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Highly accurate sequence imputation
enables precise QTL mapping in Brown
Swiss cattle
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Abstract

Background: Within the last few years a large amount of genomic information has become available in cattle.
Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In
order to combine genomic information from different sources and infer genotypes for a common set of variants,
genotype imputation is required.

Results: In this study we evaluated the accuracy of imputation from high density chips to whole genome
sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac)
and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high
and differences between the programs and scenarios were small. We imputed sequence variant genotypes for
more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two
stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content,
respectively. Known causal variants that were imputed from the sequenced reference panel were among the most
significantly associated variants of the genome-wide association study.

Conclusions: Our study demonstrates that whole-genome sequence information can be imputed at high accuracy
in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate
causal variant detection.

Keywords: Whole genome sequencing, Imputation, Accuracy, Genome-wide association study, QTL discovery, Milk
traits, Brown Swiss, Dairy cattle

Background
Different densities of genotypes can be derived from various
SNP (single nucleotide polymorphism) chips [1, 2] or
whole-genome sequencing approaches [3]. To combine
genotype data from different densities, genotype imputation
is required [4–7]. Genotype imputation infers missing
genotypes in silico based on a reference population for
which those genotypes are not missing [8]. In cattle, the
1000 Bull Genomes Project is a community-based approach
to exchange next-generation sequencing (NGS) data of
important ancestors of current cattle breeds [9, 10]. The

run released in 2015 (Run 5) of the 1000 Bull Genomes
Project includes 1577 Bos taurus and 115 Bos indicus
genomes [10]. The analysis of sequence variant genotypes
from the 1000 Bull Genomes Project facilitated to pinpoint
causal mutations for monogenic traits [9]. For some
animals, including a large proportion of Brown Swiss cattle
(BSW), the accuracy of variant calling has been analyzed
[11]. Imputation accuracy has been evaluated in Holstein,
Jersey and Fleckvieh cattle using sequence variant
genotypes from the 1000 Bull Genomes Project as reference
data [12, 13].
The accuracy of imputation has been evaluated for

various livestock species (e.g. cattle [4, 9, 12, 13], sheep
[7], horses [6, 14] and pigs [15]). Most studies evaluated
the accuracy of imputation from low- or medium density
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to a high density (HD) SNP chip panel (e.g [4, 5]). Ac-
curacy of imputation from 50 k or HD to sequence level
genotypes has also been evaluated in different species
and breeds [6, 13, 16, 17]. Parameters affecting the ac-
curacy of imputation include population and sampling
structure such as the degree of relationship between val-
idation and reference individuals [5, 6], and the quality
of the reference genome [4]. However, the accuracy of
imputation may vary along the genome; a regional
decrease in imputation accuracy may result from mis-
placed SNPs [4]. Furthermore, the accuracy of imput-
ation is low in regions where the genome contains large
numbers of structural variants [13]. It has also been
shown that step-wise imputation from 50 k to HD to
sequence level genotypes yields higher accuracy com-
pared to direct imputation from 50 k genotypes to
sequence level [16].
An increased marker density may facilitate down-

stream analyses such as genome-wide association studies
(GWAS) and genomic prediction may become more
accurate [18, 19] because by imputing to whole-genome
sequence variants, causal variants are likely to be
included in the data set and they might be identified
more easily [13, 20].
In this paper, we investigated the accuracy of imput-

ation from HD to sequence-level genotypes in the BSW
population. We used four imputation tools and different
reference populations to determine the most accurate
imputation approach for BSW. Subsequently, 1646 geno-
typed BSW bulls were imputed to sequence level to per-
form GWAS for lactation traits. Among the most
associated SNPs we could identify variants that had been
suggested to be causal in previous studies.

Methods
Whole-genome sequence data
Whole-genome sequence data were obtained from Run
5 of the 1000 Bull Genomes Project [9, 10]. That dataset
used includes genotypes at 39,721,987 sequence variants
for 1577 Bos taurus animals from 34 breeds
(Additional file 1: Table S1) including 123 sequenced
BSW animals. The population structure of this data set
is shown in Fig. 1. The animals had an average coverage
ranging from 2.2 to 44.5 sequencing reads. The reads
were aligned to the UMD3.1 reference of the bovine
genome using BWA –MEM (Burrows-Wheeler Aligner)
[24] and variant calling was carried out using all avail-
able genomes simultaneously with samtools [21] as
described previously [9]. Genotype calls were phased
with BEAGLE version 4 (BEAGLE) [22, 23]. For our ana-
lysis, only bi-allelic SNPs were used for imputation.
For the principal component analysis (PCA) plot

(Fig. 1) the genomic relationship matrix was
calculated based on all autosomal sequence variants

using PLINK (version 1.9) [24, 25]. The principal
components of the genomic relationship matrix were
subsequently calculated using the R princomp func-
tion [26].

Imputation scenarios
We evaluated imputation accuracy for seven different
scenarios. The aim of scenario one (S1) was to exploit
the full range of genetic diversity represented by all
breeds of the full Run 5 dataset. Therefore, in S1 we
randomly selected one animal of each breed and country
for the reference set (n = 49, Table 1). The remaining
animals (n = 1528) were used as a validation set (Fig. 1).

Fig. 1 PCA plot showing the population structure of 1577 sequenced
animals of the 1000 Bull Genomes Project Run 5. Different colours and
symbols separate the animals by breed. Symbols in black colour
represent indicate individuals selected as reference population in
scenario S1 (REF in legend); HOL: Holstein; JER: Jersey; AAN: Angus;
BSW: Brown Swiss; GUE: Guernsey; MAR: Marchigiana; REN: Norwegian
Red; SIM: Simmental; MON: Montbeliarde; NOR: Normandes; UNK:
unknown; CHA: Charolais; DBC: Dairy-Beef Crosses; AYF: Finnish
Ayrshire; HER: Hereford; STA: Stabilizer; RES: Swedish Red; GVH:
Gelbvieh; RED: Danish Red; BCO:Beef Composites; BBR: Beef Booster;
LIM: Limousin; PIE: Piedmontese; SAL: Salers; BCR: Beef Crosses; ERI:
Eringer; GLW: Galloway; ROM: Romagnola; SCO: Scottish Highland; TGR:
Tyrolean Grey; HIN: Hinterwalder; ANG: Angler; VOR: Vorderwalder;
BELB: Belgian Blue

Table 1 Overview of imputation scenarios and number of
reference and validation animals within scenario

Scenario Reference Validation

S1 49 animals out of Run 5 1528 animals out of Run 5

S2 20 BSW 103 BSW

S3 50 BSW 73 BSW

S4 20 random BSW 103 BSW

S5 103 BSW 20 random BSW from S4

S6 BSW + HOL + SIM (855 animals) 20 random BSW from S4

S7 All Run 5 animals (1557 animals) 20 random BSW from S4
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In scenarios two (S2) and three (S3) only the 123 BSW
animals were used as reference and validation sets (Table
1). The reference animals for these two scenarios were
selected according to the approach described by [27] to
find key ancestors, which capture most of the gene pool
of a given population. This analysis is based on mean
pedigree relationship. The pedigree relationship was cal-
culated based on a pedigree including 4491 BSW ani-
mals that included the 123 sequenced animals and their
ancestors. Out of 123 sequenced BSW animals, the 20
and 50 most influential animals were identified and used
as reference populations in S2 and S3, respectively. The
validation set consisted of the remaining BSW animals
of the total 123 sequenced BSW animals (103 and 73
BSW animals in S2 and S3, respectively). In scenario
four (S4) random selection of 20 BSW animals was used
to form the reference sets in a ten-fold cross validation
(Table 1). In scenarios five (S5), six (S6) and seven (S7)
the effect of single- versus multi-breed reference popula-
tions on the accuracy of imputation was studied in a
ten-fold cross validation as well. In S5 the validation in-
dividuals of S4 were used as reference individuals (103
BSW animals). In scenario six (S6), in addition to the
103 BSW animals from S6, all animals from the main
dairy breeds with breed code Holstein or Simmental
were used as reference population (in total 855 animals).
In S7 all Run 5 animals were used as reference set (1557
animals). The validation sets in S5, S6, and S7 consisted
of 20 BSW animals randomly selected as reference in S4
(Table 1).

Imputation algorithms
We inferred missing genotypes using four imputation
tools, namely BEAGLE (version 4.0) [22], FImpute (ver-
sion 2.3) [28], IMPUTE2 (version 2.3.2) [29], and Mini-
mac3 (version 1.0.12, referred to as Minimac) [30].
BEAGLE, IMPUTE2 and Minimac are population based
methods, whereas FImpute exploits information from
linkage disequilibrium and pedigree. However, FImpute
was run in a population imputation setting only using
called genotypes from the VCF files from the 1000 Bull
Genomes Project as input data. For IMPUTE2, Minimac
and BEAGLE the sequence variants were phased using
BEAGLE. The reference and validation individuals were
extracted from the 1000 Bull Genome project file using
VCFtools [31] and BEAGLE and Minimac were run with
default parameters. IMPUTE2 was run on the whole
chromosome. BEAGLE and Minimac provide both allele
dosage data with continuously distributed values for ge-
notypes ranging from 0 to 2 and the most likely discrete
genotype (i.e. 0, 1 and 2), whereas IMPUTE2 outputs
genotype likelihood only and FImpute outputs discrete
genotypes only. To transform allele dosage data from
IMPUTE2 to discrete genotypes the program GTOOL

(version 0.7.5) was used [32] applying the –G option.
We did not want to have missing genotypes in our data.
To achieve this the genotype likelihood threshold for
calling a genotype was set to 0.3, because we have three
genotypes that can potentially be called (namely 0/0, 0/
1, 1/1). The sum of these three genotype probabilities
should be one. In general, if none of the three genotype
probabilities passes the threshold the genotype should
be set to missing. Given the threshold of 0.3 must be
surpassed by at least one of the three genotypes, no
values were set as missing in this dataset.

Imputation accuracy
Accuracy of imputation from the Illumina bovineHD
SNP chip panel to whole genome sequence variants was
investigated for chromosome 25. The genotypes of the
validation animals were masked on BTA25 to mimic
animals genotyped with the HD SNP chip. Imputation
was then carried out from 12,222 SNPs (HD SNP chip)
to 642,911 SNPs (whole genome sequence).
To determine imputation accuracy the sequence-

derived genotypes were compared to the imputed geno-
types in the validation animals. SNPs that were included
on the HD SNP Chip were excluded for the assessment
of imputation accuracy. Furthermore we did not
consider SNPs that were monomorphic in both, the
reference and the validation population. We assessed
three accuracy measurements. The first was genotype
concordance, which was calculated as the ratio of the
number of genotypes that have the same alleles in the
true and the imputed data set to the number of geno-
types in total. For the correlation measurements, the
imputed and the sequence derived genotypes were
centered according to Calus et al. [33]. We assessed
genotype correlation per individual and calculated the
average per scenario. For the scenarios with cross-
validation runs, we used the average of each scenario to
calculate the average across all scenarios. For Minimac,
BEAGLE and IMPUTE2 we additionally assessed allele
dosage correlation. It has been suggested that the meas-
ure of choice for imputation accuracy should be dosage
correlation as this is supposed to be independent of
minor allele frequency (MAF) and because dosage is
supposed to be less biased [33]. Since no allele dosage
data can be obtained for FImpute, we calculate genotype
correlation between true and imputed genotypes as well
and use all three measurements for comparisons.

Accuracy by MAF-classes
Accuracy of imputation was also evaluated according to
the MAF of SNPs. The MAF for each SNP was
calculated in the reference population for each scenario
and were classified in 13 different frequency classes with
a focus on low MAF classes using the following
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thresholds: 0, 0–0.025, 0.025–0.05, 0.05–0.075, 0.075–
0.1, 0.1–0.15, 0.15–0.2, 0.2–0.25, 0.25–0.3, 0.3–0.35,
0.35–0.4, 0.4–0.45, 0.45–0.5. The boundaries of MAF
classes were defined as greater than the lower boundary
and less than or equal to the upper boundary
(Additional file 1: Table S2). SNPs in the MAF class 0
were excluded from accuracy evaluation. Evaluation of
imputation accuracy was then performed for each MAF
class for the same measurements, as described above.
For the evaluation all SNPs of a MAF class were put in a
single vector and the correlations were obtained from
comparing the vector of imputed SNP genotypes or dos-
ages and the genotyped SNP genotypes or dosages. SNP
genotypes were centered according to [33].

Imputation of sequence variants for genome-wide
association study
To test the ability to detect causal mutations with
imputed sequence variant genotypes, two GWAS for
milk fat percentage were carried out. The target popula-
tion included 1646 BSW bulls of which 1432 and 214
genotyped with medium- (Illumina BovineSNP50, MD)
and high-density genotyping arrays (Illumina BovineHD,
HD), respectively. The chromosomal position of the
SNPs corresponded to the UMD3.1 assembly of the
bovine genome [34]. Mitochondrial, X-chromosomal, Y-
chromosomal and SNPs with unknown chromosomal
positions were not considered for further analyses.
Standard quality control was carried out for the MD and
HD dataset separately (MAF > 0.01 or missing genotypes
< 0.1). After quality control, the medium-density geno-
types of 1432 bulls were imputed to HD based on a ref-
erence population that consisted of 1056 BSW bulls with
HD genotypes using FImpute [28]. The reference panel
included 842 BSW bulls with HD genotypes that were
not part of the GWAS target population. The final target
population consisted of 1646 BSW bulls with (partly
imputed) genotypes at 573,650 autosomal SNPs. Whole-
genome sequence data were obtained for 128 BSW ani-
mals from Run 5 of the 1000 Bull Genomes Project [9]
and two other sequencing projects [11, 35]. We consid-
ered 13,938,818 autosomal sequence variants with
MAF > 1% that were an intersection of two variant call-
ing pipelines [9, 36]. Haplotypes of the sequenced ani-
mals were inferred using BEAGLE [22] and served as
reference to impute genotypes for 13,938,818 variants in
1646 target animals with (partly imputed) genotypes at
573,650 SNPs (see above) using Minimac [29].

Phenotypes for association testing
Response variables for association testing were daughter-
derived phenotypes for milk fat content at two stages
(FCearly: lactation days 8–12; FClate: lactation days 298–302)
of the first lactation. Estimated breeding values for milk

(MY) and fat yield (FY) were obtained for the 5-day intervals
from routine breeding value estimation for milk production
traits [37]. Phenotypes for fat content (FC) expressed as a
percentage of milk yield for the 5-day intervals were
calculated using FC ¼ 200 x ð FYbasisþ0:5 x FY

MYbasisþ0:5 x MY−
FYbasis
MYbasis

), where

FYbasis = 282.18463 and MYbasis = 7080.298. The mean
accuracy of the EBVs was 0.95 (± 0.06). The correlation
between breeding values for FCearly and FClate was 0.26.

Genome wide association studies
We considered 13,036,370 sequence variants with im-
putation r2 [29] >0.3 for association analyses. Associ-
ation testing of each imputed sequence variant was
carried out with FCearly and FClate using the EMMAX
software tool [38]. The mixed model fitted to the data
by EMMAX included the overall mean, the allele dosage
data of each variant in turn (continuously distributed
from 0 to 2) as a fixed effect and a vector of additive
genetic effects ~N(0,Gσa

2) where G is the realized gen-
omic relationship matrix that was constructed based on
genotypes of 573,650 autosomal SNPs (see above) [39].
Sequence variants with P < 3.84 × 10−9 were considered
as significantly associated (5% Bonferroni-corrected
significance threshold for 13,036,370 independent tests).
Bonferroni-correction might result in a too stringent sig-
nificance threshold in association studies with imputed
sequence variant genotypes because it assumes that indi-
vidual tests are independent and is thus likely prone to
over-correction considering the small effective popula-
tion size and long-range LD particularly in livestock
(e.g., Pausch et al., [40]). However, for this study we were
mainly interested in major QTLs and the variants with
the lowest p-values.

Results and discussion
Accuracy of imputation
We evaluated imputation accuracy for the BSW individ-
uals included in Run 5 of the 1000 Bull Genomes Project
[9, 10] in seven scenarios with different sets of reference
and validation individuals (Table 1). Imputation from
HD to sequence level was done on BTA25 using four
different tools, namely BEAGLE [22], FImpute [28],
IMPUTE2 [29], and Minimac [30]. We chose BTA25 for
the validation because this is the smallest chromosome,
which should consequently lead to the shortest compu-
tational times. It has been shown previously that there
are differences in imputation accuracy per chromosome
[6, 13]. We expect that similarly to [13], the imputation
accuracy of BTA25 will not be significantly impaired by
structural variation.
As measures of accuracy we evaluated genotype

concordance rate and dosage correlation, as well as
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genotype correlation between called and imputed
sequence variants.

Scenario 1
In S1, the reference set consisted of 49 animals
representing all Bos taurus breeds and breed groups
from different countries included in the Run 5 data set
(Fig. 1, black points). The average genotype concord-
ance, genotype correlation and allele dosage correlation
for BSW validation animals ranges from 0.953–0.972,
0.766–0.872, and 0.945–0.959, respectively (Table 2,
Additional file 2: Fig. S1). The lowest genotype
concordance rate is found using FImpute (0.953)
whereas the highest rate of correctly imputed variants is
found using Minimac (0.972). When evaluating all
validation animals across all breeds jointly, slightly
higher accuracies than for BSW animals only are
observed. As for BSW animals only, the highest
imputation accuracy is found using Minimac, however
accuracies found using Impute2 are very similar. We
find differences in imputation accuracy per breed
(Additional file 1: Table S3). The lowest average
imputation accuracy is achieved for Marchigiana and
Tyrolean Grey cattle. The PCA plot indicates that the
Marchigiana breed is different from most other breeds,
which probably explains the low accuracy of imputation
found in that breed. The accuracy in Tyrolean Grey is
derived from a single individual that might be unrelated
to the second Tyrolean grey in the data set, which is in
the reference population, resulting in low accuracy of
imputation.

Scenarios 2–4
In Scenarios 2–4 we contrasted random selection of
reference individuals (S4) to selection of key ancestors
(S2 and S3). While S2 contains the same number of indi-
viduals as the random selection scenarios in S3 we

selected 50 reference individuals. The idea of using key
ancestors as reference animals according to [27] is that
the selected individuals should be selected particularly to
cover a large fraction of the genetic diversity of the en-
tire population. The comparison of S2 and S3 also shows
the impact of the number of individuals in the reference
population. For S3 we find higher accuracies (Table 3)
than for S2 with all measurements and all programs (e.g.
0.964 vs 0.978 with Minimac for allele dosage
correlation). This finding is consistent with [4], where
the reference individuals were selected with the same
algorithm and increasing the reference population led to
higher accuracy. A further interesting finding is that the
variation between the accuracies of the validation
individuals is decreased in S3 compared to S2
(Additional file 2: Fig. S1). For the imputation to HD
data it has been found that differences in imputation
accuracy between individuals became smaller when the
size of the reference population increased [4]. Compar-
ing S2 with 20 reference individuals to S3 with 50 refer-
ence individuals, we observe the same trend. Concerning
the accuracy per program we find, that generally
IMPUTE2 and Minimac perform similar and outperform
the two other programs.
Comparing S2 to S4 we compared selection of key

ancestors according to [27] to random selection scenar-
ios. The imputation accuracies were above 0.93 for the
genotype concordance and allele dosage correlation and
above 0.80 for genotype correlations for both scenarios
(Table 3). Contrasting S2 to S4 we find consistently
higher accuracies for S2 with genotype correlation and
concordance rate. This is expected and consistent with
[4]. For the 1000 Bull Genomes Project most individuals
have been selected according to [27] (see e.g. [9, 11]) to
maximize the genetic variation captured within a popu-
lation. Therefore, we might not see such large differ-
ences in the genetic contribution of an individual to the
population of sequenced animals we investigated in this
study. If we had sequences of random individuals from
the corresponding breeds, we would expect a higher
variability in the contribution to the genetic diversity
and therefore we would achieve more different results
between a random selection scenario and the selection
strategy applied in S2 and S3.
Concerning the program best suited we find with these

scenarios that using genotype concordance and allele
dosage correlation again using Minimac and IMPUTE2
generally lead to almost equal highest accuracies.

Scenarios S5 – S7
Scenarios S5-S7 are designed to investigate the effect of
a multi-breed reference population on accuracy. Due to
the setting of the validation set, the reference sets are
thus considerably larger than for S1-S4 (Table 1).

Table 2 Mean (and standard deviation) genotype concordance,
genotype correlation and allele dosage correlation for validation
animals in S1

Genotype concordance
rate

Genotype
correlation

Dosage
correlation

BEAGLE BSWa 0.964 (0.004) 0.829 (0.019) 0.945 (0.011)

FImpute BSW 0.953 (0.005) 0.766 (0.021) –

IMPUTE2 BSW 0.971 (0.004) 0.872 (0.021) 0.956 (0.009)

Minimac BSW 0.972 (0.004) 0.872 (0.021) 0.959 (0.008)

BEAGLE Allb 0.967 (0.007) 0.840 (0.035) 0.965(0.010)

FImpute All 0.956 (0.008) 0.775 (0.038) –

IMPUTE2 All 0.974 (0.007) 0.879 (0.035) 0.972 (0.009)

Minimac All 0.975 (0.007) 0.879 (0.035) 0.974 (0.008)
aImputation accuracy evaluated for BSW validation animals only
bImputation accuracy evaluated for all validation animals
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For S5-S7 we find accuracies from 0.960–0.985 (geno-
type concordance), 0.894–0.939 (genotype correlation)
and 0.977–0.983 (allele dosage correlation). This is indeed
larger than the accuracies found in S2 and S4. Accuracy
constantly increases when adding more individuals to the
reference population. Furthermore, we find also for S5-S7
that the differences between the individuals are reduced
(Additional file 2: Fig. S1, Table 3) as in S3. This could be
an indication that not only the general accuracy is
increased with more individuals in the reference popula-
tion, but also the variance between the imputation accur-
acies of individuals decreases. On the other hand, there
might be an upper limit for the possible accuracy given by
the accuracy of the variant calling from sequence data,
leading to the above-mentioned findings.
Interestingly, S3 leads to equal accuracies as S5. Also

in S3 the reference panel is relatively large compared to
the validation panel. This finding could hint that the
selection of individuals according to [27] is beneficial for
imputation accuracy in a sense that the upper limit of
imputation accuracy is reached faster using this
approach than random selection.
In a similar scenario it was found that using a multi-

breed scenario imputation accuracy is only marginally

increasing when a relatively large within breed reference is
combined with data of another breed [41]. Multi-breed
reference populations are likely to be beneficial to overall
accuracy, when only a very limited number of within
breed samples are available [6]. However also in large pop-
ulations like Holstein, a higher accuracy has been found
by using a multi-breed reference population [13].

Accuracy by MAF classes
For the scenarios S5-S7 we additionally evaluated the
impact of MAF on accuracy of imputation, using dosage
and genotype correlation. Generally we find that the
higher the MAF the higher is the accuracy (Fig. 2,
Additional file 1: Table S4). This is consistent with the
findings of others (e.g. [41, 42]) and this is also the case
for HD data [4]. Around a MAF of 0.25 the accuracy
plateaus for dosage correlation and almost no further
increase with higher MAFs can be observed. Looking at
the different programs, BEAGLE shows the lowest
accuracy for the lowest MAF class. The poor perform-
ance of BEAGLE for low MAF SNPs has also been found
in other studies (e.g. [41]). However already in the sec-
ond MAF class the accuracy from BEAGLE is higher
than the accuracy from FImpute.

Table 3 Mean (and standard deviation or range for cross validation scenarios) genotype concordance rate (Gen Conc), genotype
correlation (Gen Corr), and allele dosage correlation (Dos Corr) between called sequence variants and imputed variants for animals
in the validation set in scenarios S2 to S7

Gen Conc S2 S3 S4 S5 S6 S7

Beagle 0.947 (0.024) 0.967 (0.013) 0.945
(0.94–0.95)

0.966
(0.96–0.972)

0.979
(0.976–0.981)

0.984
(0.983–0.986)

FImpute 0.938 (0.024) 0.957 (0.012) 0.935
(0.93–0.944)

0.960
(0.953–0.965)

0.974
(0.971–0.977)

0.982
(0.98–0.984)

IMPUTE2 0.962 (0.02) 0.973 (0.008) 0.959
(0.956–0.963)

0.9712
(0.966–0.975)

0.981
(0.978–0.983)

0.985
(0.984–0.987)

Minimac 0.96 (0.02) 0.972 (0.008) 0.957
(0.955–0.962)

0.968
(0.963–0.973)

0.980
(0.978–0.983)

0.9852
(0.983–0.987)

Geno Corr

Beagle 0.863 (0.053) 0.914 (0.031) 0.857
(0.848–0.87)

0.914
(0.899–0.923)

0.932
(0.923–0.941)

0.932
(0.924–0.94)

FImpute 0.827 (0.052) 0.879 (0.029) 0.819
(0.805–0.845)

0.894
(0.878–0.904)

0.916
(0.904–0.926)

0.923
(0.91–0.931)

IMPUTE2 0.905 (0.042) 0.930 (0.02) 0.897
(0.891–0.908)

0.9261
(0.915–0.932)

0.939
(0.93–0.946)

0.938
(0.93–0.945)

Minimac 0.899 (0.041) 0.926 (0.022) 0.8912
(0.886–0.902)

0.9162
(0.905–0.924)

0.9358
(0.927–0.944)

0.935
(0.927–0.943)

Dos Corr

Beagle 0.951 (0.028) 0.973 (0.013) 0.956
(0.951–0.961)

0.977
(0.972–0.979)

0.980
(0.978–0.982)

0.982
(0.98–0.983)

FImpute – – – – – –

IMPUTE2 0.964 (0.023) 0.977 (0.009) 0.967
(0.963–0.971)

0.979
(0.975–0.98)

0.980
(0.978–0.981)

0.981
(0.979–0.982)

Minimac 0.964 (0.023) 0.978 (0.009) 0.967
(0.963–0.971)

0.9786
(0.975–0.98)

0.982
(0.98–0.983)

0.983
(0.981–0.984)
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Comparing our different scenarios to each other we
find that with dosage correlation all scenarios perform
very similar across all the MAF classes, while with geno-
type correlation we observe the same trend as for the
overall accuracy: The larger the reference population the
more accurate is imputation. This finding is more pro-
nounced from the BSW only to the dairy breeds and in
FImpute, indicating that there might be an upper limit.
Our findings indicate that a multi-breed reference panel
may improve the accuracy of imputation for low-
frequency variants. In another study it has been shown
that low MAF variants only present within breed can be
more accurately imputed with a multi-breed reference
population [41]. Regarding the number of SNPs by MAF
class (Additional file 1: Table S2) in the second smallest
MAF class we find the largest number of SNPs for all
scenarios. This is a typical finding when using sequence
data and is different from SNP chip data [42]. For this
reason it is also much more important to select a
software tool that also imputes SNPs with low MAF with
reasonable quality. In our study depending on the
measure of accuracy and the scenario the tools Minimac
and IMPUTE2 can yield very similar accuracy
(Additional file 1: Table S4) and are therefore considered
reasonable choices for imputation of sequence data.

Association analyses with imputed sequence variants
More than 13 million sequence variants were imputed in
1646 BSW bulls that had (partly imputed) array-derived
genotypes. To evaluate the precision of full-sequence
data for quantitative trait loci (QTL) fine-mapping, we
performed association studies with imputed sequence
variants using daughter-derived phenotypes for milk fat
percentage in early (FCearly) and late (FClate) lactation as
response variables. The inflation factors of the
association studies were 1.05 and 1.10 for FCearly and
late FClate, respectively, indicating that population

stratification was appropriately considered. Association
testing revealed one and three QTL (P < 3.84 × 10−9) for
FCearly (Additional file 1: Table S5) and FClate

(Additional file 1: Table S6, Fig. 3). None of the QTL
were associated with fat content at both lactation stages
indicating a distinct genetic control of bovine milk pro-
duction across the lactation cycle [43, 44]. The top asso-
ciation signals at all QTL result from imputed sequence
variants demonstrating again the enhanced capacity of
full sequence data for pinpointing candidate causal
variants [45].

Fig. 2 Genotype correlation by MAF class. a Genotype correlation by program. Mean genotype correlation (and range) obtained by imputation
for each program (Beagle, FImpute, Impute2, Minimac) (b) Mean genotype correlation (and range) per MAF class with Minimac for S5-S7. The
symbols are placed at the maximum MAF of the corresponding MAF class

Fig. 3 Identification of QTL for milk fat percentage at different
lactation stages: Manhattan plot representing the association of
13,036,370 imputed sequence variants with fat content in early (a)
and late (b) lactation. Red color represents variants
with p < 3.84 × 10−9
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The top variant (P = 2.15 × 10−16) at a QTL for FClate

on BTA20 was a missense mutation (rs385640152,
31,909,478 bp, p.F279Y) in GHR encoding growth hor-
mone receptor. The p.F279Y-substitution has been pos-
tulated to be a causal mutation for milk production
traits in cattle [46]. Sequence-based association studies
revealed that the p.F279Y- substitution is also highly sig-
nificantly associated with milk production traits in
Fleckvieh and Holstein cattle [47, 48]. Such findings are
encouraging because they demonstrate that causal vari-
ants may be readily identified in association studies with
imputed sequence variants. In our study, the GHR 279F
variant enhanced FClate, which agrees with previous find-
ings [20, 46]. In BSW, the frequency of the
phenylalanine-encoding allele was 0.92, which is similar
to the frequency observed in Holstein-Friesian and
Fleckvieh cattle [20].
Another QTL for FClate was located at the proximal

region of BTA14. The top association signal resulted
from an imputed sequence variant (ss1947221089,
2,179,252 bp, p = 3.33 × 10−14) in close neighborhood to
a missense mutation in DGAT1 (rs109326954,
1,802,265–1,802,266 bp, p.A232K) with a large effect on
milk yield and milk composition in cattle [49, 50]. How-
ever, our association study indicated a variant other than
rs109326954 to underpin FClate in BSW cattle. The
p.A232K-variant (rs109326954) in DGAT1 was not poly-
morphic among the sequenced BSW animals of the
present study corroborating its low frequency in the
BSW population [50, 51]. However, the minor allele of
the FClate QTL on BTA14 had a frequency of 26.23%.
Thus the association of ss1947221089 with FClate does
not result from linkage disequilibrium with the
p.A232K-variant in DGAT1. Our findings indicate that a
QTL other than DGAT1 at the proximal region of

BTA14 affects milk production in BSW cattle [44, 52,
53]. In our study, 399 imputed sequence variants located
between 1,329,014 bp and 2,576,623 bp were signifi-
cantly associated (P < 3.84 × 10−9) with FClate. Among
them, a missense mutation (ss1947221094, 2,202,392 bp,
P = 1.76 × 10−13, p.V307I) in LOC506831. However,
many sequence variants had nearly identical P-values
and pinpointing a putatively causal mutation was not
attempted in our study.
On BTA5, 20 variants located in the first intron

and in the promoter region, respectively, of MGST1
(microsomal gluthathione S-transferase 1) had P-
values markedly lower than all other variants (Fig. 4a).
The top variant (rs384016750, 93,944,908 bp, P =
4.34 × 10−50) resided 1369 bp upstream of the transla-
tion start of MGST1. Four variants (rs211210569,
rs208248675, rs134637616, rs209372883) that were
associated with milk and fat content in Holstein [48, 54]
and Fleckvieh cattle [13, 47], were in high linkage disequi-
librium (r2 > 0.97) with the top variant. Their P-values
(P < 1.48 × 10−49) were only slightly higher compared to
the top variant indicating that a common variant at that
QTL is likely to control milk production traits in several
cattle breeds.
A QTL on BTA27 was associated with FCearly compris-

ing 122 variants with P < 1 × 10−14 resided within a 127 kb
segment on BTA27 (36,155,097 bp - 36,282,137 bp). The
top variant (rs384016750, 36,245,242 bp, P = 9.10 × 10−22)
was located 16 kb downstream of the translation end
of AGPAT6 encoding 1-acylglycerol-3-phosphate O-
acyltransferase 6 (Fig. 4b). The expression of AGPAT6
is correlated with milk lipid content and reaches its
maximum early in lactation [55]. Four candidate causal
variants (rs211250281, rs378026790, rs211036538,
rs209855549) for FCearly are located in the promoter

Fig. 4 Detailed view of two QTL for fat content: Detailed overview of two QTL on BTA5 (a) and BTA20 (b) that were associated with FClate and
FCearly, respectively. Grey and orange diamonds represent sequence and array-derived variants, respectively. Red diamonds represent candidate
causal trait variants that were identified in breeds other than Brown Swiss
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region of AGPAT6 [9, 56]. These variants were in high
linkage disequilibrium (r2 > 0.89) with rs384016750. Their
P-values (P < 1.09 × 10−20) were only slightly above the P-
value of the top variant.

Conclusion
Achieving high accuracy of imputation to whole-genome
sequence level is possible in Brown Swiss cattle using
the 1000 Bull Genomes reference population. According
to two of the three measurements (dosage correlation
and genotype concordance) Minimac is the best-suited
program for imputation of this data, although all
methods were generally adequate. The final imputation
and subsequent GWAS of 1646 BSW revealed top SNPs
in the sequence data, which are not on the SNP chip,
including a well-known true causal mutation for milk
production traits. Further some causal variants were
among the top SNPs. This underlines that GWAS using
imputed whole-genome sequence might facilitate the
identification of new causal variants.

Additional files

Additional file 1: Table S1. Breed codes and number of individuals per
breed within the fifth run of the 1000 Bull Genomes Project. Table S2.
Average number of SNPs per minor allele frequency class in S5, S6 and
S7. Table S3. Imputation accuracy per breed in S1. Table S4. Imputation
accuracy per minor allele frequency class in S5, S6, S7. Table S5. p-values
and SNPs with Bonferroni corrected significant association for FCearly. Chr
is the chromosome and Pos is the position of the SNP, they correspond
to UMD3.1. R2 is an imputation quality measure provided by Minimac
and P is the p-value from the genome-wide association study. Table S6.
p-values and SNPs with Bonferroni corrected significant association for
FClate. Chr is the chromosome and Pos is the position of the SNP, they
correspond to UMD3.1. R2 is an imputation quality measure provided by
Minimac and P is the p-value from the genome-wide association study.
(XLSX 169 kb)

Additional file 2: Fig. S1. Boxplots of individual animal accuracy of
imputation for all scenarios measured as genotype concordance rate
(A), genotype correlation (B), and allele dosage correlation (C) between
called sequence variants and imputed variants. Straight lines represent
the mean accuracy of imputation across all scenarios per program.
(PNG 901 kb)
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