M3) with human liver microsomes in the presence of NADPH 
resulted in the formation of M1 (Figure 1C,D), suggesting that M1 was formed by 4-hydroxylation of 
evogliptin followed by dehydrogenation. M1 was identified as 4-oxoevogliptin by comparison with 
the retention time and MS/MS spectrum of the corresponding authentic standard. The peak area of 
4-oxoevogliptin (M1) formed from 4(R)-hydroxyevogliptin (M3) was 40-fold higher than that of M1 
formed from 4(S)-hydroxyevogliptin (M2) (Figure 1C,D), indicating that 4-oxoevogliptin (M1) was 
formed mainly from 4(R)-hydroxyevogliptin (M3). 

M2 and M3 showed a [M + H]+ ion at m/z 418.19428, which is 16 amu more than [M + H]+ ion of 
evogliptin, indicating hydroxylation of evogliptin. The product scan spectra of M2 and M3 showed 
fragment ions at m/z 362.13162 (loss of a tert-butyl group from the [M + H]+ ion), m/z 344.12133  
(loss of water from m/z 362.13162), and m/z 155.08134 (loss of 2-(2,4,5-trifluorophenyl)ethanamine 
from m/z 344.12133) (Figure 2). M2 and M3 were identified as 4(S)-hydroxyevogliptin (M2) and  
4(R)-hydroxyevogliptin (M3), respectively, by comparison with the retention time and MS/MS 
spectra of the corresponding authentic standards. 

M4 showed a [M + H]+ ion at m/z 594.22570, which is 176 amu higher than the [M + H]+ ion of  
4-hydroxyevogliptin, indicating glucuronidation of 4-hydroxyevogliptin. M4 generated characteristic 
product ions at m/z 418.19431 (loss of glucuronic acid moiety from the [M + H]+ ion), m/z 362.13153 
(loss of a tert-butyl group from m/z 418.19431), m/z 538.16328 (loss of a tert-butyl group from the  
[M + H]+ ion), and m/z 155.08129 (loss of 2-(2,4,5-trifluorophenyl)ethanamine and water from m/z 
362.13153) (Figure 2). Human liver microsomal incubation of 4(S)-hydroxyevogliptin (M2) in the 
presence of UDPGA and NADPH resulted in the formation of M4 (Figure 1C). M4 was identified as 
4(S)-hydroxyevogliptin glucuronide by comparison with the retention time and MS/MS spectrum of 
the corresponding authentic standard. 

M5 showed a [M − H]− ion at m/z 480.14220, which was 80 amu higher than the [M − H]− ion of 
evogliptin, indicating sulfation of evogliptin. Since the [M + H]+ ion of M5 at m/z 482.15646 showed 
195-fold lower peak intensity than that of the [M − H]− ion of M5, we performed the product scan in 
negative mode. M5 generated the product ion at m/z 251.99477 [(2-(2,4,5-trifluorophenyl)ethylidene) 
sulfamate ion] (Figure 2). M5 was identified as evogliptin N-sulfate by comparison with the retention 
time and MS/MS spectrum of the authentic standard. N-sulfation of another DPP-IV inhibitor, sitagliptin, 
in human support that sulfation of evogliptin to M5 in human hepatocytes and liver S9 fractions [15]. 
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Figure 2. Product scan spectra of evogliptin and the five metabolites M1, M2, M3, M4, and M5 formed 
after incubation of evogliptin with human hepatocytes. 

On the basis of these results, the possible in vitro metabolic pathways of evogliptin in human 
liver preparations are shown in Scheme 1: evogliptin is metabolized to 4-oxoevogliptin (M1),  
4(S)-hydroxyevogliptin (M2), 4(R)-hydroxyevogliptin (M3), 4(S)-hydroxyevogliptin glucuronide (M4), 
and evogliptin N-sulfate (M5). 
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Scheme 1. Possible metabolic pathways of evogliptin in human hepatocytes, liver microsomes and 
liver S9 fractions. 

2.2. Characterization of Human CYP Enzymes Responsible for the Formation of 4(S)-Hydroxyevogliptin 
(M2) and 4(R)-Hydroxyevogliptin (M3) from Evogliptin 

Screening for the metabolism of evogliptin at 5 and 50 μM to 4(S)-hydroxyevogliptin (M2) and 
4(R)-hydroxyevogliptin (M3) using major human cDNA-expressed CYPs 1A1, 1A2, 2A6, 2B6, 2C8, 
2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5 isoforms showed that CYP3A4 played a major role in the 
formation of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3), with a minor contribution 
by CYP3A5 (Table 2). 

Table 2. Formation rates of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from 5 and 
50 μM evogliptin in human cDNA-expressed CYPs (n = 3, mean ± SD). 

Human 
CYPs 

4(S)-Hydroxyevogliptin (M2) 
(pmol/pmol CYP/min) 

4(R)-Hydroxyevogliptin (M3)  
(pmol/pmol CYP/min) 

5 μM 50 μM 5 μM 50 μM 
CYP1A1 N.D. N.D. N.D. N.D. 
CYP1A2 N.D. N.D. N.D. N.D. 
CYP2A6 N.D. N.D. N.D. N.D. 
CYP2B6 N.D. N.D. N.D. N.D. 
CYP2C8 N.D. N.D. N.D. N.D. 
CYP2C9 N.D. N.D. N.D. N.D. 
CYP2C19 N.D. N.D. N.D. N.D. 
CYP2D6 N.D. N.D. N.D. N.D. 
CYP2E1 N.D. N.D. N.D. N.D. 
CYP2J2 N.D. N.D. N.D. N.D. 
CYP3A4 0.21 ± 0.002 0.63 ± 0.119 0.16 ± 0.005 0.57 ± 0.113 
CYP3A5 N.D. 0.02 ± 0.002 0.01 ± 0.000 0.04 ± 0.003 

N.D., not detected (<0.006 pmol/pmol CYP/min). 

The enzyme kinetic profiles for the formation of major metabolites, 4(S)-hydroxyevogliptin (M2) 
and 4(R)-hydroxyevogliptin (M3) from evogliptin in pooled human liver microsomes followed 
single-enzyme kinetics (Figure 3A). The Km, Vmax, and Clint values of 4(S)-hydroxyevogliptin (M2) 
formation were 93.4 μM, 91.9 pmol/mg protein/min, and 1.0 μL/min/mg protein, respectively, and 
those of 4(R)-hydroxyevogliptin (M3) formation were 124.4 μM, 113.0 pmol/mg protein/min, and  
0.9 μL∙min/mg protein, respectively (Table 3). 
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Figure 3. Enzyme kinetics for the formation of 4(S)-hydroxyevogliptin (M2, ) and 4(R)-hydroxyevogliptin 
(M3, ) from evogliptin in (A) human liver microsomes; (B) human cDNA-expressed CYP3A4; and 
(C) by human cDNA-expressed CYP3A5. 

Table 3. Enzyme kinetic parameters for the metabolism of evogliptin to 4(S)-hydroxyevogliptin  
(M2) and 4(R)-hydroxyevogliptin (M3) in human liver microsomes and human cDNA-expressed  
CYP enzymes. 

Human CYPs Km (μM) Vmax Clint Km2 (μM) Vmax2 Clint2 

Formation of 4(S)-hydroxyevogliptin (M2) 
CYP3A4 10.9 128.8 11.8 330.1 340.7 1.0 
CYP3A5 91.3 11.3 0.1 - - - 

Liver microsomes 93.4 91.9 1.0 - - - 
Formation of 4(R)-hydroxyevogliptin (M3) 

CYP3A4 13.0 112.8 8.7 511.6 497 1.0 
CYP3A5 101.6 19.5 0.2 - - - 

Liver microsomes 124.4 113.0 0.9 - - - 
Vmax: pmol/min/pmol CYP for CYP3A4 and CYP3A5, pmol/min/mg protein for liver microsomes;  
Clint: μL/min/pmol CYP for CYP3A4 and CYP3A5, μL/min/mg protein for liver microsomes. 

The formation of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin 
followed the isoenzyme equation in human cDNA-expressed CYP3A4 enzyme (Figure 3B), but showed 
single-enzyme kinetics in human cDNA-expressed CYP3A5 enzyme (Figure 3C). The enzyme kinetic 
parameters for the formation of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from 
evogliptin by the CYP3A4 and CYP3A5 enzymes indicate that CYP3A4 plays a prominent role in the 
formation of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3), with a minor contribution 
by CYP3A5 (Table 3). 

The rates of formation of 4(S)-hydroxyevogliptin (M2) from 10 or 50 μM evogliptin in 10 different 
human liver microsomes were 1.8–15.0 pmol/mg protein/min and 5.2–46.4 pmol/mg protein/min, 
respectively (Figure 4A). The formation rates of 4(R)-hydroxyevogliptin (M3) from 10 or 50 μM 
evogliptin in 10 different human liver microsomes were 1.9–14.2 pmol/mg protein/min and 5.4–46.2 
pmol/mg protein/min, respectively (Figure 4B). According to the correlation analysis using Pearson’s 
product–moment correlation coefficient, the formation rates of 4(S)-hydroxyevogliptin (M2) and 
4(R)-hydroxyevogliptin (M3) in 10 different human liver microsomes were significantly correlated  
(r2 ≥ 0.882, p < 0.05) with testosterone 6β-hydroxylase activity, a marker enzyme of CYP3A4 (Figure 4A,B). 

To further characterize the CYP enzymes responsible for the formation of 4(S)-hydroxyevogliptin 
(M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin, an immunoinhibition study was performed 
by pretreating pooled human liver microsomes with an anti-CYP3A4 antibody (Figure 5). The formation 
of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin in pooled human 
liver microsomes was potently inhibited to a maximum of 90% by the CYP3A4 antibody, suggesting 
that CYP3A4 played the major role in the metabolism of evogliptin to 4(S)-hydroxyevogliptin (M2) 
and 4(R)-hydroxyevogliptin (M3) in human liver microsomes. 
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Figure 4. Correlation between the formation rates of (A) 4(S)-hydroxyevogliptin (M2) and (B)  
4(R)-hydroxyevogliptin (M3) from 10 μM () and 50 μM () evogliptin and testosterone  
6β-hydroxylase activity in 10 different human liver microsomes; (C) Correlation of the formation rates 
of 4(S)-hydroxyevogliptin glucuronide (M4) from 100 μM 4(S)-hydroxyevogliptin to azidothymidine 
glucuronidation activity in 10 different human liver microsomes. 

 
Figure 5. Effect of an anti-CYP3A4 antibody on the metabolism of evogliptin (50 μM) to (A) 4(S)-
hydroxyevogliptin (M2) and (B) 4(R)-hydroxyevogliptin (M3) in pooled human liver microsomes. 

2.3. Characterization of Human UGT Enzymes Responsible for the Formation of 4-Hydroxyevogliptin 
Glucuronide (M4) from 4(S)-Hydroxyevogliptin 

The rates of formation of 4(S)-hydroxyevogliptin glucuronide (M4) from 4(S)-hydroxyevogliptin 
in pooled human liver microsomes showed a good fit to the Hill equations (Figure 6). The Km, Vmax, 
and Clint values for the formation of 4(S)-hydroxyevogliptin glucuronide (M4) were 927.9 μM, 711.4 
pmol/mg protein/min, and 0.77 μL/min/mg protein, respectively. 

 
Figure 6. Enzyme kinetics for the metabolism of 4(S)-hydroxyevogliptin (M2) to 4(S)-hydroxyevogliptin 
glucuronide (M4) in (A) pooled human liver microsomes; (B) human cDNA-expressed UGT2B4; and 
(C) human cDNA-expressed UGT2B7. 

Screening using human cDNA-expressed UGT 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10,  
2B4, 2B7, 2B15 and 2B17 isoforms for the glucuronidation of 4(S)-hydroxyevogliptin (M2) to  
4(S)-hydroxyevogliptin glucuronide (M4) showed that the UGT2B4 and UGT2B7 enzymes played 
major roles in the formation of M4, and that the UGT 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B15, 
and 2B17 enzymes did not contribute (Table 4). 
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Table 4. Formation rates of 4(S)-hydroxyevogliptin glucuronide (M4) from 50 and 300 μM  
4(S)-hydroxyevogliptin (M2) in human cDNA-expressed UGTs (mean ± SD, n = 3). 

Human UGTs 
4(S)-Hydroxyevogliptin Glucuronide (M4) 

(pmol/mg protein/min) 
50 μM 300 μM

UGT1A1 N.D. N.D. 
UGT1A3 N.D. N.D. 
UGT1A4 N.D. N.D. 
UGT1A6 N.D. N.D. 
UGT1A7 N.D. N.D. 
UGT1A8 N.D. N.D. 
UGT1A9 N.D. N.D. 

UGT1A10 N.D. N.D. 
UGT2B4 N.D. 6.22 ± 0.31 
UGT2B7 7.46 ± 0.77 32.99 ± 1.04 

UGT2B15 N.D. N.D. 
UGT2B17 N.D. N.D. 

N.D., not detected (<5 pmol/mg protein/min). 

The rates of formation of 4(S)-hydroxyevogliptin glucuronide (M4) from 4(S)-hydroxyevogliptin 
(M2) followed single-enzyme kinetics with UGT2B4 and Hill equation kinetics with UGT2B7  
(Figure 6). The Km, Vmax, and Clint values for the formation of 4(S)-hydroxyevogliptin glucuronide (M4) 
formation were 1,328 μM, 40.3 pmol/mg protein/min, and 0.03 μL/min/mg protein, respectively,  
for UGT2B4; and 1003.8 μM, 112 pmol/mg protein/min, and 0.1 μL/min/mg protein, respectively,  
for UGT2B7. 

The rates of formation of 4(S)-hydroxyevogliptin glucuronide (M4) from 100 μM 4(S)-
hydroxyevogliptin (M2) in 10 different human liver microsomes were 26.8–89.2 pmol/mg protein/min 
(Figure 4C). The correlation analysis demonstrated that the formation rates of 4(S)-hydroxyevogliptin 
glucuronide (M4) in 10 different human liver microsomes were significantly correlated (r2 = 0.834,  
p < 0.05) with UGT2B7-catalzyed azidothymidine N-glucuronidation (Figure 4C). 

3. Discussion 

In vitro metabolism of evogliptin using human hepatocytes, liver microsomes, and liver S9 
fractions was investigated for the first time. Evogliptin and five of its metabolites, M1–M5, were 
characterized by LC-HRMS analysis following incubation with human hepatocytes (Figure 1A). 
Incubation of evogliptin with human liver S9 fractions in the presence of NADPH and PAPS resulted in 
the formation of 4(S)-hydroxyevogliptin (M2), 4(R)-hydroxyevogliptin (M3), and evogliptin N-sulfate 
(M5), as determined by LC-HRMS analysis (Figure 1B). Incubation of 4(S)-hydroxyevogliptin (M2) with 
pooled human liver microsomes in the presence of NADPH and UDPGA resulted in the formation 
of 4(S)-hydroxyevogliptin glucuronide (M4) and 4-oxoevogliptin (M1) (Figure 1C). Incubation of 
4(R)-hydroxyevogliptin (M3) with pooled human liver microsomes in the presence of NADPH  
and UDPGA resulted in the formation of 4-oxoevogliptin (M1) (Figure 1D). Five metabolites were 
identified on the basis of the retention time and product ions by comparison with the corresponding 
authentic standards (Table 1, Figure 2). Evogliptin was metabolized to the following five metabolites 
in human liver: 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) via hydroxylation, 
evogliptin N-sulfate (M5) via sulfation, 4-oxoevogliptin (M1) from 4(S)-hydroxyevogliptin (M2) and  
4(R)-hydroxyevogliptin (M3) via dehydrogenation, and 4(S)-hydroxyevogliptin glucuronide (M4) from 
4(S)-hydroxyevogliptin (M2) via glucuronidation (Figure 3). Enzyme kinetic parameters for the formation 
of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin in pooled human 
liver microsomes indicated that these compounds were the major metabolites. 
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To identify the CYP enzymes responsible for the formation of 4(S)-hydroxyevogliptin (M2) and 
4(R)-hydroxyevogliptin (M3) from evogliptin, we performed a correlation analysis and immunoinhibition 
assay using human liver microsomes and performed a screening and evaluated enzyme kinetics using 
human cDNA-expressed CYP enzymes. Screening using cDNA-expressed human CYP enzymes 
showed that CYP3A4 played the predominant role in the formation of 4(S)-hydroxyevogliptin (M2) and 
4(R)-hydroxyevogliptin (M3), with a minor contribution by CYP3A5 (Table 2). The formation rates of 
4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin in 10 different human 
liver microsomes were significantly correlated with CYP3A4-mediated testosterone 6β-hydroxylase 
activity (r2 ≥ 0.882, p < 0.05, Figure 4A,B). An anti-CYP3A4 antibody potently inhibited the formation 
of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) by up to 90% (Figure 5) in pooled 
human liver microsomes. Therefore, the CYP3A4 enzyme played a major role in the hydroxylation of 
evogliptin to 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3), with a minor contribution 
by CYP3A5, in human liver microsomes. 

Metabolism of 4(S)-hydroxyevogliptin (M2) to 4(S)-hydroxyevogliptin glucuronide (M4) was 
mediated by human cDNA-expressed UGT2B4 and UGT2B7 (Table 4). These results were supported 
by a correlation analysis of the rates of formation of 4(S)-hydroxyevogliptin glucuronide (M4) in  
10 different human liver microsomes and UGT2B7-catalzyed azidothymidine glucuronidase activity, 
which showed a significant correlation (r2 = 0.834, p < 0.05) (Figure 4C). 

Formation of 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin (M3) from evogliptin was the 
major metabolic pathway catalyzed by CYP3A4/5. 4(S)-Hydroxyevogliptin (M2) was further metabolized 
to 4(S)-hydroxyevogliptin glucuronide (M4) by UGT2B4 and UGT2B7. 4(S)-hydroxyevogliptin (M2) 
and 4(R)-hydroxyevogliptin (M3) were further metabolized to 4-oxoevogliptin (M1). The CYP3A4 
enzyme, which is responsible for the hydroxylation of evogliptin, is the most abundant CYP enzyme in 
the human small intestine and liver [12,16–18]. CYP3A plays a key role in the metabolism of ~30% of all 
drugs [12], and its activity shows wide interindividual variation due to genetic polymorphisms [16–18]. 
Genetic polymorphisms have also been described for UGT2B4 and UGT2B7, which were responsible 
for the glucuronidation of 4(S)-hydroxyevogliptin (M2) to M4 [19,20]. Therefore, the interindividual 
differences in the metabolism of evogliptin in humans is likely due to genetic variants of the CYP3A4, 
UGT2B4, and UGT2B7 enzymes responsible for the metabolism of evogliptin. 

4. Experimental Section 

4.1. Materials 

Evogliptin, 4-oxoevogliptin, 4(S)-hydroxyevogliptin, 4(R)-hydroxyevogliptin, 4(S)-hydroxy- 
evogliptin glucuronide, and evogliptin N-sulfate were provided by Dong-A ST Co. (Yongin, Korea). 
William’s E medium, potassium phosphate monobasic, potassium phosphate dibasic trihydrate, 
reduced β-nicotinamide adenine dinucleotide phosphate tetrasodium salt (NADPH), Trizma® Base, 
Trizma® HCl, uridine-5-diphosphoglucuronic acid trisodium salt (UDPGA), alamethicin (from 
Trichoderma viride), 3′-phosphoadenosine-5′-phosphosulfate (PAPS), formic acid, and 1-methyl-4-
phenylpyridinium iodide (MPPI, used as an internal standard) were purchased from Sigma-Aldrich 
Co. (St. Louis, MO, USA). Acetonitrile and water (LC-MS grade) were obtained from Fisher Scientific 
(Fairlawn, NJ, USA). The other reagents were of the highest quality available. 

Cryopreserved human hepatocytes (catalog no. 454504), cryohepatocyte purification kit (catalog 
no. 454534), pooled and individual human liver microsomes (coded HG3, HH18, HK23, HG32, HK37, 
HG43, HH47, HG56, HG64, and HG74), human cDNA-expressed CYP enzymes (CYPs 1A1, 1A2, 2A6, 
2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5), human cDNA-expressed UGT enzymes (UGTs 
1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17), and human-specific antibody 
for the immunoinhibition of human CYP3A4 (anti-CYP3A4) were purchased from Corning Life 
Sciences (Woburn, MA, USA). 
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4.2. Identification of the Metabolites of Evogliptin in Human Hepatocytes 

Cryopreserved human hepatocytes were purified and recovered using a cryohepatocyte 
purification kit (Woburn) according to the manufacturer’s protocol. Purified human hepatocytes 
were resuspended in William’s E medium to a final density of 1.28 × 106 cells/mL, and then 62.5 μL 
of human hepatocyte suspensions (8 × 104 cells) and 62.5 μL of 100 μM evogliptin in William’s E 
medium were added to a 96-well plate and incubated for 4 h at 37 °C in a CO2 incubator. The reaction 
was terminated by the addition of 125 μL of ice-cold acetonitrile to each sample well, followed by 
centrifugation at 13,000 rpm for 4 min at 4 °C. Then, 40 μL of the supernatant were diluted with  
60 μL of deionized water and an aliquot (5 μL) was injected onto LC-HRMS system to identify 
metabolites of evogliptin. 

4.3. Identification of Metabolites of Evogliptin in Human Liver S9 Fractions 

The incubation mixture consisted of 50 mM potassium phosphate buffer (pH 7.4), 10 mM 
magnesium chloride, pooled human liver S9 fractions (150 μg protein), 1 mM NADPH, 2 mM UDPGA, 
0.2 mM PAPS and 10 μM evogliptin in a total volume of 300 μL. The incubation mixture was incubated 
for 60 min at 37 °C in a shaking water bath. The incubation was stopped by the addition of 300 μL of 
ice-cold acetonitrile, followed by centrifugation at 13,000 rpm for 4 min at 4 °C. The supernatant was 
evaporated using a vacuum concentrator and the residue was dissolved in 100 μL of 15% acetonitrile. 
An aliquot (5 μL) was injected onto the LC-HRMS system. 

4.4. Identification of Metabolites of Evogliptin in Human Liver Microsomes 

The incubation mixture consisted of 50 mM potassium phosphate buffer (pH 7.4), 10 mM 
magnesium chloride, pooled human liver microsomes (60 μg protein), 1 mM NADPH, 2 mM UDPGA, 
and 10 μM evogliptin in a total volume of 300 μL. The reaction mixture was incubated for 60 min at 
37 °C in a shaking water bath. The incubation was stopped by the addition of 300 μL of ice-cold 
acetonitrile, followed by centrifugation at 13,000 rpm for 4 min at 4 °C, and the supernatant was 
evaporated. The residue was reconstituted in 100 μL of 15% acetonitrile, and an aliquot (5 μL) was 
analyzed by LC-HRMS. 

4.5. Enzyme Kinetics of Evogliptin Metabolism to [4S]-hydroxyevogliptin (M2) and [4R]-hydroxyevogliptin 
(M3) in Human Liver Microsomes 

Preliminary experiments demonstrated that the metabolism of evogliptin to 4(S)-hydroxyevogliptin 
(M2) and 4(R)-hydroxyevogliptin (M3) proceeded linearly with incubation time (10–30 min) and liver 
microsomal protein concentration (0.1–0.3 mg/mL). Thus, a 20 min incubation time and 0.15 mg/mL 
microsomal protein concentration were used in subsequent experiments. 

The reaction mixture comprised 50 mM potassium phosphate buffer (pH 7.4), 10 mM magnesium 
chloride, pooled human liver microsomes (15 μg protein), and various concentrations of evogliptin 
(10 to 800 μM; final acetonitrile concentration not exceeding 0.5%, v/v) was preincubated for 3 min at 
37 °C. The reaction was initiated by adding NADPH, and the mixture was further incubated (final 
volume of 100 μL) for 20 min at 37 °C in a shaking water bath. The reaction was terminated by adding 
100 μL of MPPI (internal standard, 50 ng/mL) in ice-cold acetonitrile. The mixture was centrifuged at 
13,000 rpm for 4 min at 4 °C. Subsequently, 50 μL of the supernatant were diluted with 50 μL of 
deionized water and an aliquot (5 μL) was injected onto the LC-MS/MS system. 

4.6. Metabolism of Evogliptin in Human cDNA-Expressed CYP Enzymes 

The reaction mixture comprised 50 mM potassium phosphate buffer (pH 7.4), 10 mM magnesium 
chloride, evogliptin (5 or 50 μM), and 12 human cDNA-expressed CYP enzymes (CYPs 1A1, 1A2, 
2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5; 4 pmol) and was preincubated for 3 min at  
37 °C. The reaction was initiated by addition of NADPH, and the mixture was further incubated (final 
volume of 100 μL) for 20 min at 37 °C in a shaking water bath. The reaction was terminated by adding 
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100 μL of MPPI (internal standard, 50 ng/mL) in ice-cold acetonitrile. The mixture was centrifuged  
at 13,000 rpm for 4 min at 4 °C. Continuously, 50 μL of the supernatant were diluted with 50 μL of 
deionized water and an aliquot (5 μL) was analyzed using the LC-MS/MS system. 

For the enzyme kinetic experiments, various concentrations of evogliptin (10 to 800 μM; final 
acetonitrile concentration not exceeding 0.5%, v/v) were incubated with human cDNA-expressed 
CYP enzymes (CYPs 3A4 and 3A5; 4 pmol), 1 mM NADPH, and 10 mM MgCl2 in 50 mM potassium 
phosphate buffer (pH 7.4) for 20 min at 37 °C in a shaking water bath. After addition of ice-cold 
acetonitrile containing internal standard (MPPI, 50 ng/mL), the mixture was centrifuged and diluted 
as described above, and an aliquot (5 μL) was injected onto the LC-MS/MS system. 

4.7. Correlation Analysis of Evogliptin Metabolism with Probe Substrate Activities in Human  
Liver Microsomes 

Evogliptin (10 and 50 μM) was incubated with 10 different human liver microsomes (15 μg 
protein), 1 mM NADPH, and 10 mM magnesium chloride in 50 mM potassium phosphate buffer  
(pH 7.4) for 20 min at 37 °C in a shaking water bath. The correlation coefficients between the 
formation rates of 4(S)-hydroxyevogliptin (M2) or 4(R)-hydroxyevogliptin (M3) from evogliptin and 
specific CYP activities in human liver microsomes provided by Corning Life Sciences were evaluated 
by the Pearson product–moment correlation coefficient using Sigma Stat software (ver. 2.0; Systat 
Software Inc., San Jose, CA, USA). A p value < 0.05 was considered to indicate significance. 

4.8. Immunoinhibition of Evogliptin Metabolism with an Anti-CYP3A4 Antibody 

Immunoinhibition experiments were conducted by incubating pooled human liver microsomes 
with various amounts of an anti-CYP3A4 antibody for 15 min on ice, and then the reaction was 
initiated by the addition of 50 mM potassium phosphate buffer (pH 7.4), 50 μM evogliptin, 10 mM 
magnesium chloride, and 1 mM NADPH. Control incubations were performed using liver microsomes 
and 25 mM Tris buffer but without the anti-CYP3A4 antibody, which was prepared in this buffer. 

4.9. Metabolism of 4(S)-Hydroxyevogliptin (M2) and 4(R)-Hydroxyevogliptin (M3) to 4-Oxoevogliptin 
(M1) and 4(S)-hydroxyevogliptin Glucuronide (M4) in Human Liver Microsomes 

The incubation mixture consisted of 50 mM potassium phosphate buffer (pH 7.4), 10 mM 
magnesium chloride, pooled human liver microsomes (60 μg protein), 1 mM NADPH, 2 mM UDPGA, 
and 10 μM 4(S)-hydroxyevogliptin (M2) or 4(R)-hydroxyevogliptin (M3) in a total volume of 300 μL. 
The incubation mixture was incubated for 60 min at 37 °C in a shaking water bath. The incubation 
was stopped by the addition of 300 μL of ice-cold acetonitrile followed by centrifugation at 13,000 rpm 
for 4 min at 4 °C. Subsequently, the supernatant was evaporated and the residue was reconstituted in 
100 μL of 15% acetonitrile. An aliquot (5 μL) was injected onto the LC-HRMS system. 

4.10. Metabolism of 4(S)-Hydroxyevogliptin to 4(S)-Hydroxyevogliptin Glucuronide (M4) by Human  
cDNA-Expressed UGT Enzymes 

To investigate the UGT enzymes involved in the glucuronidation of 4(S)-hydroxyevogliptin 
(M2), the incubation mixture (final volume of 100 μL) containing 50 mM Tris buffer (pH 7.4), 10 mM 
magnesium chloride, 0.025 mg/mL alamethicin, 4(S)-hydroxyevogliptin (M2) (50 or 300 μM), and 12 
human cDNA-expressed UGT enzymes (UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 
2B15, and 2B17; 10 μg protein) was preincubated for 3 min at 37 °C. The reaction was initiated by 
adding UDPGA, and the mixture was further incubated (final volume of 100 μL) for 20 min at 37 °C 
in a shaking water bath. The reaction was terminated by adding 100 μL of MPPI (internal standard, 
50 ng/mL) in ice-cold acetonitrile. The mixture was centrifuged at 13,000 rpm for 4 min at 4 °C, 50 μL 
of the supernatant were diluted with 50 μL of deionized water, and an aliquot (5 μL) was analyzed 
using the LC-MS/MS system. 
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4.11. Enzyme Kinetics for the Metabolism of 4(S)-Hydroxyevogliptin to 4(S)-Hydroxyevogliptin Glucuronide 
(M4) in Human Liver Microsomes and cDNA-Expressed UGT Enzymes 

Preliminary experiments showed that the glucuronidation of 4(S)-hydroxyevogliptin to  
4(S)-hydroxyevogliptin glucuronide (M4) was linear with incubation time over 30 min and human 
liver microsomal protein concentration (0.1–0.3 mg/mL). Therefore, a 20 min incubation time and  
0.2 mg/mL microsomal protein concentration were selected for enzyme kinetics experiments. The 
reaction mixture comprised 50 mM Tris buffer (pH 7.4), 10 mM magnesium chloride, 0.025 mg/mL 
alamethicin, pooled human liver microsomes (20 μg protein), and various concentrations of  
4(S)-hydroxyevogliptin (M2) (10 to 2,000 μM; final acetonitrile concentration not exceeding 0.5%, v/v), 
and was preincubated for 3 min at 37 °C. The reaction was initiated by adding UDPGA, and the 
mixture was further incubated (final volume of 100 μL) for 20 min at 37 °C in a shaking water bath. The 
reaction was stopped by adding 100 μL of MPPI (internal standard, 50 ng/mL) in ice-cold acetonitrile. 
The mixture was centrifuged at 13,000 rpm for 4 min at 4 °C. Next, 50 μL of the supernatant were diluted 
with 50 μL of deionized water and an aliquot (5 μL) was injected onto the LC-MS/MS system. 

For the enzyme kinetic study, various concentrations of 4(S)-hydroxyevogliptin (M2) (25 to 2000 μM; 
final acetonitrile concentration not exceeding 0.5%, v/v) were incubated with human cDNA-expressed 
UGT2B4 or UGT2B7 enzymes (20 μg protein), 2 mM UDPGA, 0.025 mg/mL alamethicin, and 10 mM 
magnesium chloride in 50 mM Tris buffer (pH 7.4) for 20 min at 37 °C in a shaking water bath. After 
adding ice-cold acetonitrile containing internal standard (MPPI, 50 ng/mL), the mixture was centrifuged 
and diluted as described above, and an aliquot (5 μL) was analyzed using the LC-MS/MS system. 

4.12. Correlation Analysis of 4(S)-Hydroxyevogliptin Metabolism to 4(S)-Hydroxyevogliptin Glucuronide 
(M4) with Probe Substrate Activities in Human Liver Microsomes 

The formation rates of 4(S)-hydroxyevogliptin glucuronide (M4) from 4(S)-hydroxyevogliptin 
(M2) were evaluated by incubating 4(S)-hydroxyevogliptin (100 μM) with 10 different human liver 
microsomes (20 μg protein), 2 mM UDPGA, 0.025 mg/mL alamethicin, and 10 mM magnesium chloride 
in 50 mM Tris buffer (pH 7.4) for 20 min at 37 °C in a shaking water bath. The correlation coefficients 
between the formation rates of 4(S)-hydroxyevogliptin glucuronide (M4) and specific UGT activities 
in human liver microsomes reported by Corning Life Sciences were determined by the Pearson 
product-moment correlation coefficient using Sigma Stat Software (Systat Software Inc.). A p value < 0.05 
was considered to indicate significance. 

4.13. LC-HRMS and LC-MS/MS Analysis of Evogliptin and Its Metabolites 

To identify evogliptin and its metabolites, an Exactive Orbitrap mass spectrometer (Thermo 
Scientific, San Jose, CA, USA) coupled to an Accela ultra-performance liquid chromatography system 
was used. The separation was performed on a Unison-C8 column (3.0 μm, 2.0 mm i.d. × 75 mm; 
Imtakt Corporation, Kyoto, Japan) using a gradient elution of 5% acetonitrile in 0.1% formic acid 
(mobile phase A) and 95% acetonitrile in 0.1% formic acid (mobile phase B) at a flow rate of  
0.3 mL/min: 14% B for 8.5 min, 14% to 90% B for 3.0 min, 90% B for 3.0 min, 90% to 14% B for 0.1 min, 
and 14% B for 5.5 min. The column and autosampler temperatures were 40 °C and 6 °C, respectively. 
The electrospray ionization (ESI) in positive and negative mode was used with the following electrospray 
source settings: spray voltage, 4.0 kV in positive mode and −3.0 kV in negative mode; vaporizer 
temperature, 350 °C; capillary temperature, 330 °C; sheath gas pressure, 35 arbitrary units; and 
auxiliary gas pressure, 15 arbitrary units. Higher-energy collision dissociation (HCD) with a collision 
energy of 10 to 40 eV was employed to investigate the fragmentation pattern of evogliptin and its 
metabolites. The mass measurement accuracy for evogliptin and its metabolites did not exceed  
5 ppm, representing a good correlation between the theoretical mass based on the molecular 
elemental composition and the experimental mass obtained from the full-scan HRMS analysis. The 
proposed structures for the product ions of evogliptin and its metabolites were determined using the 
Mass Frontier software (ver. 6.0; HighChem Ltd., Bratislava, Slovakia). 
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For the quantification of evogliptin and its metabolites, a Nanospace SI-2 LC system (Shiseido, 
Tokyo, Japan) coupled to a tandem quadrupole mass spectrometer (TSQ Quantum Access; Thermo 
Fisher Scientific) was used. The ESI source settings for the ionization of evogliptin and its metabolites 
were as follows: spray voltage, 4.5 kV; vaporizer temperature, 350 °C; capillary temperature, 330 °C; 
sheath gas pressure, 35 arbitrary units; and auxiliary gas pressure, 15 arbitrary units. The collision 
energy for evogliptin and its five metabolites, M1–M5, were 18V, 12V, 13V, 13V, 18V, and 31V, 
respectively. To quantify evogliptin and its metabolites, selective reaction monitoring mode using 
specific precursor and product ion transitions was applied: m/z 402.2→346.1 for evogliptin, m/z 
416.1→360.0 for 4-oxoevogliptin (M1), m/z 418.0→362.0 for 4(S)- and 4(R)-hydroxyevogliptin (M2 and 
M3, respectively), m/z 594.2→538.1 for 4(S)-hydroxyevogliptin glucuronide (M4), m/z 480.3→251.8 
for evogliptin N-sulfate (M5), and m/z 170.1→128.2 for MPP+ iodide (internal standard). Peak areas 
for internal standard, evogliptin, and its metabolites were integrated using the Xcalibur® software 
(Thermo Fisher Scientific). 

4.14. Data Analysis 

Results represent the average of three independent experiments using human liver microsomes 
and human cDNA-expressed CYP and UGT enzymes. The kinetic parameters (Km and Vmax) for 
hydroxylation and glucuronidation were determined using the Michaelis-Menten equation [V = 
Vmax⋅S/(Km + S)], the Hill equation [V = Vmax⋅Sn/(Kmn + Sn)], or the isoenzyme equation [V = Vmax1⋅(S/Km1)/ 
(1 + S/Km1) + Vmax2⋅(S/Km2)/(1 + S/Km2)] with the Enzyme Kinetics software (version 1.3; Systat Software 
Inc.). In the above-mentioned equations, V was the velocity of the reaction at substrate concentration 
[S], Vmax was the maximum velocity, Km was the substrate concentration at which the V was half of 
Vmax, and n is the Hill constant. The intrinsic clearance (Clint) was calculated as Vmax/Km. 

5. Conclusions 

Evogliptin is metabolized to 4(S)-hydroxyevogliptin (M2), 4(R)-hydroxyevogliptin (M3),  
4-oxoevogliptin (M1), 4(S)-hydroxyevogliptin glucuronide (M4), and evogliptin N-sulfate (M5) in 
human liver preparations such as hepatocytes, microsomes and S9 fractions (Scheme 1). CYP3A4 played 
a major role in evogliptin hydroxylation to 4(S)-hydroxyevogliptin (M2) and 4(R)-hydroxyevogliptin 
(M3), with a minor contribution by CYP3A5. UGT2B4 and UGT2B7 are responsible for the 
glucuronidation of 4(S)-hydroxyevogliptin (M2) to 4(S)-hydroxyevogliptin glucuronide (M4). These 
results indicate that evogliptin metabolism may cause the interindividual differences in the 
pharmacokinetics of evogliptin in humans. 

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant 
funded by the Korea government (MSIP) (NRF-2014R1A2A2A01002582). 

Author Contributions: H.-U.J. and J.-H.K. performed the experiments and data analysis, D.Y.L. and H.J.S. 
conceived and designed the experiments, H.S.L. was responsible for the study conception and design, data 
analysis, and writing of the manuscript. 

Conflict of Interest: The authors declare no conflict of interest. 

References 

1. Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends.  
Oman Med. J. 2012, 27, 269–273. 

2. Tiwari, P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update.  
J. Diabetes Res. 2015, 2015, 340838, doi:10.1155/2015/340838. 

3. Drucker, D.J. Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 
diabetes. Expert Opin. Investig. Drugs 2003, 12, 87–100. 

4. Ceriello, A.; Sportiello, L.; Rafaniello, C.; Rossi, F. DPP-4 inhibitors: Pharmacological differences and their 
clinical implications. Expert Opin. Drug Saf. 2014, 13 (Suppl. 1), S57–S68. 

  



Molecules 2015, 20, 21802–21815 

21815 

5. Chen, X.W.; He, Z.X.; Zhou, Z.W.; Yang, T.; Zhang, X.; Yang, Y.X.; Duan, W.; Zhou, S.F. Clinical 
pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. 
Clin. Exp. Pharmacol. Physiol. 2015, 42, 999–1024. 

6. Cho, J.M.; Jang, H.W.; Cheon, H.; Jeong, Y.T.; Kim, D.H.; Lim, Y.M.; Choi, S.H.; Yang, E.K.; Shin, C.Y.; Son, M.H.; 
et al. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by 
increasing beta-cell replication and neogenesis. Diabetes Res. Clin. Pract. 2011, 91, 72–79. 

7. Kim, H.J.; Kwak, W.Y.; Min, J.P.; Lee, J.Y.; Yoon, T.H.; Kim, H.D.; Shin, C.Y.; Kim, M.K.; Choi, S.H.;  
Kim, H.S.; et al. Discovery of DA-1229: A potent, long acting dipeptidyl peptidase-4 inhibitor for the 
treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 2011, 21, 3809–3812. 

8. Kim, M.K.; Chae, Y.N.; Kim, H.D.; Yang, E.K.; Cho, E.J.; Choi, S.H.; Cheong, Y.H.; Kim, H.S.;  
Kim, H.J.; Jo, Y.W.; et al. DA-1229, a novel and potent DPP4 inhibitor, improves insulin resistance and delays 
the onset of diabetes. Life Sci. 2012, 90, 21–29. 

9. Kim, T.E.; Lim, K.S.; Park, M.K.; Yoon, S.H.; Cho, J.Y.; Shin, S.G.; Jang, I.J.; Yu, K.S. Evaluation of the 
pharmacokinetics, food effect, pharmacodynamics, and tolerability of DA-1229, a dipeptidyl peptidase IV 
inhibitor, in healthy volunteers: First-in-human study. Clin. Ther. 2012, 34, 1986–1998. 

10. Gu, N.; Park, M.K.; Kim, T.E.; Bahng, M.Y.; Lim, K.S.; Cho, S.H.; Yoon, S.H.; Cho, J.Y.; Jang, I.J.; Yu, K.S. 
Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229), a novel dipeptidyl 
peptidase IV inhibitor, in healthy volunteers. Drug Des. Dev. Ther. 2014, 8, 1709–1721. 

11. Jung, C.H.; Park, C.Y.; Ahn, K.J.; Kim, N.H.; Jang, H.C.; Lee, M.K.; Park, J.Y.; Chung, C.H.; Min, K.W.; Sung, Y.A.; 
et al. A randomized, double-blind, placebo-controlled, phase II clinical trial to investigate the efficacy and 
safety of oral DA-1229 in patients with type 2 diabetes mellitus who have inadequate glycaemic control 
with diet and exercise. Diabetes Metab. Res. Rev. 2015, 31, 295–306. 

12. Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, 
enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. 

13. Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: Their role in drug 
metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013, 45, 1121–1132. 

14. Murray, M. Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical 
and other antipsychotic agents. J. Pharm. Pharmacol. 2006, 58, 871–885. 

15. Vincent, S.H.; Reed, J.R.; Bergman, A.J.; Elmore, C.S.; Zhu, B.; Xu, S.; Ebel, D.; Larson, P.; Zeng, W.; Chen, L.; et al. 
Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab. Dispos. 
2007, 35, 533–538. 

16. McGraw, J.; Waller, D. Cytochrome P450 variations in different ethnic populations. Expert Opin. Drug  
Metab. Toxicol. 2012, 8, 371–382. 

17. Klein, K.; Zanger, U.M. Pharmacogenomics of cytochrome P450 3A4: Recent progress toward the “missing 
heritability” problem. Front. Genet. 2013, 4, 12, doi:10.3389/fgene.2013.00012. 

18. Werk, A.N.; Cascorbi, I. Functional gene variants of CYP3A4. Clin. Pharmacol. Ther. 2014, 96, 340–348. 
19. Deng, X.Y.; Wang, C.X.; Wang, X.D.; Bi, H.C.; Chen, X.; Li, J.L.; Huang, M. Genetic polymorphisms of UGT1A8, 

UGT1A9, UGT2B7 and ABCC2 in Chinese renal transplant recipients and a comparison with other ethnic 
populations. Die Pharm. 2013, 68, 240–244. 

20. Miners, J.O.; McKinnon, R.A.; Mackenzie, P.I. Genetic polymorphisms of UDP-glucuronosyltransferases and 
their functional significance. Toxicology 2002, 181, 453–456. 

Sample Availability: Not Available. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons by Attribution 
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 


