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Abstract: Brain tumors (BTs) are deadly diseases that can strike people of every age, all over the world.
Every year, thousands of people die of brain tumors. Brain-related diagnoses require caution, and
even the smallest error in diagnosis can have negative repercussions. Medical errors in brain tumor
diagnosis are common and frequently result in higher patient mortality rates. Magnetic resonance
imaging (MRI) is widely used for tumor evaluation and detection. However, MRI generates large
amounts of data, making manual segmentation difficult and laborious work, limiting the use of
accurate measurements in clinical practice. As a result, automated and dependable segmentation
methods are required. Automatic segmentation and early detection of brain tumors are difficult tasks
in computer vision due to their high spatial and structural variability. Therefore, early diagnosis or
detection and treatment are critical. Various traditional Machine learning (ML) techniques have been
used to detect various types of brain tumors. The main issue with these models is that the features
were manually extracted. To address the aforementioned insightful issues, this paper presents
a hybrid deep transfer learning (GN-AlexNet) model of BT tri-classification (pituitary, meningioma,
and glioma). The proposed model combines GoogleNet architecture with the AlexNet model by
removing the five layers of GoogleNet and adding ten layers of the AlexNet model, which extracts
features and classifies them automatically. On the same CE-MRI dataset, the proposed model was
compared to transfer learning techniques (VGG-16, AlexNet, SqeezNet, ResNet, and MobileNet-V2)
and ML/DL. The proposed model outperformed the current methods in terms of accuracy and
sensitivity (accuracy of 99.51% and sensitivity of 98.90%).

Keywords: a brain tumor; hybrid transfer learning; machine learning; deep learning; magnetic
resonance imaging

1. Introduction

The brain and spinal cord are two main primary control centers of the human body;
hence, any harm to this region is considered extremely dangerous. Tumors are the for-
mations of abnormal tissue that can occur in any part of the human body [1]. One of the
distinguishing features of brain cancer is abnormal development of cells of the brain or
spinal cord. Because of their different natures, malignant and benign brain tumors require

Diagnostics 2022, 12, 2541. https://doi.org/10.3390/diagnostics12102541 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12102541
https://doi.org/10.3390/diagnostics12102541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5957-1383
https://orcid.org/0000-0003-0608-6661
https://orcid.org/0000-0002-5462-595X
https://orcid.org/0000-0003-0307-1384
https://orcid.org/0000-0003-2612-0978
https://orcid.org/0000-0002-1165-7812
https://doi.org/10.3390/diagnostics12102541
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12102541?type=check_update&version=2


Diagnostics 2022, 12, 2541 2 of 19

different treatments. Based on benignity and malignancy, the World Health Organiza-
tion (WHO) has classified brain cancers into four major groups (Grade I–IV). Malignant
brain tumor of grades III and IV grow quickly, metastasize (body-wide spread), and have
a negative impact on healthy cells. Furthermore, the rigidity of the skull and the additional
development of brain cells may result in pressure within the skull, which can harm the
brain. Surgery, chemotherapy, radiation, and various treatment combinations are among
the most advanced therapies available today. Even with the most intensive medical super-
vision, patients frequently do not live for more than 14 months [2]. As a result, early brain
tumor detection is a crucial step in meticulously planning therapy. Patients’ chances of
survival may improve if the BT diagnosis early. Computer tomography (CT) and magnetic
resonance imaging (MRI) are two methods commonly used in the diagnosis and evaluation
of brain tumors. MRIs use magnetic fields rather than X-rays, as in CT scans, to obtain
a comprehensive image of the body. These techniques provide medical professionals with
an in-depth view of information about the inside of the body, assisting them in determining
the presence and location of symptoms. As a result, early BT detection and classification
allows medical professionals to better plan appropriate therapy using MRIs as well as
other imaging modalities [3]. Furthermore, pituitary tumors, gliomas, and meningiomas
represent the primary subtypes of BT. Pituitary tumors are usually harmless and develop
in the pituitary glands, which are located in the brain’s basal layer and are responsible for
the production of many important hormones [4]. A glioma is a malignancy that develops
when glial cells grow uncontrollably. Typically, such cells work in nerves and facilitate
the function of the central nervous system. Gliomas typically develop in the brain, but
they can also develop in the spinal cord [5]. Cancers known as meningiomas can develop
on the membrane that serves as a protective covering for the brain and spinal cord [6].
Identification of BT requires the ability to differentiate between normal and abnormal
brain tissue. Differences in shape, position, and size increase the difficulty of detecting BT,
but it remains a challenge that must be overcome. BT analysis makes use of some of the
most fundamental aspects of medical image processing, including classification, segmenta-
tion, and detection [7]. During the preliminary stages of treatment, the BT classification
is a crucial step in identifying the specific kind of tumor that is currently present. The
field of biomedical image processing has several cutting-edge computer-aided diagnostic
tools to help radiologists with patient guidance and improve BT classification accuracy [8].
When high-grade tumors are present, brain tumors are a dangerous condition that signifi-
cantly reduces a patient’s life expectancy. To be more specific, BT diagnosis is critical for
treatments which have not improved the patient’s quality of life [9]. The proposed CAD
system is intended to work under the supervision of a radiologist [10], and accurate tumor
segmentation is required for better cancer identification.

In addition, the diagnosis of brain tumors in clinics relies on the visual inspection
of patients by pathologists, who are highly trained experts in the field of neurosurgery.
However, this procedure is done manually, which is not only time-consuming but also
tedious and highly susceptible to pathologist error. This is due to the fact that the majority
of cells typically comprise a portion of random, arbitrary, and uncontrolled visual angles.

It is essential to identify the type of tumor that a patient has, including whether it is
glioma, pituitary, or meningioma. The purpose of this study is to differentiate between
the three categories. Early diagnosis of the three types of BTs is essentially based on the
neurosurgical point of view.

To address the information issues above, various ML/DL models for BT segmentation
have been performed specially, deep transfer learning model (DTL) [11–14]. In DTL, the
GoogleNet model has recently gained a lot of popularity in the field of medical imaging
classification and grading. It is widely utilized for interacting with raw images and per-
forming a better classification. Moreover, a transfer learning model such as AlexNet layers
are used extensively in the process of extracting its features [15]. AlexNet is the most
used deep transfer learning (TL) model, and the primary application it serves is image
categorization [16]. Due to the different advantages of both models, the researchers were
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motivated to use the hybrid deep transfer model to improve the accuracy and performance
of current algorithms in identifying different types of brain tumors, as well as to evaluate
the approach using a dataset that was freely available to the public. Furthermore, the
research question of this study is “how accurately and effectively can the hybrid TL system
recognize and categorize various types of BT diseases?”. The following is a list of our key
contributions to this research:

• A precise Computer Aided Diagnosis system for BT is presented using deep learning.
• A new hybrid deep learning approach, GN-AlexNet, is introduced for the classification

of three types of brain tumors (pituitary, meningioma, and glioma). The proposed CAD
system is thoroughly tested on a publicly available benchmark dataset of Contrast-
Enhanced magnetic resonance images (CE-MRI).

• In terms of accuracy and sensitivity, the proposed model performed significantly better
than the existing techniques (with an accuracy of 99.51% and a sensitivity of 98.90%).

• High classification performance has been achieved with the suggested model, together
with decreased time complexity (ms). The GA-AlexNet classifier is used for successful
BTs diagnosis in clinical and biomedical research.

The paper has the following outline. Section 2 discusses the literature review. Model
specifications are presented in Section 3. Discussion and results are presented in Section 4.
The final section presents the study’s findings and suggestions for future study.

2. Literature Review

Many machine learning and deep learning models [17–25] were used to classify and
detect anomalies in biological images.The model presented in [26] outlines a process for
the early diagnosis of brain tumors that involves the extraction and concatenation of
many levels of features. Inception-v3 and DensNet201 are the three deep learning models
that were used to verify this model before it was trained. These two models were used
to investigate two distinct potential courses of action for the classification of BT. Using
a dataset consisting of 253 images and pre-trained versions of VGG-16 and Inception-V3,
a model for the automated identification of brain tumors was developed [26] and presented.
This dataset includes 155 pictures of cancerous tumors and 98 images of healthy tissue. It
was unable to fine-tune the CNNs using the dataset since it was not large enough, and the
test dataset was also too small to check the performance of the model.

Using VGG-16 and the BRaTs dataset, a model for the automated identification of
brain tumors was suggested [27]. Through the utilization of transfer learning and fine-
tuning carried out across a total of 50 epochs, the accuracy of the model was brought up
to 84%. Srivastava et al. presented a dropout strategy as a solution to the problem of
overfitting in neural networks [28]. This technique involves randomly removing units and
the connections between them.

P. Dvorak et al. in [29] selected a convolutional neural network as the learning
method because it is effective at handling feature correlations using the freely available
BRATS2014 data set, which contains three distinct multimodal segmentation tasks They
evaluated the method, and they were able to obtain state-of-the-art results for the brain
tumor segmentation data set, which included 254 multimodal volumes and required only
13 s per volume to process. Artificial Convolutional Neural Networks were implemented
by Irsheidat et al. in their research paper [30]. The results indicated that the CNN model
obtained satisfactory results.

In order to analyze MRI images, this model is capable of performing convolutional
operations on the raw data. This neural network accurately predicts the presence of
brain tumors because it was trained with MRI scans of 155 healthy brains and 98 tumors.
Sravya et al. [31] researched the identification of brain tumors and provided several sig-
nificant issues and methodologies. Using the YOLO model and the deep learning pack-
age FastAi with the BRATS 2018 dataset, which included 1992 MRI images of the brain,
an automated brain tumor identification method was developed and investigated [32]. The
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accuracy of YOLO was measured at 85.95%, whereas the accuracy of the FastAi classifica-
tion model was measured at 95.78%.

The VGG-16 model used for brain tumor detection was proposed [33] to identify MRI
pictures as either tumorous or non-tumorous. The training was done using the Kaggle
dataset, and the authors demonstrated an increase in accuracy as a result. Nevertheless,
the authors trained the model in its entirety.

M.O. Khairandish et al. [34] proposed hybrid model combined CNN and support
vector machine (SVM) for brain MRI image classification. The proposed study conducted
comparative studies of segmentation with different DL model. The proposed approach
performed best classification up to 99%.

For BT detection and classification, Swati et al. [35] implemented a CNN based block-
wise-tuned (BFT) system. In comparison to the manually constructed features, the fine-
tuned VGG-19 using the BPT approach obtained 94.84% classification accuracy in a shorter
amount of training time. Kumar et al. [36] presented the Dolphin-SCA algorithm, which is
a novel optimized DL method, for the detection and categorization of BT. Dolphin-SCA
is an example of a novel optimized DL method. The mechanism makes use of a deep
convolutional neural network. For the purpose of segmentation, the researcher employed
a fuzzy deformable fusion model in conjunction with a sine cosine algorithm that was based
on dolphin echolocation (DolphinSCA). A deep neural network that used Dolphin-SCA
as its foundation and was based on power statistical features and LDP was used to make
use of the retrieved features. The deep neural network was constructed using LDP. When
using the method that was suggested, the accuracy of the categorization was found to
be 96.3%. Deepak et al. [37] employed a pre-trained version of GoogleNet for feature
extraction, and they relied on tried-and-true classifier models for both BT classifications. In
comparison to the most recent and cutting-edge methodologies, the suggested technique
achieved an accuracy of 98%. A hybrid model for the classification of BT was presented
by Raja et al. [38], which takes into account a number of different backgrounds (namely,
pre-processing by using a non-local express filter and segmentation by using the Bayesian
fuzzy technique). After that, the scattering transform, the wavelet packet Tsallis entropy
approach, and the theoretical measures were used to extract several aspects of the picture
that had previously been measured. An accuracy of 98.5% was achieved in the classification
process by utilizing a hybrid strategy that was found on a combination of a softmax and
a deep autoencoder. Ramamurthy et al. [39] developed a novel method for the detection
of BT that is based on DL. They have optimized the process using the Whale Harris
Hawks framework. Following the segmentation of the tumors in the images using cellular
automata, several parameters including the mean, size, kurtosis, and variance are retrieved.
Following this, the components are classed for improved brain tumors identification using
an optimization method that was provided by Whale Harris Hawks. Using a skull skipping
algorithm, in conjunction with a support vector machine (SVM) classifier, the approach
that was suggested achieved an accuracy rate of 81.6%, which was the highest it had ever
achieved. The Berkeley wavelet transformation (BWT) and segmented characteristics were
used by Bahadure et al. [40] which successfully identify brain tumors (BT) (contrast, texture,
shape, and color). The skull skipping algorithm was utilized to accomplish this goal, which
resulted in the removal of non-brain parts from MR images. The results of the experiment
showed that there was a 96.51% chance that they were accurate. Waghmare et al. [41] used
of several distinct CNN architectures in order to recognize and classify brain tumors. The
classification accuracy of the expanded data set was improved by fine-tuning the VGG-16
algorithm, and it achieved the highest level of accuracy that was appropriate, which was
95.71%. This was the highest level of classification accuracy that could be achieved.

The current state of the art in using deep learning to classify MRI images of brain
tumors shows the network’s higher performance in correctly and precisely classifying brain
tissues, indicating its wider usage in this field and how transfer learning contributes to high
accuracy in brain MRI segmentation. From the above literature its clearly shows that the
TL model performs better than other DL models in brain tumor detection and classification.
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In order to further improve the classification performance of BTs, we used a hybrid transfer
learning model of AlexNet and GoogleNet to create a hybrid deep learning model for
the segmentation and classification of three types of brain tumors (pituitary, meningioma,
and glioma).

3. Methodology

This section describes the methodology and the dataset, including the CE-MRI dataset
and its pre-processing, as well as the proposed GN-AlexNet deep learning model for
classifying CE-MRI data set images into BT tumor tri-classification. The main modules in
the framework of developing and testing the proposed CAD system for BT classification
are shows in Figure 1. Furthermore, the performance indicators (Accuracy, Precision,
Sensitivity, Specificity) display the classification performance of the proposed model.
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3.1. Brain Tumor CE-MRI Dataset

To conduct their research, the authors used a publicly available MRI dataset. [42]. The
TJU Hospital in China gathered brain MRI scans from 262 patients. There are 3062 brain
MRI images in total, including 1426 gliomas, 760 meningiomas, and 940 pituitary tumor
images. Figure 2 shows examples of the various classes of BT images. The image is a 2D
volume with 512 × 512 rs and a size of 0.49 × 0.49 mm2. The dataset format is available
online in .mat in figshare. In this study, 2146 MRI images (70%) were used for training,
while 918 were used for testing (30%). Table 1 contains detailed information about the
CE-MRI data set, such as the number of images, patients, and class label for each type of
brain cancer (glioma, pituitary, and meningioma) as shown in Figure 2.
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Table 1. A description of the brain data set.

Tumor Class Images #Patients Class Labels MRI-Images Testing Data Training Data

Glioma 1427 90 1 AX(494),CO(437),SA(496) 999 428
Pituitary 940 63 2 AX(291),CO(319),SA(320) 652 278

Meningioma 708 83 3 AX(209),CO(268),SA(231) 495 213
Total 3075 36 2146 918

Axial = AX, Coronal = CO, and Sagittal = SA.

3.2. Data Preprocessing and Augmentation

This dataset includes 3075 images of different types of BTs. Each image was trans-
formed to a grayscale format. These data, which have been preprocessed, are one of the
things that the neural network uses as input, along with the label of the image. Label 1
describes an image of a glioma; Label 2 depicts the pituitary gland, and Label 3 depicts
a meningioma. However, a dataset consisting of 3075 MRI images is needed, in order to
train the hybrid deep transfer learning (GN-AlexNet) model effectively, which has one
million parameters. Data augmentation is the approach that needs to be taken to solve this
issue. By rotating, scaling, and adding noise to the data that already exists, this method
can be used to artificially increase the size of the data. The data can be magnified by
zooming in on the image, rotating it horizontally or vertically by a predetermined angle,
and adjusting the brightness range upwards or downwards, respectively. The MRI images
have been augmented by utilizing all these methods. Because of the application of the
augmentation methods, the data size was increased by a factor of 16, and as a result, the
issue of overfitting was resolved [11].
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3.3. Proposed Model

Within the scope of this study, we propose a hybrid transfer learning model that
combines AlexNet and GoogleNet to produce a hybrid deep learning model for the segmen-
tation and classification of three distinct types of brain tumors (pituitary, meningioma, and
glioma). First, in this section, we go over AlexNet and GoogleNet, and then, the specifics of
the hybrid GN-AlexNet deep learning model are described.

3.3.1. AlexNet

The AlexNet model was developed by Alex Krizhevsky et al. [43]. On 30 September 2012,
AlexNet participated in ImageNet Large-Scale Visual Recognition Competition. The top-5
error rate for the network was 15.3%, which was more than 10.8 points lower than the
runner-up. The primary finding of the original study was that the model’s depth was
crucial for its greater efficiency, which was computationally expensive but made achievable
by the use of graphics processing units (GPUs) in training, as seen in Figure 3.
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In addition to this, elevating the total number of convolution layers in the AlexNet re-
sulted in the production of features that were more specific, precise, and robust. In contrast
to the first layer, which only recovered low-level features, the subsequent two convolutional
layers were able to extract high-level characteristics. The Max-pooling layer helped to
improve the accuracy towards the end of the network as shown in Figure 3.

3.3.2. GoogleNeT

The block of the GoogleNet and their fundamental layers are what makes up the
hybrid deep (GN-AlexNet) model. The AlexNet layer is also a part of the model. Training
a convolution network is a challenging task in the beginning, and the procedure can
sometimes take as much as a few hours. Therefore, rather than beginning the process of
training a new deep learning classifier, it would be preferable to train the proposed model
using a classifier.

This would be the preferred method. Considering GoogleNet’s [16] success in the
ILSVRC (2014) ImageNet competition, we decided to make it the cornerstone of our own
research. In total, GoogleNet consists of 144 layers, with only 22 of those layers being
learnable. Two convolution layers, four maximum pooling layers, one average pooling
layer, two normalization layers, one completely connected layer, and nine inception layer
modules are included in these layers. Additionally, each inception module contained one
MXs layer in addition to the six CLS that were standard. The GoogleNet algorithm has been
updated with a new input layer with dimensions of 224 × 224 × 1. The ReLU activation
function was utilized within the framework of the pre-trained GoogLeNet methodology.
Throughout the procedure, the ReLU activation function disregarded any values that were
in the negative range and replaced them with zero. Leaky ReLU, an improved version of
ReLU that replaces all negative values with positive ones, is another option [44]. During
the process, the Deep Transfer learning model classifier that had initially been developed
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lost the last five layers of the GoogleNet classifier that it had been using. After they were
removed, ten new layers were added in their place. In addition to this, the Leaky ReLU
activation function was applied to the ReLU activation function that was present in the
feature map layer to enhance the expressiveness of the model that was proposed and to
discover a solution to the dying ReLU problem.

Three methods from the NIN (Network In Network)—inception modules, global
average pooling, and the 11 Convolution—have been implemented in GoogleNet. Figure 4a
depicts an inception module, which consists of a max pooling layer of size 33 and three
convolutional layers of size 11, 33, and 55 that operate in tandem. The inception module
accepts data from a lower layer, processes it using parallel operations, and sends the
combined resultant feature maps on to the next layer. Using this method, you can expand
your network. As seen in Figure 4b, an 11 convolution applied to the inception module’s
internal layers significantly reduced the module’s processing requirements.
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Figure 4. GoogleNet’s inception module. (a) Inception module with no convolution layer.
(b) A 1 × 1 convolution layer in inception “Reprinted with permission from Ref. [15]. 2022,
Samee et al.”.

It was possible to do this without changing the fundamental structure of the convo-
lution neural network. After these modifications were made, the total number of layers
increased to 154, from 144 previously. A filter (patch) size of 8 × 8 was used in the first
convolution layer, which greatly reduced the image size very soon. The 1 × 1 convolu-
tion block was used in the convolutional network’s second layer, which had a depth of 2.
Dimensionality reduction was the goal, so this was done. In addition, GoogleNet’s incep-
tion module makes use of a number of convolution kernels, including 1 × 1, 3 × 3, and
5 × 5, to extract features at a range of granularities, from the tiniest details to the most
fundamental aspects [45].

The greater the convolution kernel, the more surface area it covers while computing
the features. Similarly, the 1 × 1 convolution kernel provides more information while also
reducing the amount of processing required. Four convolutional layers with a very small
filter size of 1 × 1 have been included as part of the recent updates as shown in Table 2.

3.3.3. The Hybrid GN-AlexNet Deep Learning Model

In addition, the ReLU activation function in the feature map layer was modified to
improve the expressiveness of the proposed model and get over the dying ReLU issue. As
a consequence of this, the proposed model was in a role to extract more comprehensive,
discriminative, and deep features than the state-of-the-art pre-trained deep learning models
that were mentioned earlier. This resulted in improved classification performance, which
can be seen in Figure 5.
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Table 2. The specifications of the layers in the proposed learning model, GN-AlexNet.

Layer Filter Size No of Filter Epsilon

Convolution Layer 1 × 1 940 0.002
Batch_norm_layer - - 0.001

Soft-Max Layer
Clip_ReLU_layer

Group_Conv_layer 3 × 3 940
Clip_ReLU_layer 0.002

Convolution Layer 1 × 1 300
Convolution Layer 1 × 1 1260
Batch_norm_layer 0.002

Glob_AVG_P_layer
FC layer
SoftMax

Classification Layer
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The proposed hybrid learning model (GN-AlexNet), has different layers including:
the input, convolutional, activation function, normalization, Max_Pooling, fully connected,
softmax, and classification layers. The input layer receives the images as input. In the GN-
AlexNet learning model, the input images have a size of 224 × 224 × 1. Those three digits
represent the image’s width, height, and channel size in grayscale (1 for grayscale images
and 3 for color images). The images were first sent to an input layer before any further
processing could begin. The convolutional layer involves a mathematical operation that
requires two inputs: the input image matrix and a filter. The input image was multiplied
by the filter, and a feature map was generated as an output. The mathematical expression
of the convolution layer is as follows in Equation (1).

Za
b = ∑i∈dc

kk
aj ∗ yc−1

l + ac
d (1)

where K represents the number of layers, ac
d shows bias, and the feature map is both layers

represented by Za
b to c − 1 of the layer d.
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The activation layer includes an activation function that gives nonlinearity to the
neural network. Rectifier linear units (ReLUs) are used because they increase the training
speed. Equation (2) shows the mathematical equation for the ReLU activation.

R(x) =
{

x i f x > 0
0 i f x ≤ 0

(2)

To normalize the parameters generated by the proposed convolution layers, a batch
normalization layer is applied to the outputs. The proposed model training period is
shortened as a result of normalization, which makes the learning process both more
effective and more rapidly accomplished.

The main limitation of the convolutional layer is that it captures features that depend
on their location. Thus, if the location of the feature in the image changes slightly, the
classification becomes inaccurate. Max-Pooling allows the network to overcome this
limitation by making the representation more compact so that it is invariant to minor
changes and insignificant details. Max pooling and average pooling were used to connect
the features.

The fully connected layer receives the features learned in the convolutional layers.
When a layer is said to be “fully connected”, it means that all of its nodes are linked to
those in the next layer. This layer’s key focus is to label input images with their respective
classes. A softmax activation function is used in this layer.

The Loss function (H) must be minimized during training. The output is calculated
after the image has passed through all the previous layers. It is compared to the desired
output using the loss function, and the error rate is calculated. This process is repeated
for several iterations until the loss function is minimized. The loss function were used
categorical cross-entropy (CCE). Equation (3) shows the mathematical equation for CCE.

H = −H = −∑M

m=1
yl

m· klogŷj
m (3)

where ŷj
m represents predicted label and yl

m represents target label of sample m among M
number of samples.

The activation function causes further normalization of the fully connected layer’s
output. The probabilistic computation is carried out by the network, and softmax generates
the output in positive values for each category. The classification layer is the final layer of
the model to be shown. This layer is responsible for generating the output by combining
all of the inputs. A probability distribution was obtained as a consequence of the use of the
softmax activation function. Table 2 lists the layers used in the proposed model, as well as
their specifications.

3.4. Experimental Setup

This research implemented a wide range of extensive libraries while conducting
experiments, including Tensorflow, Pandas, Numpy, and Keras. The proposed model is
being trained on Keras while also running Python 3.6. To validate the performance of
our proposed framework, analytical simulations are run on a computer equipped with
a cori7-processor and a Graphical Processing Unit (GPU). These simulations are carried out
using an Intel CPU.

3.5. Performance Evaluation Metrics

To assess the performance of brain tumor detection, evaluation metrics must be per-
formed, including all of the framework’s available parameters. Although there is no
standardized measure that can be used to classify performance matrices, the key perfor-
mance matrices Accuracy (Acc), Sensitivity (Sens), Precision (Prec), and Specificity (Spec)
are used relatively frequently.
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This performance matrix was used to investigate the feasibility of the proposed model.
The accuracy of a model is entirely dependent on several critical metrics, including the True
Positive Rate (TPR) and the True Negative Rate (TNR), as well as the False Positive Rate
(FPR) and the False Negative Rate (FNR). Equations (4)–(7) describe the key performance
indicators that have been employed in this study.

Acc =
TP + TN

TP + TN + FP + FN
(4)

Prec =
TP + TN
TP + FP

(5)

Sens =
TP + TN
TP + FN

(6)

Spec =
2∗TP

2∗TP + FP + FN
(7)

4. Result and Discussion

This section provides an evaluation of the GN-AlexNet models performance in com-
parison to other transfer learning models, including VVG-16, AlexNet, SqeezNet, ResNet,
and Mobile Net V2, utilizing key performance indicators for the purpose of detecting
and classifying brain tumors. Accuracy is an important component that demonstrates
the specific class efficiency. Furthermore, the precision represents the ratio of accuracy
in real-time tumor class prediction. While specificity is used to detect non-tumor classes.
The Acc, Pres, Sens, and Spec of the proposed model and other transfer learning methods
were compared in this study. Figure 6 compares the GN-AlexNet model’s attained Acc,
Pres, Sens, and Spec to the other transfer learning models. As shown in the bar chart, the
classification performance of the proposed model revealed that it outperformed other TL
models in terms of Acc (99.10), Pres (99%), Sens (98.90%), and Spec (98.50%). As shown in
the Figure 5, the SqueezNet model has the lowest performance measure.
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When assessing how well an evaluation indicator performs, a confusion matrix can
be used to quantify how well each class is classified. The proposed GN-AlexNet showed
excellent tri-tumor type detection and accurate classification of each brain tumor type in
this experiment, as measured by the accuracy of their confusion matrices. Figure 7 displays
that the transfer learning model has the lowest performance measure.
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The ROC curve is an essential tool for assessing whether a system is successful in the
detection of brain tumors. Based on the ratio of the true positive rate (TPR) to the false
positive rate (FPR), the ROC curve illustrates how well each classification can detect a given
variable (TPR). Figure 8 shows the receiver operating characteristic (ROC) curve for the pro-
posed model performs exceptionally well in comparison to other transfer learning methods.

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 8. The ROC of the proposed model with transfer learning techniques in brain tumor detec-

tion. 

To improve the proposed model even further, we compared it to the top-performing 

TL model using the confusion matrix’s key performance indicators: the True Positive Rate 

(TPR), True Negative Rate (TNR), and Matthews Correlation Coefficient (MCC) (Alexnet 

and MobileNet-V2). As can be seen in Figure 9, the TPR, TNR, and MCC values are all 

highest for the proposed model. 

Figure 8. The ROC of the proposed model with transfer learning techniques in brain tumor detection.

To improve the proposed model even further, we compared it to the top-performing
TL model using the confusion matrix’s key performance indicators: the True Positive Rate
(TPR), True Negative Rate (TNR), and Matthews Correlation Coefficient (MCC) (Alexnet
and MobileNet-V2). As can be seen in Figure 9, the TPR, TNR, and MCC values are all
highest for the proposed model.
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Figure 9. Bar chart of the attained values of the TPR, TNR, and MCC of the proposed model and the
other TL models.

4.1. FDR, FNR, FOR, and FPR Analysis

In addition, the proposed hybrid DTL model outperforms the state-of-the-art transfer
learning models on the current dataset across a wide range of performance metrics. These
metrics include the false positive rate (FPR), the false negative rate (FNR), the false omission
rate (FOR), and the false detection rate (FDR) are as follows:

FDR =
FP

FP + TP
(8)

FPR =
FP

FP + TN
(9)

FNR =
FN

FN + FP
(10)

FOR = 1− FN
TN + FN

(11)

FDR = the proportion of patients who have a positive test result, despite the fact that
the fundamental condition is negative, is a false discovery rate.

FPR = the number of individuals who have a condition that is known to be negative but
for which the test nonetheless returns a positive result is known as the false positive rate.

FNR = the false negative rate can be defined as the proportion of individuals who
have a known positive condition but have a negative test result for that disease.

FOR = The false omission rate can be defined as the proportion of individuals who
have a negative test result despite the fact that they actually have a positive condition.

Figure 10 demonstrates that the proposed model possesses impressive performance
metrics such as an FPR value of 0.0030%, FOR value of 0.0050%, FDR value of 0.00525%,
and FNR value of 0.0012%.
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The training time of a system is an important metric for assessing its performance
because it measures how long it takes for a system to absorb the sustainability of its relative
features. In this study, the proposed model’s training time was 16 ms, which is very short
when compared to other transfer learning methods, as shown in Figure 11.

Diagnostics 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 10. the attained values of the FDR, FNR, FPR, and FOR of the proposed model and the other 

TL models. 

The training time of a system is an important metric for assessing its performance 

because it measures how long it takes for a system to absorb the sustainability of its rela-

tive features. In this study, the proposed model’s training time was 16 ms, which is very 

short when compared to other transfer learning methods, as shown in Figure 11. 

 

Figure 11. The time complexity of the proposed transfer learning techniques in brain tumor detec-

tion. 

  

Figure 11. The time complexity of the proposed transfer learning techniques in brain tumor detection.



Diagnostics 2022, 12, 2541 16 of 19

4.2. Comparative Results with Existing Benchmark

The GA-AlexNet that has been proposed has been evaluated alongside other outstand-
ing benchmark algorithms such as LSTM, CNN, GRU, and many others. Its performance
was evaluated using Acc, Pres, Sens, and Spec, as shown in Figure 12, so that its perfor-
mance can be validated.
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Figure 12. Comparing the attained results of the proposed CAD system for BT classification with
state-of-art DL techniques.

One of the more well-known applications of machine learning in the medical field is
the classification of brain tumors. In order to create a reliable CAD system for these kinds
of uses, many researchers and developers have looked into the problem and attempted
to create one, with their findings published as a body of work. As shown in Table 3, the
proposed system’s classification performance is compared to that of several state-of-the-art
breast cancer detection systems. The purpose of this comparison is to gauge how well the
modified system.

Table 3. Comparative study of the proposed model with recent state-of-art methods.

References Methods Acc (%) Prec (%) Sens (%) Spec (%)

This work Proposed model 99.1 99 98.9 98
[46] CNN 91.6 90.8 89.9 89.5
[47] BWT+SVM 95.9 94.6 93.8 93.6
[48] SVM, KNN 96.8 95.2 95 94.6
[11] AlexNet 94.6 93.6 93 92.4
[47] GA-CNN 93.9 92.5 92 91.9
[31] M-SVM 96.8 96 95.8 95
[29] ANN 94.7 93.5 93 92.50
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5. Conclusions

This research was conducted with the intention of classifying BTs tri-classification
(pituitary, meningioma, and glioma), which was implemented across multiple layers
of GoogleNet and AlexNet. The architecture of GoogleNet served as the basis for the
development of the GN-AlexNet framework that was proposed. After removing the five
layers of GoogleNet, 10 additional layers of AlexNet were added, which extract features
and classify different types of BTs automatically. In addition, the ReLU activation function
was modified to be a leaky ReLU activation function, but the core architecture of AlexNet
was not changed.

On the same CE-MRI dataset, the proposed model was compared to transfer learning
techniques (VGG-16, AlexNet, SqeezNet, ResNet, and MobileNet-V2) and ML/DL. The
proposed hybrid TL model outperformed the current methods in terms of accuracy and
sensitivity (accuracy of 99.51% and sensitivity of 98.90%). ROC (%), time complexity (%),
and an extensive metrics approach (FNR, FPR, and MCC values) were used to compare
the proposed techniques with previous TL methods and the latest ML/DL model. The
proposed hybrid model diagnostic improves each BT class with improved classification
performance and less detection time (%). In addition, a future study will show how the
hybrid method performs with various data types, such as spotting signs of lung cancer,
COVID-19 infection, and pneumonia. Furthermore, the proposed model also needs to be
tested on big data.

Author Contributions: Conceptualization, N.A.S., M.S.A.M.A.-G., S.A. and M.S.A.M.; method-
ology, N.A.S., M.S.A.M.A.-G., S.A. and M.S.A.M.; software, M.S.A.M.A.-G., S.A. and M.S.A.M.;
validation, N.A.S., M.S.A.M.A.-G. and S.A.; formal analysis, N.A.S., M.S.A.M.A.-G., S.A., M.S.A.M.,
G.A., H.A.A., M.A. and N.F.M.; investigation, N.A.S., M.S.A.M.A.-G., S.A., M.S.A.M., G.A., H.A.A.,
M.A. and N.F.M.; resources, N.A.S. and N.F.M.; data curation, M.S.A.M.A.-G., S.A. and M.S.A.M.;
writing—original draft preparation, N.A.S., M.S.A.M.A.-G., S.A. and M.S.A.M.; writing—review and
editing, N.A.S., M.S.A.M.A.-G., S.A., M.S.A.M., G.A., H.A.A., M.A. and N.F.M.; visualization, N.A.S.,
M.S.A.M.A.-G., S.A. and M.S.A.M.; supervision, N.A.S. and N.F.M.; project administration, N.A.S.
and N.F.M. All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project Number
PNURSP2022R206, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available at
https://www.mathworks.com/products/matlab.html (accessed on 10 September 2022).

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Number PNURSP2022R206, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting new advances in neuro-oncology: The

avenue to a cure for malignant glioma. CA A Cancer J. Clin. 2010, 60, 166–193. [CrossRef] [PubMed]
2. Shree, N.V.; Kumar, T.N. Identification and classification of BTMRI images with feature extraction using DWT and probabilistic

neural network. Brain Inform. 2018, 5, 23–30. [CrossRef] [PubMed]
3. Saddique, M.; Kazmi, J.H.; Qureshi, K. A hybrid approach of using symmetry technique for brain tumors. Comput. Math.

Methods Med. 2014, 2014, 712783. [CrossRef] [PubMed]
4. Komninos, J.; Vlassopoulou, V.; Protopapa, D.; Korfias, S.; Kontogeorgos, G.; Sakas, D.E.; Thalassinos, N.C. Tumors are metastatic

to the pituitary gland: Case report and literature review. J. Clin. Endocrinol. Metab. 2004, 2, 574–580. [CrossRef]
5. DeAngelis, L.M. Brain tumors. N. Engl. J. Med. 2001, 344, 114–123. [CrossRef] [PubMed]
6. Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.;

Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 2016, 132, 803–820. [CrossRef] [PubMed]

https://www.mathworks.com/products/matlab.html
http://doi.org/10.3322/caac.20069
http://www.ncbi.nlm.nih.gov/pubmed/20445000
http://doi.org/10.1007/s40708-017-0075-5
http://www.ncbi.nlm.nih.gov/pubmed/29313301
http://doi.org/10.1155/2014/712783
http://www.ncbi.nlm.nih.gov/pubmed/24734116
http://doi.org/10.1210/jc.2003-030395
http://doi.org/10.1056/NEJM200101113440207
http://www.ncbi.nlm.nih.gov/pubmed/11150363
http://doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931


Diagnostics 2022, 12, 2541 18 of 19

7. Chahal, P.K.; Pandey, S.; Goel, S. A survey on brain tumors detection techniques for MR images. Multimed. Tools Appl. 2020, 79,
21771–21814. [CrossRef]

8. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumors classification using deep CNN with
extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [CrossRef]

9. Rehman, A.; Naz, S.; Razzak, M.I.; Akram, F.; Imran, M. A deep learning-based framework for automatic brain tumors
classification using transfer learning. Circuits Syst. Signal Process. 2020, 39, 757–775. [CrossRef]

10. Wang, Y.; Zu, C.; Hu, G.; Luo, Y.; Ma, Z.; He, K.; Wu, X.; Zhou, J. Automatic tumor segmentation with deep convolutional neural
networks for radiotherapy applications. Neural Process. Lett. 2018, 48, 1323–1334. [CrossRef]

11. Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional denseness
for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Honolulu, HI, USA, 21–26 July 2017; pp. 11–19.

12. Zhang, Q.; Cui, Z.; Niu, X.; Geng, S.; Qiao, Y. Image segmentation with pyramid dilated convolution based on ResNet and
U-Net. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14 November 2017;
pp. 364–372.

13. Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, S.A.; Daradkeh, Y.I.; Javeed, D.; Ur Rehman, A.; Hamam, H. A Hybrid Deep
Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [CrossRef]

14. Ding, Y.; Zhang, C.; Lan, T.; Qin, Z.; Zhang, X.; Wang, W. Classification of Alzheimer’s disease based on the combination of
morphometric feature and texture feature. In Proceedings of the 2015 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Washington, DC, USA, 9–12 November 2015; pp. 409–412.

15. Samee, N.A.; Atteia, G.; Meshoul, S.; Al-Antari, M.A.; Kadah, Y.M. Deep Learning Cascaded Feature Selection Framework for
Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach. Mathematics 2022, 10, 3631. [CrossRef]

16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

17. Harish, P.; Baskar, S. MRI based detection and classification of brain tumor using enhanced faster R-CNN and Alex Net model.
Mater. Today Proc. 2020, 11, 495. [CrossRef]

18. Ijaz, A.; Ullah, I.; Khan, W.U.; Ur Rehman, A.; Adrees, M.S.; Saleem, M.Q.; Cheikhrouhou, O.; Hamam, H.; Shafiq, M. Efficient
algorithms for E-healthcare to solve multiobject fuse detection problem. J. Healthc. Eng. 2021, 2021, 9500304.

19. Ahmad, I.; Liu, Y.; Javeed, D.; Ahmad, S. A decision-making technique for solving order allocation problem using a genetic
algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2020, 853, 012054. [CrossRef]

20. Binaghi, E.; Omodei, M.; Pedoia, V.; Balbi, S.; Lattanzi, D.; Monti, E. Automatic segmentation of MR brain tumors images using
support vector machine in combination with graph cut. In Proceedings of the 6th International Joint Conference on Computational
Intelligence (IJCCI), Rome, Italy, 22–24 October 2014; pp. 152–157.

21. Wang, X.; Ahmad, I.; Javeed, D.; Zaidi, S.A.; Alotaibi, F.M.; Ghoneim, M.E.; Daradkeh, Y.I.; Asghar, J.; Eldin, E.T. Intelligent
Hybrid Deep Learning Model for Breast Cancer Detection. Electronics 2022, 11, 2767. [CrossRef]

22. Ahmad, S.; Ullah, T.; Ahmad, I.; Al-Sharabi, A.; Ullah, K.; Khan, R.A.; Rasheed, S.; Ullah, I.; Uddin, M.; Ali, M. A novel hybrid
deep learning model for metastatic cancer detection. Comput. Intell. Neurosci. 2022, 2022, 8141530. [CrossRef] [PubMed]

23. Ahmad, I.; Wang, X.; Zhu, M.; Wang, C.; Pi, Y.; Khan, J.A.; Khan, S.; Samuel, O.W.; Chen, S.; Li, G. EEG-based epileptic
seizure detection via machine/deep learning approaches: A Systematic Review. Comput. Intell. Neurosci. 2022, 2022, 6486570.
[CrossRef] [PubMed]

24. Ullah, N.; Khan, J.A.; Alharbi, L.A.; Raza, A.; Khan, W.; Ahmad, I. An Efficient Approach for Crops Pests Recognition and
Classification Based on Novel DeepPestNet Deep Learning Model. IEEE Access 2022, 10, 73019–73032. [CrossRef]

25. Tufail, A.B.; Ullah, I.; Khan, W.U.; Asif, M.; Ahmad, I.; Ma, Y.K.; Khan, R.; Ali, M. Diagnosis of diabetic retinopathy through
retinal fundus images and 3D convolutional neural networks with limited number of samples. Wirel. Commun. Mob. Comput.
2021, 2021, 6013448. [CrossRef]

26. Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumour classification in MRI image using convolutional neural network.
Math. Biosci. Eng. 2020, 17, 6203–6216. [CrossRef] [PubMed]

27. Amin, J.; Sharif, M.; Haldorai, A.; Yasmin, M.; Nayak, R.S. Brain tumour detection and classification using machine learning:
A comprehensive survey. Complex Intell. Syst. 2021, 8, 3161–3183. [CrossRef]

28. Srivastava, N.; Hinton, G.E.; Sutskever, I. A simple way to prevent neural networks from over fitting. J. Mach. Learn. Res.
2014, 15, 1929–1958. Available online: https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf (accessed on
10 September 2022).

29. Dvorák, P.; Menze, B. Structured prediction with convolutional neural networks for multimodal brain tumour segmentation. In Pro-
ceedings of the MICCAI Multimodal Brain Tumour Segmentation Challenge (BraTS), Munich, Germany, 5–9 October 2015; pp. 13–24.
Available online: http://people.csail.mit.edu/menze/papers/dvorak_15_cnnTumor.pdf (accessed on 10 September 2022).

30. Irsheidat, S.; Duwairi, R. Brain Tumour Detection Using Artificial Convolutional Neural Networks. In Proceedings of the
2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020;
pp. 197–203. [CrossRef]

http://doi.org/10.1007/s11042-020-08898-3
http://doi.org/10.1016/j.jocs.2018.12.003
http://doi.org/10.1007/s00034-019-01246-3
http://doi.org/10.1007/s11063-017-9759-3
http://doi.org/10.3390/electronics11071146
http://doi.org/10.3390/math10193631
http://doi.org/10.1016/j.matpr.2020.11.495
http://doi.org/10.1088/1757-899X/853/1/012054
http://doi.org/10.3390/electronics11172767
http://doi.org/10.1155/2022/8141530
http://www.ncbi.nlm.nih.gov/pubmed/35785076
http://doi.org/10.1155/2022/6486570
http://www.ncbi.nlm.nih.gov/pubmed/35755757
http://doi.org/10.1109/ACCESS.2022.3189676
http://doi.org/10.1155/2021/6013448
http://doi.org/10.3934/mbe.2020328
http://www.ncbi.nlm.nih.gov/pubmed/33120595
http://doi.org/10.1007/s40747-021-00563-y
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://people.csail.mit.edu/menze/papers/dvorak_15_cnnTumor.pdf
http://doi.org/10.1109/ICICS49469.2020.239522


Diagnostics 2022, 12, 2541 19 of 19

31. Sravya, V.; Malathi, S. Survey on Brain Tumour Detection using Machine Learning and Deep Learning. In Proceedings of the
2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021;
pp. 1–3. [CrossRef]

32. Dipu, N.M.; Shohan, S.A.; Salam, K.M.A. Deep Learning Based Brain Tumour Detection and Classification. In Proceedings of the
2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–6. [CrossRef]

33. Gaikwad, S.; Patel, S.; Shetty, A. Brain Tumour Detection: An Application Based on Machine Learning. In Proceedings of the 2021
2nd International Conference for Emerging Technology (INCET), Belagavi, India, 21–23 May 2021; pp. 1–4. [CrossRef]

34. Khairandish, M.O.; Sharma, M.; Jain, V.; Chatterjee, J.M.; Jhanjhi, N.Z. A hybrid CNN-SVM threshold segmentation approach for
tumor detection and classification of MRI brain images. IRBM 2021, 43, 290–299. [CrossRef]

35. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumors classification for MR images using transferlearning
and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [CrossRef] [PubMed]

36. Kumar, S.; Mankame, D.P. Optimization drove deep convolution neural network for brain tumors classification. Biocybern. Biomed.
Eng. 2020, 40, 1190–1204. [CrossRef]

37. Deepak, S.; Ameer, P.M. Brain tumors classification using in-depth CNN features via transfer learning. Comput. Biol. Med. 2019,
111, 103345. [CrossRef] [PubMed]

38. Raja, P.S. Brain tumors classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation
approach. Biocybern. Biomed. Eng. 2020, 40, 440–453. [CrossRef]

39. Ramamurthy, D.; Mahesh, P.K. Whale Harris Hawks optimization-based deep learning classifier for brain tumors detection using
MRI images. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 1–14.

40. Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Image analysis for MRI-based brain tumors detection and feature extraction using
biologically inspired BWT and SVM. Int. J. Biomed. Imaging 2017, 2017, 9749108. [CrossRef] [PubMed]

41. Waghmare, V.K.; Kolekar, M.H. Brain tumors classification using deep learning. In The Internet of Things for Healthcare Technologies;
Springer: Singapore, 2021; Volume 73, pp. 155–175.

42. Resize Function. Available online: https://www.mathworks.com/products/matlab.html (accessed on 10 September 2022).
43. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
44. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853.
45. Bai, J.; Jiang, H.; Li, S.; Ma, X. Nhl pathological image classification based on hierarchical local information and googlenet-based

representations. BioMed Res. Int. 2019, 2019, 1065652. [CrossRef]
46. Hossain, T.; Shishir, F.S.; Ashraf, M.; Al Nasim, M.A.; Shah, F.M. Brain tumor detection using convolutional neural network. In

Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT),
Dhaka, Bangladesh, 3–5 May 2019.

47. Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. Cnn based multiclass brain tumor
detection using medical imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. [CrossRef] [PubMed]

48. Kumar, T.S.; Rashmi, K.; Ramadoss, S.; Sandhya, L.K.; Sangeetha, T.J. Brain tumor detection using SVM classifier. In Proceedings
of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 4 May 2017.

http://doi.org/10.1109/ICCCI50826.2021.9457019
http://doi.org/10.1109/CONIT51480.2021.9498384
http://doi.org/10.1109/INCET51464.2021.9456347
http://doi.org/10.1016/j.irbm.2021.06.003
http://doi.org/10.1016/j.compmedimag.2019.05.001
http://www.ncbi.nlm.nih.gov/pubmed/31150950
http://doi.org/10.1016/j.bbe.2020.05.009
http://doi.org/10.1016/j.compbiomed.2019.103345
http://www.ncbi.nlm.nih.gov/pubmed/31279167
http://doi.org/10.1016/j.bbe.2020.01.006
http://doi.org/10.1155/2017/9749108
http://www.ncbi.nlm.nih.gov/pubmed/28367213
https://www.mathworks.com/products/matlab.html
http://doi.org/10.1145/3065386
http://doi.org/10.1155/2019/1065652
http://doi.org/10.1155/2022/1830010
http://www.ncbi.nlm.nih.gov/pubmed/35774437

	Introduction 
	Literature Review 
	Methodology 
	Brain Tumor CE-MRI Dataset 
	Data Preprocessing and Augmentation 
	Proposed Model 
	AlexNet 
	GoogleNeT 
	The Hybrid GN-AlexNet Deep Learning Model 

	Experimental Setup 
	Performance Evaluation Metrics 

	Result and Discussion 
	FDR, FNR, FOR, and FPR Analysis 
	Comparative Results with Existing Benchmark 

	Conclusions 
	References

