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Abstract: Metal-containing heteraadamantanes are compounds of interest due to their spectroscopic
and magnetic properties, which make them promising materials for non-linear optics and semicon-
ductors. Herein we report the comprehensive structural characterization of a new coordination com-
pound of the formula [(µ-OH′)2(µ-OH′′)4(O = P(Ph2)CH2CH2(Ph2)P = O)4{Fe(t-BuOH)}4](PF6)4(Cl)2

with the chelating ligand Ph2P(O)-CH2CH2-P(O)Ph2. The compound crystallizes as a polynuclear
metal complex with the adamantane-like core [Fe4O6] in the space group I-43d of a cubic system.
The single-crystal XRD analysis showed that the crystal contains one symmetrically independent
octahedrally coordinated Fe atom in the oxidation state +3. The adamantine-like scaffold of the
Fe complex is formed by hydroxy bridging oxygen atoms only. Hirshfeld surface analysis of the
bridging oxygen atoms revealed two types of µ-OH groups, which differ in the degree of exposure
and participation in long-range interactions. Additionally, the Hirshfeld surface analysis supported
by the enrichment ratio calculations demonstrated the high propensity of the title complex to form
C-H . . . Cl, C-H . . . F and C-H . . . O interactions.

Keywords: heteraadmantane; organophosphine oxide ligand; single-crystal; Hirshfeld surface analysis;
enrichment ratio

1. Introduction

Heteraadamantanes are compounds in which some or all carbon atoms in the adaman-
tane (tricyclo[3.3.1.13,7]decane) skeleton are replaced with non-carbon atoms (heteroatoms).
The heteraadamantane structural motif is commonly observed in solids, e.g., of the
chalcopyrite-type, the sphalerite-type or the cristobalite-type. Less common, nevertheless
still well-known, are inorganic and organometallic molecules with one discrete, zero-
dimensional [M4E6] (or [M6E4]) molecular unit. As polynuclear metal complexes with
unique geometrical properties, molecular heteraadamantane compounds have gained
recent interest due to two main reasons: (i) they may act as potential precursors to metal
chalcogenites, metal oxides, and alloys [1], and (ii) their spectroscopic and magnetic prop-
erties make them promising materials for non-linear optics [2] and semiconductors [3].
Of particular interest is the latter class of heteraadamantanes containing paramagnetic
transition metal ions, such as Fe(III). Moreover, mixed oxo/hydroxo adamantane-like Fe
complexes are of interest as potential models for ferritin, an iron storage protein [4]. From
the crystal engineering point of view, adamantane-like cages may serve as basic building
blocks for the formation of zeolite-type supramolecular networks [5].

The structural motif of the Fe/O adamantane-type cage is known with anionic and
neutral polydentate ligands [4,6,7]. It has, however, never been observed with a chelating
Ph2P(O)-CH2CH2-P(O)Ph2 ligand, which might be of interest due to potential anisotropic
magnetic properties of such clusters.
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Herein we report the structure of [(µ-OH′)2(µ-OH′′)4(µ-L)4{Fe(t-BuOH)}4](PF6)2(Cl)4
(I) that contains the [Fe4O6] heteraadamantane framework stabilized by solvent molecules,
in which the Fe(III) centers are octahedrally coordinated and chelated by phosphine oxide
ligands. We analyzed the Hirshfeld surfaces (HSs) of bridging oxygen atoms µ-OH′

and µ-OH′′ to explore the intramolecular effects characterizing the adamantane-like core.
Moreover, for the supramolecular features characterization of the cation of I, HS and
relevant fingerprint (FP) maps were generated. The analysis, supported by the enrichment
ratio calculation, enabled the determination of the propensity of structure I to the formation
of particular intermolecular interactions.

2. Methods
2.1. Synthesis

Following the reported procedure [8], a mixture of [closo-1,12-C2B11H10(CN)2] (0.011 g,
0.06 mmol, 1.0 eq.), [(Cp)(dppe)FeCl] (0.063 g, 0.11 mmol, 2.1 eq.) and NH4PF6 (0.027 g,
0.17 mmol, 3.0 eq.) was refluxed in dry THF (10 mL) for 18 h protected from air in a standard
way (Ar-filled balloon attached via septum). The emerged orange suspension was filtered
and 20 mg of this product was diluted in a mixture of CH2Cl2 and 1,2-dichloroethane.
This solution was layered with a mixture of petroleum ether, Et2O, and THF in a closed
but not air-tight glass vessel at room temperature (unprotected from sun radiation). A
drop of etanol containing a few percent of t-BuOH was added to aid crystallization. Af-
ter three weeks, several transparent, dark orange, block-shaped single-crystals emerged
(<3 mg), and their structure was determined by single-crystal XRD analysis to reveal
that of compound I. The remaining solution was evaporated, and the resulting material
was purified by precipitation from CH2Cl2 solution with petroleum ether giving the in-
tended [{(Cp)(dppe)Fe}2(closo-1,12-C2B10H10-1,12-(CN)2)](PF6)2 in 58% yield as an orange
polycrystalline powder [8].

Characterization of Compound I

FT-IR (Fourier-transform infrared spectroscopy) spectrum of a solid sample of I in
a KBr pellet (1:50 ratio) is consistent with the structure. It revealed a broad cluster of
signals characteristic for the O–H groups in the range of v 3200–3650 cm−1. The intense
signals observed at v 1167 and 1135 cm−1 can be ascribed to the stretching vibrations of the
P = O group. Both are modestly shifted from the positions found for the free ligand (v 1183
and 1128 cm−1) due to coordination to a metal center [9,10]. Other significant signals in
the IR spectrum of I are found at v 1097 cm−1, presumably due to the presence of the C–O
bond, and at v 842 cm−1 ascribed to the stretching vibration of the P–F bond (v 838 cm−1

reported for LiPF6) [11].
Mass spectrometry of I dissolved in MeCN performed by the TOF-ES(+) technic

showed the [M + H]+ peak of Ph2P(O)CH2CH2P(O)Ph2 as the base peak (m/z calcd 431.1330,
found 431.1308) and signals at 524 (51%), 946 (40%), 1419 (23%). Signal at 584 (18%) could
be attributed to [(Ph2P(O)CH2CH2P(O)Ph2)4Fe4(OH)6(PF6)2]4+ (m/z calcd 584.0463, found
584.0175). Copies of the spectra are shown in the Supplementary Materials.

2.2. Crystallography

A suitable orange, block-shaped single crystal of I with dimensions 0.41 × 0.27 × 0.17 mm3

was selected and mounted on a XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer
(Rigaku Corporation, Tokyo, Japan). The crystal was kept at T = 278(2) K during data
collection. The structure was solved with the ShelXT 2018/2 [12] solution program (Version
2018/2, 2018, Göttingen, Germany) using Intrinsinc Phasing method and by using Olex2
1.5 (Version: 1.5, 2021, OlexSys, Durham, UK) [13] as the graphical interface. The model
was refined with ShelXL 2018/3 [14] using full matrix least-squares minimization on F2.
The details of crystal data and structure refinement factors are included in Table 1. CCDC
2,109,754 contains crystallographic data.
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Table 1. Crystal data and structure refinement parameters.

Structure I (CCDC 2109754)

Formula C120H142Cl4F12Fe4O18P10
Dcalc./ g cm−3 1.411

m/mm−1 6.063
Formula Weight 2775.23

Colour orange
Size/mm 0.41 × 0.27 × 0.17

T/K 278(2)
Crystal System Cubic

Flack Parameter −0.007(4)
Space Group I-43d
a = b = c/Å 33.9715(3)
α = β = γ/◦ 90

V/ Å3 39,205.2(10)
Z/Z’ 12/0.25

Wavelength/ Å 1.54184
Radiation type Cu Ka

θmin/◦ 3.680
θmax/◦ 78.756

Measured Refl’s. 33,119
Independent Refl’s. 5926

Refl’s I ≥ 2 σ(I) 4837
Rint 0.042

Parameters 421
Largest Peak 0.34
Deepest Hole −0.24

GooF 1.035
wR2(all data) 0.1624

wR2 0.1514
R1 (all data) 0.0680

R1 0.0554

2.3. Hirshfeld Surface Analysis

The CrystalExplorer21 software (Version: 21.5, 2021, University of Western Australia,
Nedlands 6009, Australia) was applied to generate Hirshfeld surfaces (HS) of respective
structural fragments. The normalized contact distance dnorm was used to visualize relevant
contacts in the crystal packing. The applied molecular geometry was derived from the
crystal structure. Relevant distances from the HS to the nearest atom (di) and the exterior to
the surface (de) were plotted as scattergrams, namely fingerprints (FP) [15–18]. Moreover,
the enrichment ratios (ER) for meaningful contacts between atom pairs were calculated [19].

3. Results and Discussion

An attempted preparation of a dinuclear complex [{(Cp)(dppe)Fe}2(closo-1,12-C2B10H10-
1,12-(CN)2)](PF6)2 [8] gave minor quantities of transparent, orange, single crystals suitable
for a single crystal X-ray measurement. The refined structure did not match the intended
complex. Instead, analysis revealed [(µ-OH’)2(µ-OH”)4(µ-L)4{Fe(t-BuOH)}4](PF6)2(Cl)4, a
hexacationic polynuclear complex I with the [Fe4O6] heteraadamantane framework. The
formation of I was surprising, since it required the presence of phosphine oxide Ph2P(O)-
CH2CH2-P(O)Ph2 (L) and Fe(III) ions. Both species were apparently generated in situ by
decomposition of the staring ferrocene complex (Cp)(dppe)FeCl and aerial oxidation of
both the diphosphine ligand dppe and the Fe(II) ion. The components necessary to the
formation of I could also be formed by the decomposition of the [(Cp)(dppe)Fe]+ fragment
in the intended dinuclear complex. The CN–Fe coordination bond in the dinuclear complex
of [closo-1,12-C2B10H10-1,12-(CN)2] has a relatively low stability in comparison to those of
other dinitriles NC–X–CN, for which the formation of byproduct I was not observed [8].
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3.1. Crystal Structure

Compound I crystallizes in the space group I-43d of a cubic system with one symmet-
rically independent Fe atom (Figure 1a). The Fe atom is in the oxidation state +3 and is
octahedrally coordinated by six O-atoms: three O-atoms of the heteraadamantane frame-
work (O1 and 2×O2), two O-atoms from two symmetrically independent phosphine oxide
ligands L (O4 and O5), and one O-atom (O3) of a coordinating solvent molecule, t-BuOH
(Figure 1b). Both oxygen atoms O2 of the [Fe4O6] core are placed on a 4-fold rotoinversion
axis and the resulting molecular symmetry of the cation is S4. One L is bound to two neigh-
boring Fe centers (Figure 1c). The bridging O-atoms of the heteraadamantane framework
consist of six [µ-OH]– units.
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Figure 1. (a) The molecular structure of I and the core cation. Displacement ellipsoids are drawn
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The conformation of the cation is stabilized by an extensive network of short contacts.
Steric effects are represented by many homonuclear C-H . . . H-C interactions. However,
these are supported by weak electrostatic effects due to C-H . . . O and C-H . . . π bondings
(Figure 2). The geometrical parameters of these interactions are summarized in Table 2.
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I. CH . . . O type hydrogen bond (blue dotted line) and CH . . . π interactions (green dotted lines).
Hydrogen atoms not involved in particular interactions are omitted for clarity. Cgn represents
centroids of phenyl rings. Cg4 and Cg5 refer to two sites of the disordered phenyl fragment. Only a
symmetrically independent part of the molecule is presented.
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Table 2. Geometrical parameters characterizing the selected intramolecular interactions in structure I.

C-H . . . O Interactions C—H/Å H . . . A/Å H . . . A/Å D—H . . . A/◦

C2—H2 . . . O4 0.93 2.48 2.907 (15) 108
C26—H26a . . . O4 i 0.93 2.14 2.962(15) 147

C-H . . . π Interactions C—H/Å H . . . Cg/Å C . . . Cg/Å C-H . . . Cg/◦

C16—H16a . . . Cg1 0.93 2.87 3.62 (1) 139
C15—H15b . . . Cg8 ii 0.93 2.83 3.79(2) 173

Symmetry codes: i x, 1 − y, 1/2 − z; ii 1 − z, 1 1/2 − x, y.

In the crystal, each cation of complex I is surrounded by PF6
− and Cl− ions (Figure 3a).

The structure is stabilized by an extensive network of C-H . . . π interactions of the linking
phenyl rings of the neighboring molecules. However, the crystal packing results mostly
from the electrostatically driven C-H . . . F and F . . . π interactions [20] between the phenyl
rings of the ligand L and fluorine atoms of the PF6

− anion. Thus, each PF6
− anion links

two neighboring complexes (Figure 3b). The geometrical parameters characterizing these
interactions are presented in Table 3. The H . . . F distance of 2.46(1) Å, defining the C17-
H17B . . . F2 hydrogen bond, is shorter than the mean H . . . F distance of 2.53 Å reported for
the C-H . . . F (PF6

−) interactions, while the C6-H6 . . . F3 distance is longer than the mean
value. Similarly, the respective D-H . . . A angle values indicate that the C17-H17B . . . F2
hydrogen bond (145◦) is stronger than that in C6-H6 . . . F3 (124◦). The former value is close
to the mean angle of 143◦ reported in the literature for such interactions [21]. The F . . . π

interaction between the PF6
− moiety and the phenyl ring Cg3 is defined by two values, i.e.,

the distance between fluorine atom and the centroid of the ring (4.057 Å), and the distance
between fluorine atom and the respective atom-to-plane distance (3.165 Å). These values
are also within the mean values reported in the literature for similar interactions.
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Table 3. Geometrical parameters characterizing the selected intermolecular interactions in structure I.

C-H . . . F Interactions C—H/Å H . . . A/Å H . . . A/Å D—H . . . A/◦

C17—H17b . . . F2 0.97 2.46 3.30(1) 145
C6—H6 . . . F3 i 0.93 2.63 2.23(1) 124

F . . . π Interaction - F . . . Cg/Å F . . . Plane/Å -

F3 . . . Cg3 - 4.057 3.165 -

Symmetry code: i 1.5 − x, y, 1 − z.

The structure is stabilized by interactions regarded as weak. However, the crystal
structure contains quite large solvent-accessible voids, which constitute 16,3% of the unit
cell volume (Figure 4).
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atoms are omitted for clarity.

Calculated voids are intersected by 3-fold rotoinversion axes and their total volume
per asymmetric unit is ca. 100 Å. Solvent mask analysis, as implemented in Olex software
(Version: 1.5, 2021, OlexSys, Durham, England) [11], revealed that part of the void is filled
with 18 electrons. This is consistent with the presence of one Cl− ion per asymmetric unit
resulting in four Cl− ions per formula unit. For visualization purposes, the anions are
placed symmetrically around these special positions. Therefore, one Cl− ion (Cl4) is not
fully occupied (occupancy 0.33). Although these approximated positions do not reflect the
exact geometry of their intermolecular interactions, it is obvious that these electrostatic
interactions strongly support the C-H . . . F interactions in the stabilization of the crystal
lattice of I.

3.2. CSD Review and Geometrical Analysis

For a better insight into the geometrical analysis of I, data obtained from a depth CSD
(Cambridge Structural Database) search (Scheme 1) have been reviewed (CSD version 5.42,
November 2020). To get relevant data for comparative studies, the search criteria were
limited to only oxo and hydroxo bridged structures containing adamantane-like moieties.
Structures containing other oxygen-carrying bridges (for example alkoxy and carboxy
bridges) were excluded from the search. Similarly, structures containing polyadamantane-
like and other convoluted cores were omitted. The first search performed for single-
crystal structures containing any metal atom (Me) at the bridgehead positions of the
heteraadamantane skeletone revealed 45 oxo-bridged, 6 hydroxo-bridged, and 12 mixed
oxo-/hydroxo- bridged structures. Details of the search results for mixed oxo-/hydroxo
bridged structures are summarized in Table S8 (see the Supplementary Materials). Then,
narrowing down the search criteria to structures containing transition metals (MeT) at the
bridgehead positions resulted in 36 structures with oxo bridging oxygen atoms, 3 hydroxo,
and 6 with mixed bridges. From the point of view of relevance to structure I, the most
interesting are results concerning structures with iron atoms at the bridgehead positions,
which could serve as models for a comparison of geometrical parameters characterizing the
[Fe4O6] heteraadamantane cage. However, the CSD does not contain any relevant structure
with purely oxo or hydroxo bridged cages. Instead, there are three [Fe4O6] structures with
mixed bridges, namely EYAVIJ, JAZZUF, and YAXZON [4,22,23]. Interestingly, all of these
complexes are chelated by triazacyclononane ligand (Figure 5a). On the other hand, there
are 120 depositions containing the [Fe4O6] fragment, which include, however, structures
with polyadamantane-like skeletons and other more complex systems involving oxygen
atoms from organic and/or organometallic ligands. Interestingly, CSD contains only
two structures of Fe complexes chelated by the Ph2P(O)-CH2CH2-P(O)Ph2 ligand [24,25],
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although no structure with [Me4O6] heteraadamantane core stabilized by this ligand is
known thus far.
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It needs to be mentioned that the results obtained from the CSD search should be
carefully verified, because it is often hard to identify all hydrogen atoms by X-ray analysis.
Especially, hydrogen atoms placed in the vicinity of heavy atoms may be doubtful, and
many deposited structures are affected by this uncertainty. For example, the structure
assigned to the JAZZUF refcode is depicted in the 2D search diagram as containing two oxo
(Ooxo) and four hydroxo (OOH) bridging oxygen atoms, while in the 3D structure visualizer
all bridging atoms are identified as oxo bridges. Bond length analysis confirms however,
the correctness of the 2D diagram.

Types of bridging oxygen atoms can be distinguished through a comparison of their
respective bonding characteristics [26]. According to the International Tables for Crystallog-
raphy, a typical mean bond length for Fe-Ooxo is 1.794 Å, while the mean Fe-O bond length
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in the reported structure is 1.961 Å and is consistent with the typical value reported for
the Fe-OOH distance (1.967 Å). A comparison of the cage parameters of structurally similar
systems (Table 4) confirmed the hydroxy character of the bridging oxygen atom in I. Due to
various symmetries governing the cage geometry of selected structures, one parameter may
be defined by more than a single value. Therefore, for comparison purposes relevant mean
values and their ranges (min/max) have been used (Table 4). A comparison of Fe-O bond
lengths of similar systems confirmed that bridging oxygen atoms in I are hydroxy bridges.
For example, the average Fe-O bond for the studied structure is 1.961 Å and is within the
range of 1.939–2.033 Å reported for related structures. This value is significantly larger than
the respective Fe-Ooxo bond lengths of 1.804–1.826 Å previously reported for similar cages.
Similarly, the Fe . . . Fe distances for the iron atoms bridged by hydroxy ligand (FeOH-FeOH)
are longer than the corresponding oxo-mediated Fe . . . Fe distances (FeO

. . . FeO). The mean
value of 3.744 Å obtained for I is even longer than relevant hydroxo mediated Fe . . . Fe
distances in structures containing mixed oxo/hydroxo bridges. The studied structure I is
characterized by a significantly larger Fe-OOH-Fe angle than the analogus angles observed
in the reference structures. At the same time, the relevant OOH-Fe-OOH angle is lower than
that reported for the hydroxy bridged fragments of similar structures. These geometrical
differences may arise from the fact that the structure with pure hydroxo bridges is not
affected by the delocalization of electrons of oxo bridges observed in mixed oxo-hydroxo
bridged structures. The delocalization cause elongation of the respective Fe-Ooxo bond with
simultaneous shortening of the Fe-OOH bonds. The overlay of [Fe4O6] cores of compared
structures is shown on the Figure 5b.

Table 4. The geometrical parameters characterizing Fe adamantane-like structures containing oxo
(Ooxo) and hydroxo (OOH) bridging oxygen atoms. FeO

. . . FeO—oxo mediated Fe . . . Fe distance;
FeOH

. . . FeOH—hydroxo mediated Fe . . . Fe distance; Mean/Min/Max values are given.

Parameter I EYAVIJ JAZZUF YAXZON

Bond length/Å

Fe-OOH 1.961/1.951/1.983 1.986/1.950/2.030 1.996/1.974/2.019 1.996/1.939/2.033
Fe-Ooxo - 1.826/*/* 1.816/1.816/1.820 1.806/1.804/1.815

Angle/◦

Fe-OOH-Fe 145.0/144.5/146.3 128.6/126.8/129.4 124.5/123.7/125.4 124.2/121.1/126.6
Fe-Ooxo-Fe - 137.5/*/* 132.6/132.5/132.7 132.3/131.4/133.1

OOH-Fe-OOH 86.7/85.3/88.5 95.73/89.3/101.9 95.9/93.9/97.6 96.5/92.4/101.5
Ooxo-Fe-Ooxo - - - -

Distance/Å

FeOH
. . . FeOH 3.744/3.737/3.747 3.582/3.537/3.624 3.534/3.509/3.564 3.542/3.521/3.555

FeO
. . . FeO - 3.403/*/* 3.325/3.323/3.328 3.331/3.294/3.366

* EYAVIJ contains only one oxo bridging oxygen atom.

The core overlay diagram for compared structures in Figure 5 revealed that the root
mean square deviation (RMSD) values for structures EYAVIJ, JAZZUF and YAXZON range
from about 0.08 to 0.09. This strongly indicates that the cores compare well despite the
different number of oxo and hydroxo bridging oxygen atoms within these structures. This
value increases to about 0.15 for the overlay of mixed oxo/hydroxo cores with the core of I
containing hydroxo bridges only. This shows that the mean core dimensions are relatively
stable for varying the ratio of oxo to hydroxo oxygen atoms and markedly different from
the core containing only the OH− bridging units.

3.3. Hirshfeld Surface Analysis

The Hirshfeld Surface (HS) and Fingerprint plot (FP) analyses, originally developed
for exploration of intermolecular effects governing supramolecular assemblies in crystal
structures, are becoming increasingly popular for routine structural investigations [27–31].
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These methods are applied for analysis of both intramolecular and intermolecular structural
effects in I.

3.3.1. Hirshfeld Surface Analysis of Bridging Oxygen Atoms µ-OH′ and µ-OH′′

The bridging O-atoms in the [Fe4O6] adamantane-like framework of I consist of
six [µ-OH]– units. These units are defined by four O1 and two O2 atoms which are
symmetrically independent. The O2 atoms are placed ideally on the 4-fold rotonversion
axis. At first sight, both oxygen atoms do not differ from each other and form Fe-O
bonds characterized by similar parameters. However, fingerprint plots (FP) generated for
Hirshfeld surfaces (HS) of symmetrically independent oxygen atoms O1 and O2 revealed
differences in their intramolecular environments (Figure 6). The HS of O1 is defined by only
two types of intramolecular contacts, O . . . Fe and O . . . H. Contacts with the metal centers,
O . . . Fe (8.7%), are represented mainly by green and red dots extending at scattergrams
from about de = 1 Å to de = 1.4 Å and di = 0.9 Å to di =1.2 Å. Spots representing contacts
with hydrogen atoms, O . . . H (91.3%), are more spread. The shortest contact, visible as
the second spike and starting from the values of di = 0.9 Å and de = 0.5 Å, represent the
hydrogen atom forming a bond with the O1 oxygen atom. Other scattered spots above
these values reflect a contribution of the O . . . H contacts with hydrogen atoms from one
CH3 group of the t-BuOH ligand and the phenyl rings surrounding the core.
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extracted FP for particular contacts are presented together with their respective contributions.

A similar FP analysis for O . . . H contacts of the O2 atom demonstrates significant
differences and contributions of particular contacts to the HS are different than those
observed for the O1 atom. Thus, with increasing contributions from the O . . . Fe contacts
(18.0%), diminishing contributions of the scattered spots from the O . . . H interactions
(76.8)% are observed. Moreover, a decomposition of the FP for O2 into individual contacts
revealed the presence of O . . . O contacts at the level of 1.6%, which are absent for O1. This
long-range (di ≈ 1.2–1.4 Å and de ≈ 1.6–1.8 Å) intramolecular O . . . O contact follows the
formation of a homonuclear intramolecular interaction between the O2 and the oxygen
atom of the phosphoryl group, O4. The analysis revealed subtle differences between the
two bridging oxygen atoms, O1 and O2. Although geometries characterizing the O-Fe
bonds are comparable for O1 and O2, the contributions of the respective contacts to their
HS differ significantly. Interestingly, the analysis revealed that the O1 atom forming the
adamantane-like core is more hindered by hydrophobic groups, such as the CH3 fragment
of the t-BuOH ligand and the CH groups of the phenyl rings, while O2 is more exposed
and capable of formation of other contacts. Such distinctions of seemingly equivalent
cage-internal atoms are not so striking in the case of classical structural analysis based on
geometrical parameters alone. These differences can be reveled and understood only with
the HS analysis.
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3.3.2. Hirshfeld Surface Analysis for Intermolecular Contacts

For characterization of supramolecular features of the cation in structure I, a 3D HS
and relevant FP maps were generated (Figure 7). Moreover, the HS and FP analysis has
been supported by calculations of the enrichment ratio (ER) [16]. The ER parameter is a
valuable tool for quantification of the propensity of individual species to the formation
of particular interactions within the crystal lattice. The enrichment ratio (ERXY) refers to
a pair of elements X and Y forming intermolecular contacts. The ER value allows for a
comparison of the actual contacts in the crystal with those computed under the assumption
that all contact types have the same probability of formation. If the enrichment ratio is
higher than unity, then the given pair of elements is regarded as prone to formation of
particular interactions in the crystal. On the other hand, pairs with a low propensity to
the formation of contacts with each other have ERXY < 1. This approach, in contrast to
the classical HS and FP analysis, enables to highlight statistically favored contacts having
crucial contributions to the crystal packing. A breakdown of the FP into individual contacts
showed that the H . . . H contacts comprises 50.2% of the total HS area and are accompanied
by the ER value (ERHH = 0.99) typical for compounds with high hydrogen content on
the surface. However, hydrogen atoms, which are involved in electrostatic interactions,
such as C-H . . . F, C-H . . . Cl and C-H . . . O (11.4% contact for H . . . Cl and 10.6% contact for
H . . . F), are characterized by high and similar ER values, i.e., ERHCl = 1.33 and ERHF = 1.35.
These values indicate that these electrostatic interactions between the central cation and
the surrounding anions are equally engaged in the crystal packing. Although, C-H . . . O
hydrogen bonds are represented by a quite low actual contribution (2.5%) of the O . . . H
contacts, the value EROH = 1.41 indicates the enriched propensity of the species to form
these interactions. The C . . . C contacts, usually representing π . . . π interactions, comprise
7.1% of the HS area and are characterized by high ER value (ERCC = 2.71). Such a high ER
value results from a large total area of aromatic rings surrounding the [Fe4O6] core and their
interactions with each other through space in the crystal. Interestingly, although a quite
high actual population (17.1%) of the C . . . H contacts, the ER value calculated for this pair
(ERCH/HC = 0.74) suggests that π-facial hydrogen bonds (C . . . H interactions) are disfavored
in this structure and are replaced by the π . . . π effects. Moreover, the HS analysis revealed
a contribution of C . . . F contacts of only 0.4% accompanied by ERCF = 0.25. These contacts
follow the π . . . F effects, and the propensity to form this kind of interaction is diminished
by the preferred H . . . F contacts.
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Figure 7. (a) 2D fingerprint plots (FPs) for the hexacation of I with the percentage contributions to the
Hirshfeld surface (HS) areas for the major intermolecular contacts and their respective enrichment
ratio (ER)—in red; de and di are the distances to the nearest atom exterior and interior to the surface,
respectively; ER values were not computed for the actual contacts’ contribution below 2% and
random contacts below 1%, as they are not meaningful. (b) Hirshfeld surfaces (HSs) generated for the
cation of I; dnorm is visualized with a fixed color scale from −0.655 (red), 0.428 (white) to 1.442 (blue).
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Although geometrical parameters suggested a notable role for the C-H . . . π interac-
tions in stabilization of the crystal lattice, the HS analysis supported by ER calculations
revealed that the actual contribution of these interactions is diminished by the π . . . π

effects. Indeed, the latter is not formed directly by parallelly assembled aromatic rings
and therefore typical bright zones are not observed in the FP analysis. Moreover, the
analysis revealed that both PF6

− and Cl− ions have similar contributions to the structure
stabilization. Additionally, the analysis showed that the structure has a higher propensity
to form H . . . F contacts than C . . . F contacts following the π . . . F interactions.

4. Conclusions

In summary, we reported a comprehensive structural characterization of [(µ-OH′)2(µ-
OH′′)4(µ-L)4{Fe(t-BuOH)}4](PF6)2(Cl)4, which contains the [Fe4O6] heteraadamantane core.
This is the first reported structure containing the the Fe/O heteradamantane with a chelat-
ing Ph2P(O)-CH2CH2-P(O)Ph2 ligand. Moreover, the presented scaffold of the Fe complex
is unique and exclusively formed by hydroxy bridging groups, while relevant structures
deposited in Cambridge Structural Database contain mixed types of oxygen bridging atoms.
The heteraadamantane-type cluster in I may be of significant interest due to the strain of
the ring systems, which may affect anisotropic magnetic properties of the material. The
structure was compared to three other Fe complexes containing the [Fe4O6] cage with
mixed oxo/hydroxo bridging atoms and chelated by the triazacyclononane ligand. The
comparison of geometrical parameters showed that the cage is characterized by a notably
larger Fe-OOH-Fe angle and lower OOH-Fe-OOH angle than those reported structures with
hydroxy bridged fragments. A purely hydroxo bridged cage of I is not affected by the
delocalization of electrons of oxo bridges inducing an elongation of the respective Fe-Ooxo
bonds with shortening of the Fe-OOH bonds. Although the [Fe4O6] core of the reported
structure is almost fully encapsulated by the ligands, the Hirshfeld surface analysis of
the bridging oxygen atoms revealed that one of them is more hindered, while the other
one is more exposed to interatomic contacts. From the supramolecular point of view, the
Hirshfeld surface analysis of the structure revealed that the large total area of aromatic
rings surrounding the [Fe4O6] core leads to π-effects within the crystal lattice. Moreover,
enrichment ratio calculations confirmed the high propensity of the title complex to form
C-H . . . Cl, C-H . . . F and C-H . . . O interactions.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/ma14226840/s1: Structure solution and refinement details, Figure S1: The IR spec-
trum of I in KBr pellet. Figure S2: The TOF-MS (ES+) spectrum of I. Table S1: Structural Data.
Table S2: Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters for I.
Table S3: Anisotropic Displacement Parameters for I. Table S4: Bond Lengths for I. Table S5: Bond
Angles for I. Table S6: Torsion Angles in for I. Table S7: Atomic Occupancies for all atoms that are
not fully occupied in I. Table S8: Detailed Results of Searches for Mixed Oxo-/Hydroxy Bridged
Structures with Adamantane-like Cage.
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