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To adjust cell growth and proliferation to changing environmental conditions or
developmental requirements, cells have evolved a remarkable network of signaling
cascades that integrates cues from cellular metabolism, growth factor availability and a
large variety of stresses. In these networks, cellular information flow is mostly mediated
by posttranslational modifications, most notably phosphorylation, or signaling molecules
such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc)
as a highly conserved cellular signal driving cell growth and proliferation, suggesting
that pH-dependent protonation of specific proteins also regulates cellular signaling.
In mammalian cells, pHc is regulated by growth factor derived signals and responds
to metabolic cues in response to glucose stimulation. Importantly, high pHc has also
been identified as a hall mark of cancer, but mechanisms of pH regulation in cancer are
only poorly understood. Here, we discuss potential mechanisms of pH regulation with
emphasis on metabolic signals regulating pHc by Na+/H+-exchangers. We hypothesize
that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic
adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to
as the Warburg effect. This hypothesis not only provides an explanation for the growth
advantage conferred by a switch to aerobic glycolysis beyond providing precursors for
accumulation of biomass, but also suggests that treatments targeting pH regulation
as a potential anti-cancer therapy may effectively target the result of altered tumor
cell metabolism.
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pHc REGULATES CELL GROWTH AND PROLIFERATION

Evidence for pH-dependent cell growth is largely based on experiments modulating the activity
of Na+/H+-exchangers (NHE) of the SLC9A family of transport proteins. These proteins regulate
intracellular pH by using the Na+ gradient to transport protons across their target membranes.
NHE1-5 (SLC9A1-5) localize to the plasma-membrane and regulate pHc (1). In contrast, NHE6-9
are found in organelles of the endomembrane system to regulate luminal pH, but can also
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affect pHc (1, 2). NHE proteins form homo-dimers with 12
transmembrane domains located in the N-terminal part of the
protein and a large C-terminal cytoplasmic domain, which is
target of several kinases. The C-terminal domain also interacts
with phospholipids and the actin cytoskeleton to regulate cell
migration and contribute to metastasis [Figure 1A and Ref. (3)].

In addition to NHEs, several other regulators of pHc have
been identified. These include Na+/Bicarbonate transporters
and monocarboxylate transporters (MCTs), ATP-driven proton
pumps, as well as carbonic anhydrases (4). All these pH
regulators have been linked to a growing number of physiological
activities including regulation of cellular signaling, transcription
and cell growth, and have been associated with cancer (5–
9). While NHE proteins are ubiquitously expressed to regulate
intracellular pH (10), other pH regulators become critical
only under specific conditions. For example, MCTs, which
transport lactate and protons across the plasma-membrane,

are critical to maintain pHc in rapidly proliferating cells
and primary tumors, but are less important in differentiated
cells (11–14).

A large body of evidence suggests that activation of NHE
proteins upon growth factor stimulation is a critical step in
promoting cell growth and proliferation (15). Growth factor
stimulation triggers an increase in pHc of about 0.2–0.3 pH units
(16–24). As this increase in pH is tightly correlated with increased
Na+ influx and blocked by amiloride, it was concluded that pH
regulation depends on Na+/H+-exchangers. Similar conclusions
were drawn from overexpression or injection of activated Ras
into quiescent cells (25, 26), or overexpression of v-Mos (26).
Importantly, increased pHc is also necessary for initiation of cell-
cycle progression under these conditions (25, 27). Although the
increase in pHc is maximal several minutes following injection of
active Ras, addition of amiloride as late as 6 h after the injection
of the activated protein effectively suppresses DNA replication

FIGURE 1 | A network of cellular metabolism and cellular signaling governs cell growth and regulation of pHc. (A) NHE1 is a key regulator of pHc in mammalian
cells. A schematic representation of the NHE1 structure together with key regulatory inputs and potential functions for cancer development is shown. (B) Regulation
of glycolytic activity by PI3K/Akt signaling. Glucose transporters (GLUT) and the metabolic enzymes hexokinase (HK), phosphofructokinase (PFK), aldolase A (Aldo A)
indicated in red are all direct or indirect targets of growth factor (GF) dependent regulation, leading to enhanced aerobic glycolysis upon stimulation with GFs.
Glycolytic activity is also directly coupled to pHc regulation by lactate export using Monocarboxylate transporters. (C) Proposed model for how signaling,
metabolism, and pH interact to regulate cell growth and proliferation. Glucose metabolism can be stimulated by glucose, growth factors and oncogenic activation
(red arrow) to produce precursors for biomass production, but may also increase pHc through activation of NHE activity, further contributing to enhanced cell growth
and proliferation.
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(25), suggesting that high pHc may act at a specific step during
early G1. Interestingly, increased pHc in response to growth
factor stimulation is also necessary for high translation efficiency
and correlates with phosphorylation of the ribosomal protein S6
(28), a critical target of the mTORC1 pathway (29). mTORC1
activity was subsequently confirmed to be sensitive to pH (30)
and inhibition of NHE activity (31). The underlying mechanisms
remain to be fully established, but may involve regulation of
amino-acid uptake by macropinocytosis (31).

In addition, elevated pHc may further promote cell growth
by regulating metabolism through the intrinsic pH-sensitivity
of metabolic enzymes. In particular, phosphofructokinase and
lactate dehydrogenase have received special attention due to a
sharp pH optimum at slightly alkaline pH, which may lead to
enhanced glycolysis and glucose uptake upon NHE activation
(32–34).

Increased NHE activity has also been linked to multiple
aspects of cancer and causes a reversed proton gradient across
the plasma-membrane due to elevated pHc, enhanced tumor
growth and invasion (3, 35–38). Accordingly, pharmacological
inhibitors of NHE activity have been proposed as anti-cancer
therapies (39–42). Indeed, the FDA approved drug amiloride, a
broad specificity NHE inhibitor and potassium sparing diuretic,
or derivatives thereof, are highly effective in mouse models
for multiple myeloma (43) and pancreatic cancer (2). High
NHE expression correlates with poor survival in several cancer
types, further underscoring the importance of pH regulation in
these diseases (2, 44). Mechanisms for increasing NHE activity
may vary in different cancers and might include increasing
the specific activity of NHE proteins. Therefore, detailed
understanding of NHE regulation is needed to better understand
their contribution to the disease.

REGULATION OF NHE ACTIVITY BY
MITOGENIC KINASES

Regulation of NHE activity in response mitogenic stimuli
has been mostly attributed to direct phosphorylation of NHE
proteins by growth factor activated kinases. Indeed, activation
of Protein Kinase C (PKC) by phorbol esters (15–17, 45–47),
or its endogenous activator diacyl-glyceride triggers an NHE-
dependent increase in pHc (16, 48, 49), while inhibition of PKC
by trifluoperazine can abolish the rise in pHc upon growth factor
stimulation (50). Thus, it was suggested that PKC is the primary
target downstream of growth factors for pH regulation. Yet,
as no PKC-dependent phosphorylation sites on NHE proteins
have been identified, the effect of PKC on NHE activation
may be indirect.

In contrast, both Akt and Erk1/2 have been suggested
to directly phosphorylate NHE1 (Figure 1A). In vitro, Akt
phosphorylates NHE1 at Ser-648, while Erk1/2 phosphorylates
NHE1 at Ser-770 and Ser-771 (51–55). Akt is required to
reestablish physiological pH following an acidification stress due
to acid loading and mutating S648 to a non-phosphorylatable
residue impairs NHE1 function (52), strongly suggesting
that Akt-dependent phosphorylation of NHE1 is key for

increased pHc and cell proliferation. Yet, evidence for in vivo
phosphorylation of this site has remained limiting. Nevertheless,
these phosphorylation sites are conserved in NHE2 and NHE4,
and other NHE proteins harbor MAPK or CDK consensus
sites (SP) at the corresponding position. Thus, phosphorylation
might be a general mechanism for the regulation of Na+/H+-
exchangers.

Excellent reviews are available that summarize NHE
regulation by phosphorylation (10, 51, 53). Here, we rather
focus on the interaction between cellular metabolism and pHc.
We hypothesize that an increased pHc and increased glycolytic
activity, both commonly found in cancers, are two sides of
the same coin, which contribute to enhanced cell growth and
proliferation. Specifically, we discuss potential mechanisms of
regulation of Na+/H+-exchange by cellular metabolism as a
mechanism to control cell growth.

AEROBIC GLYCOLYSIS MAY INCREASE
pHc VIA NHE1 ACTIVATION

Several reports have shown that glucose stimulation of cells
is sufficient to increase pHc in an NHE1-dependent manner.
Specifically, glucose availability stimulates pHc via NHEs in
pancreatic beta-cells, which may contribute to glucose stimulated
insulin release (56–60). NHE-dependent regulation of pHc by
glucose was also observed in liver or muscle cells (61–63),
but the underlying mechanisms are only poorly understood.
Importantly, glucose-dependent regulation of pHc can be
observed in the absence of growth-factors (59, 60), and inhibition
of glycolysis by 2-deoxy-glucose strongly decreased NHE activity
(64–66), suggesting that Na+/H+-exchange is regulated by a
metabolic signal derived from glycolysis, or might be coupled to
energy metabolism.

Increased glucose uptake and metabolism to fuel aerobic
glycolysis is also a general feature of mitogenic stimulation
under physiological conditions and oncogenic transformation
[Figure 1B and Refs. (67–69)] and is generally referred to as the
Warburg effect. Although it was originally assumed that tumor
cells upregulate glycolysis even in the presence of oxygen due
to defective mitochondria, it is now clear that increased rates of
glycolysis allow the redirection of metabolic fluxes toward more
efficient biomass production (69, 70) in actively proliferating cells
and form the molecular basis of using PET scans for tumor
detection (71).

However, if NHE activity is regulated by a metabolic signal
in response to increased glucose concentration, the same
mechanisms activating NHE activity should also be in place when
glucose uptake and glycolysis are activated by growth factors or
oncogenic transformation. Thus, understanding the regulation of
NHE activity by metabolic cues might identify mechanisms how
altered tumor cell metabolism contributes to elevated pHc and
enhanced cell growth (Figure 1C).

Activation of aerobic glycolysis is best understood in response
to PI3-kinase signaling and Akt activation, which has been
suggested to be the Warburg kinase (72) (Figure 1B). Akt
is required for growth factor-stimulated glucose uptake by
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triggering translocation of glucose transporters (GLUTs) to
the plasma-membrane (73–75), via phosphorylation of the
GTPase activating protein (GAP) for Rab10, AS160 (76).
mTORC1 activation downstream of PI3-kinase/Akt signaling
also promotes expression of Hexokinase II (77–79). In addition,
Akt phosphorylates Hexokinase to promote its association
with mitochondria, which protects cells from apoptosis, but
may not contribute to enhanced enzymatic activity (80). Akt
also indirectly stimulates phosphofructokinase 1 (PFK-1), the
major control point of glycolysis. Specifically, Akt promotes the
accumulation of the glycolytic side-product and most potent
allosteric activator of PFK-1, Fructose-2,6-bisphosphate by
phosphorylation of PFK-2 (81, 82). Finally, PI3-kinase signaling
increases Aldolase A activity (83). Collectively, these processes
lead to enhanced glycolytic activity and ATP production (84).

The PI3-Kinase/Akt pathway is probably the most frequently
activated pathway in cancer, therefore explaining the shift toward
high aerobic glycolysis in a large number of tumors. However,
at least on a transcriptional level, upregulation of glucose uptake
and glycolysis can also be observed upon activation of c-myc,
mTORC1, and K-Ras, or upon loss of p53 (85–91), further
underscoring the importance of enhanced aerobic glycolysis to
sustain, or even signal enhanced cell growth.

POTENTIAL MECHANISMS OF NHE
REGULATION BY GLUCOSE
METABOLISM

How could glucose metabolism be linked to NHE-dependent
pH regulation? In principle, glucose could regulate the specific
activity of NHE proteins, or affect the Na+ gradient by the
Na+/K+-ATPase (Figure 2A). Similar to NHE proteins, the

Na+/K+-ATPase is also subject to growth factor-dependent
activation and the same kinases regulating NHEs have been
linked to activation of the Na+/K+-ATPase (92–94). In
particular, PKC directly phosphorylates Na+/K+-ATPase,
possibly explaining PKC-dependent activation of Na+/H+-
exchange (95). Indeed, Na+/K+-ATPase activity rapidly
increases upon glucose stimulation in different cell types (96, 97),
which could translate into changes of pHc.

At least two key kinases regulating NHEs respond to changes
in cellular metabolism. PKC is regulated by glucose availability
through modulating the levels of its activator DAG (98).
Similarly, Erk1/2 activity is subject to glucose regulation (99, 100).
Thus, both kinases could directly or indirectly contribute to NHE
activation in response to glucose (101). Yet, careful assessment
of the basal activity of these kinases and NHE phosphorylation
in the absence of growth factors would be required to study a
potential role in glucose-dependent regulation of pHc, before
potential molecular mechanisms can be addressed.

Direct Regulation of NHE Activity by
Metabolic Cues
Conceptually, direct coupling of metabolism to NHE
activity may be more appealing. In particular, coupling of
glycolytic activity, or flux, to pH regulation would readily
explain the observed increase in pHc by glucose availability,
stimulation of glucose metabolism by mitogenic activation,
and metabolic reprogramming in cancer. Interestingly, in
all highly glycolytic cells, glycolysis is directly coupled to
pHc via MCTs, which secrete lactic acid, the end-product
of fermentation (102, 103). This is also the basis of using
extracellular acidification rates as a means of estimating
glycolytic flux (104, 105). Yet, it is less clear how glycolysis could
be coupled to NHE activity.

FIGURE 2 | Potential mechanisms for how NHE activity can be linked to glucose metabolism. (A) In mammalian cells, pHc is regulated by NHE activity, which may
be linked to ATP production directly or indirectly via Na+/K+-ATPase. Localized production of ATP by glycolysis at the plasma membrane may generate distinct
pools of ATP (red) that might help to explain coupling of cellular metabolism to pH regulation. Potential regulatory or catalytic ATP binding sites in ion pumps and
exchangers are indicated in red. See text for details. (B) Evolutionary conservation of glucose-dependent regulation of pHc. In yeast, pHc is regulated by an
ATP-dependent proton pump (P-ATPase) independent of Na+/H+ exchange. P-ATPase activity is coupled to glycolytic activity, but molecular mechanisms remain to
be fully established. Color code for ATP regulated domains and hypothetical localized ATP pools same as in panel (A).
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It has been hypothesized that sensing of metabolic flux
may depend on the accumulation of metabolites, which tightly
correlate with pathway activity and trigger the appropriate
cellular response (106). For example, the abundance of fructose-
1,6-bisphosphate (FBP) tightly correlates with glycolytic flux in
yeast and bacteria, and binding of FBP to a transcription factor
allows for coupling of glycolytic flux to gene expression (107,
108). Similarly, in pancreatic beta-cells, ATP correlates with
glucose concentration and glycolytic activity and triggers insulin
secretion by binding to ATP-sensitive K+-channels (109).

ATP concentration may also link glycolytic flux to the
regulation of pHc by NHE activity. As discussed above,
Akt activation results in increased ATP concentrations (84).
Moreover, the establishment of the Na+ gradient necessary
for NHE activity consumes a large fraction of cellular ATP
production (110), suggesting tight linkage to energy metabolism.

Indeed, NHE1 activity directly depends on the presence of
ATP. Basal Na+/H+-exchange can occur in the absence of ATP
based on the concentration gradient of the transported cations
(111, 112). Yet, depletion of cells from ATP abolishes NHE
activity (65, 66), while readdition of ATP restores NHE activity
in patch-clamp experiments (65). Half maximal activation of
NHE1 was achieved at 5 mM ATP, suggesting that NHE activity
could be modulated by changes in the ATP concentration in vivo.
Interestingly, ATP depletion reduces the affinity of NHE proteins
to protons by 0.5 pH units, readily explaining ATP-dependent pH
regulation (66, 113).

Surprisingly, NHE activity could also be triggered by the
poorly hydrolysable ATP analog ATPγ S and did not depend
on the presence of Mg2+ (65). Thus, ATP-dependency is
unlikely to be mediated by associated kinases or ATPases.
Instead, Na+/H+-exchange may depend on direct binding of
ATP to NHE proteins or a membrane associated activator.
Consistently, ATP dependence of NHE1 requires the presence
of its cytoplasmic C-terminal domain (114, 115). Although no
consensus sequences from known ATP-binding motives can be
identified in the primary sequence, cross-linking experiments
have revealed evidence for direct binding of ATP to the
cytoplasmic domain of NHE1 (116). While mapping of the
potential ATP binding site will be required to generate mutants
to directly test the significance of ATP binding in vivo, this model
offers an attractive mechanism of coupling metabolic activity to
NHE activity (Figure 2A).

Indirect Regulation of NHE Activity by
Metabolic Cues
An alternative model for coupling of energy metabolism to
regulation of pHc through ATP-dependent ion pumps may be
suggested by evolutionary considerations of pH-dependent cell
growth. In yeast, pHc is regulated by a P-type ATPase, PMA1,
that directly pumps protons across the plasma-membrane in an
ATP-dependent manner (117, 118), but does not require NHE
activity at the plasma-membrane (Figure 2B). PMA1 activity and
pHc increase with the quality and quantity of the available carbon
source (119). As in mammalian cells, high pHc drives cell growth
and proliferation, at least in part, by activating TORC1 (99, 119).

The differences in pH regulation in yeast and mammals
are readily explained by the different environmental constraints
for single cellular organisms and cells embedded within a
complex organism. In their natural environment yeast cells
are constantly exposed to changes in osmolarity and thus
may rely on ATP-dependent proton pumps rather than a Na+

gradient. In contrast, establishing a proton gradient with a
similar concentration profile as the Na+ gradient in mammalian
cells (120, 121) would yield pH differences of more than 1
pH unit across the plasma-membrane and may thus require
indirect regulation of pH via Na+-H+-exchange. Yet, the
conservation of pHc as a glucose-dependent signal regulating
cell growth indicates that regulation of pH in mammalian cells
may also be mediated by coupling of Na+/K+-ATPase to glucose
metabolism (Figure 2A).

Indeed, several ATP-dependent ion pumps have been
suggested to be regulated by energy metabolism in mammalian
cells. In particular, direct modulation by ATP has been
proposed for ATP-dependent cation exchangers and ion
channels (122–130) despite the fact that the Km of these
pumps for ATP hydrolysis have been consistently found to
be significantly lower than physiological ATP concentrations
(131–133), making a direct coupling of their activity to
changing ATP concentrations in cells unlikely. To resolve this
contradiction, it has been suggested that these pumps may be
coupled to glycolytic ATP production by concentrating ATP
producing enzymes close to the ATP-dependent pumps,
thereby allowing physical or kinetic coupling of ATP
synthesis to hydrolysis (124, 134). For example, glycolytic
enzymes including hexokinase, phosphofructokinase and
pyruvate kinase co-purify with the plasma-membrane in
pancreatic cancer cells, which may allow direct regulation
of an ATP-dependent Ca2+-pump (124). In cardiomyocytes
and erythrocytes, glycolytic enzymes localize at the plasma-
membrane (130, 135) and have been suggested to regulate
Na+/K+-ATPase (122) as well as ATP-sensitive K+-channels
(130, 134), possibly by direct interaction and localized ATP
production (125).

Theoretical considerations argue against the formation of
localized pools of metabolites based on local enrichment
of metabolic enzymes, as rapid intracellular diffusion of
metabolites outcompetes even the fastest enzymes, leading to
rapid dissipation of local concentration differences (136). Yet,
it remains a possibility that in vitro determination of enzymatic
parameters fall short of accurately replicating the specific
conditions in the microenvironment at the target membranes.
Interestingly, indirect measurements of local ATP concentrations
by targeting luciferase, which emits light in an ATP-dependent
manner, to different cellular locations clearly support the
existence of separated, local pools of ATP. Specifically, this
method allows to follow the dynamics of ATP concentration
in different cellular compartments following a glucose pulse.
While ATP only very transiently accumulates in the cytosol
upon glucose stimulation, ATP stabilizes at elevated levels at
the plasma-membrane upon glucose stimulation (137). More
detailed measurements of localized metabolite distributions,
for example using FRET reporters would be key to further
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support localized pools of metabolites regulating ATP-dependent
processes at the plasma-membrane. Similarly, to discriminate
between direct and indirect mechanisms to couple metabolism to
NHE activity, dynamic measurements of Na+/K+-ATPase and/or
the resulting Na+ gradient would be required.

CONCLUSION

While the molecular mechanisms linking glucose or energy
metabolism to increased pHc await further clarification, the
existing data strongly argue for a tight coupling of glucose
metabolism to NHE activity. As glucose metabolism can be
stimulated by increasing glucose concentration or induction of
the Warburg effect, this coupling readily explains the elevated
pHc found in cancer cells. In turn, an elevated pHc may
further enhance aerobic glycolysis due to the pH-sensitivity of
phosphofructokinase (33) as part of a positive feedback loop
to regulate cell growth. Thus, an elevated pHc may act as a
signal that relays changes in cellular metabolism to cell growth
and proliferation, but further identification of pH-sensitive steps
governing cell growth and proliferation will be required to
better understand the functional importance of pHc in normal
and cancer cells.

Targeting cellular metabolism for cancer therapy has triggered
great interest as potential treatments could be widely applicable
to a range of tumors with similar metabolic alterations. Indeed,
several glycolytic inhibitors have been tested as potential anti-
cancer treatments, but have largely failed due to high toxicity

at the effective dose (138, 139). Targeting pH regulation by
NHE proteins may act as a treatment of the consequences
of altered tumor metabolism and may help to devise novel
treatment strategies. While similar considerations of toxicity by
targeting NHE proteins may apply, a better understanding of
NHE regulation in normal and cancer cells will help to further
dissect the interplay between cellular metabolism and signaling,
and to define windows of opportunities to treat cancer by
targeting pHc regulation.
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