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Abstract

Background: The effects of dose-rate and its implications on radiation biodosimetry methods are not well studied
in the context of large-scale radiological scenarios. There are significant health risks to individuals exposed to an
acute dose, but a realistic scenario would include exposure to both high and low dose-rates, from both external
and internal radioactivity. It is important therefore, to understand the biological response to prolonged exposure;
and further, discover biomarkers that can be used to estimate damage from low-dose rate exposures and propose
appropriate clinical treatment.

Methods: We irradiated human whole blood ex vivo to three doses, 0.56 Gy, 2.23 Gy and 4.45 Gy, using two dose
rates: acute, 1.03 Gy/min and a low dose-rate, 3.1 mGy/min. After 24 h, we isolated RNA from blood cells and these
were hybridized to Agilent Whole Human genome microarrays. We validated the microarray results using gRT-PCR.

Results: Microarray results showed that there were 454 significantly differentially expressed genes after prolonged
exposure to all doses. After acute exposure, 598 genes were differentially expressed in response to all doses. Gene
ontology terms enriched in both sets of genes were related to immune processes and B-cell mediated immunity.
Genes responding to acute exposure were also enriched in functions related to natural killer cell activation and
cell-to-cell signaling. As expected, the p53 pathway was found to be significantly enriched at all doses and by both
dose-rates of radiation. A support vectors machine classifier was able to distinguish between dose-rates with 100 %
accuracy using leave-one-out cross-validation.

Conclusions: In this study we found that low dose-rate exposure can result in distinctive gene expression patterns
compared with acute exposures. We were able to successfully distinguish low dose-rate exposed samples from acute

dose exposed samples at 24 h, using a gene expression-based classifier. These genes are candidates for further testing
as markers to classify exposure based on dose-rate.
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Background

To optimize biodosimetry methods for estimating radi-
ation exposure after a large-scale radiological event, all
likely radiation qualities, modes of exposure and expos-
ure times should be considered while designing assays
that will be useful for triage [1]. It is important to deter-
mine whether an individual received a dose by a lower
dose-rate, which can be from both internal and external
sources of radiation, and which may pose a moderate
health risk as compared with a single acute dose. Low
dose-rates of exposure may also confound the estimation
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of total dose if dosimetry assays are not tailored to dis-
tinguish dose-rate effects [2].

There have been many studies addressing the develop-
ment of a gene expression-based signature for estimation
of dose, in peripheral blood irradiated ex vivo [3-6], in
blood from total body irradiated (TBI) patients [7-9], iso-
lated human monocytes [10], CD4+ lymphocytes [11],
skin from biopsies [12, 13], and cell lines from humans
[14—~16]; and a few that address effects of similar doses de-
livered over a period of hours or days in cell lines [15, 16],
but little is known about the gene expression response of
human blood to low dose-rates (LDR). Development of
a gene signature in blood that is able to discriminate
between irradiated samples without a matching pre-
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exposure sample has been shown to be a powerful tool
in biodosimetry assay development [3], and the goal of
this study was to use a similar approach and identify
genes that would discriminate between both dose and
dose-rates. There are in vivo studies on transcriptomic
changes in radiation workers; and also changes induced by
internal emitters in mice, that have determined dose and
dose-rate effects in organs and blood [17-23]. These stud-
ies have revealed that gene expression differences can be
detected after prolonged exposure times.

In the study presented in this paper, exposure of hu-
man blood ex vivo to LDR and acute irradiation gave a
robust gene expression response as measured by micro-
arrays and validated by qRT-PCR. We identified genes
that responded uniquely to LDR and not to acute doses.
Class prediction by dose-rate successfully identified sam-
ples as LDR-exposed or acute. This is an important first
step towards developing and further refining gene-
expression based assays that can be used to determine
the contribution of dose-rate to overall dose.

Methods

Irradiation and culture of blood

We collected blood from healthy volunteers (5 females
and 3 males) between the ages of 26 and 59 years, with
informed consent in compliance with the Columbia
University Institutional Review Board (protocol approval
number IRB-AAAF2671). 27 mL of blood from each
donor was collected into Sodium Citrate tubes (Becton
Dickinson, New Jersey, catalog# 366415) and mixed well.
Blood was diluted in equal volumes of RPMI solution
(supplemented with 10 % heat-inactivated fetal bovine
serum and 1 % penicillin streptomycin) prior to irradiations
in 50 mL Tube Spin® Bioreactor 50 tubes (TPP,
Switzerland), which are optimized for culture incuba-
tion and gas exchange.

All irradiations were performed in an X-Rad 320 Bio-
logical Irradiator (Precision X-Ray, North Branford CT).
This device provides a system for precise delivery of ra-
diation doses to specimens in a self-contained, shielded
cabinet, and features an adjustable shelf, exchangeable
beam hardening filters, and a programmable control panel
that allows tube current ranging from 0.1 to 12.5 mA at its
maximum. To achieve the lowest possible dose-rate using
this device, we designed and built a custom Thoraeus filter
(1.25 mm Sn, 0.25 mm Cu, 1.5 mm Al). This filter provides
a dose rate of ~4 Gy/day at the maximum SSD (source-to-
surface distance), and a dose rate of ~1Gy/min, an accept-
able “acute” dose rate, at 40 cm SSD. This custom beam
filter was designed to enable both acute and low dose rate
irradiations to be performed using the same quality of
x rays, while changing only the mA and SSD.

The protracted irradiations of blood samples also re-
quired the maintenance of a tissue culture environment,

Page 2 of 10

with control of temperature, humidity, and carbon dioxide
content. Commercially available incubators were deemed
unsuitable, due to the large amounts of metal in their con-
struction. We did not want any metal in the x-ray beam
because the increased scatter would affect dose homogen-
eity. We therefore, created an all plastic incubator (Fig. 1)
capable of incubating blood in 50 ml conical tubes, angled
to maintain a higher surface area to volume ratio for effi-
cient gas exchange, and to keep the blood within a 20 cm
diameter target area in order to minimize planar dose
variation. The samples were rotated at a speed of three
rotations per hour to further minimize any dose inhomo-
geneity. Temperature was controlled through solid state
heaters on a feedback loop attached to carbon fiber walls
to distribute the heat evenly. This setting maintained a
temperature of 37 °C (+0.5 °C) for 24 h. The CO, concen-
tration and humidity were maintained by perfusing the
incubator at a rate of 1.7 I/min with a gas mix (5 % CO,
and 95 % air) that was humidified using a bubble humidi-
fier and monitored directly by numeric readouts from a
GMP70 Hand-held CO, meter (Vaisala, Finland). The
temperature was also monitored directly by the readout of
the solid-state heater controller. Temperature and relative
humidity were also recorded using a data-logger (EL-USB-
2-LCD, Lascar Electronics, Inc., Erie, PA). For irradiations,
the incubator was placed in the X-ray machine and the
incubation parameters were allowed to stabilize before
blood samples (in 50 ml tubes) were placed in the sample
holders.

Acute exposures were performed at a dose rate of
1.03 Gy/min x rays at a machine setting of 320 keV/
12.5 mA. The samples were exposed to doses of 0.56 Gy,
2.23 Gy and 4.45 Gy and then returned to the cell cul-
ture incubator at 37 °C, 5 % CO, for the rest of the 24 h
incubation. For low dose-rate exposures, blood samples

s R

Fig. 1 Custom incubator for low-dose ex vivo blood irradiations,
consisting of (a) Incubator chamber containing the rotating sample
platform; (b) Heating elements attached to the chamber walls; (c).
Temperature controller; (d) Turntable motor; (e) CO, and humidity
monitor; and (f) Temperature and humidity logger. The sample platform
completes three rotations per hour to provide dose homogeneity. The
lid that seals this chamber during use is removed in this image
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were exposed to 0.56 Gy (3 h at 3.1 mGy/min, followed
by 21 h in a standard incubator), 2.23 Gy (12 h at
3.1 mGy/min, followed by 12 h in a standard incubator),
and 4.45 Gy (24 h at 3.1 mGy/min). RNA was isolated
from all samples at 24 h after the start of exposure. All
irradiated samples were compared with a matching
sham-irradiated control sample from the same donor.

Microarray analyses

RNA was isolated 24 h after the start of exposure follow-
ing the recommended protocol for the PerfectPure RNA
kit from 5Prime (Gaithersburg, MD). Globin transcripts
were reduced using the Ambion GLOBINCclear-Human kit
(Life Technologies, Grand Island, NY, catalog# AM1980).
RNA yields were quantified using the NanoDrop ND1000
Spectrophotometer (Thermo Scientific) and RNA quality
was checked using the 2100 Bioanalyzer (Agilent Tech-
nologies). RNA used for microarray hybridization had an
RNA Integrity Number of >8.5.

Cyanine-3 (Cy3) labeled cRNA was prepared with the
One-Color Low Input Quick Amp Labeling Kit (Agilent
Technologies) according to the manufacturer’s instruc-
tions. Dye incorporation and cRNA yield were verified
with the NanoDrop NDI1000 Spectrophotometer; 1.6
microgram of cRNA, >9 pmol Cy3 per microgram cRNA
was fragmented and hybridized (17 h with rotation at
65 °C) to Agilent Whole Human Genome Microarrays
4X44K v2 (G4112F), and then washed using the Gene
Expression Hybridization Kit and GE Wash Buffers as
recommended by Agilent. Slides were then scanned with
the Agilent DNA Microarray Scanner (G2505B), and the
images were analyzed (Agilent Feature Extraction Software
ver. 10.7) with default parameters for background cor-
rection and flagging non-uniform features.

Background-corrected hybridization intensities were
imported into BRB-ArrayTools, Version 4.2.1 [24] log2-
transformed and median normalized; after normalization
the distribution of signals remained uniform across all
arrays. Non-uniform outliers or features not significantly
above background intensity in 25 % or more of the hy-
bridizations were filtered out. A further filter requiring a
minimum 1.4 fold change in at least 20 % of the hybrid-
izations was then applied to remove genes with no vari-
ation across the dataset, with >10,000 genes remaining
which is optimal for data analyses; probes were also av-
eraged to one probe per gene and duplicate genes were
reduced by selecting the one with maximum signal in-
tensity, yielding a final set of 12,073 features that were
used for subsequent analyses. The microarray data is
available through the Gene Expression Omnibus with
accession number GSE65292.

RNA samples from five donors (3 male and 2 female
to mitigate against the possibility of sex-specific bias in
results [25, 26] were hybridized. A total of 35 RNA
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samples were hybridized in this study. Class comparison
analyses were conducted using BRB-ArrayTools to iden-
tify genes that were differentially expressed between
classes using a random-variance t-test [27]. Genes with
p-values less than 0.001 were considered statistically sig-
nificant. The false discovery rate (FDR) was also esti-
mated for each gene using the method of Benjamini and
Hochberg [28], to control for false positives.

Quantitative RT-PCR

The High-Capacity ¢cDNA Archive Kit (Life Technolo-
gies, Foster City, CA) was used to prepare cDNA from
total RNA from three of the female donors not used in
the microarray hybridization experiments. Quantitative
real-time RT-PCR (qRT-PCR) was performed for se-
lected genes using Tagman assays (Life Technologies) on
a Low Density array (384-well microfluidic card), to con-
firm microarray experiment findings for selected genes.
The 48 genes and corresponding assays are listed in
Additional file 1. In gene expression validation studies,
400 ng cDNA was used as input for PCR. Quantitative
real time PCR reactions were performed with the ABI
7900 Real Time PCR System using Universal PCR Master
Mix (Life Technologies), with initial activation at 50 °C for
120 s and 94.5 °C for 10 min, followed by 40 cycles of
97 °C for 30 s and 59.7 °C for 60 s. Relative fold-change
was calculated by the AACt method, using SDS version
2.3 (Thermofisher). Data were normalized to RPLPO
gene expression levels. We used Genorm [29] to assess
the stability of the housekeeping genes included on the
Low Density array panels, and RPLPO gene expression
was found to be most stable in our data. RPLPO was
therefore used to normalize the qRT-PCR data.

Gene Ontology and pathway analyses

Lists of genes significantly over- or under-expressed rela-
tive to controls were imported separately into the PAN-
THER database (version 9.0, release 2014-01-24) to
identify enriched biological themes and gene ontology
(GO) terms using the statistical overrepresentation test,
GO-Slim Biological Processes, Molecular Functions and
Pathways [30]. Benjamini corrected p- values <0.05 were
considered significant.

Class prediction analysis

Gene sets for class prediction were determined using
BRB-ArrayTools Class Predictions, which provide vari-
ous options for classifier prediction and cross-validation.
Predictions used a cut off significance p-value of 0.0001
(for dose-rate and irradiation classification) and 0.001
(for dose classification) between classes to determine the
classifier gene set. Support Vector Machines [31] was
used for classification of samples between two categor-
ies, and Diagonal Linear Discriminant Analysis, which
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avoids complex models with excessive parameters in
order to avoid over fitting data without loss of perform-
ance [32] was used for classifications with more than
two categories. The algorithms tested the classifier gene
set for accuracy and sensitivity and specificity [24] and
we used the Leave-one-out cross-validation method to
compute mis-classification rates.

Results

Microarray results

We analyzed gene expression changes using the BRB-
ArrayTools Class comparison tool for paired analyses
between classes and the results of significantly differen-
tially expressed genes (p<0.001) are summarized in
Table 1. We found the broadest changes and highest
number of genes affected at 4.45 Gy by both dose-rates
(354 genes changed after LDR 4.45 Gy exposure and 565
genes changed after acute 4.45 Gy exposures at 24 h);
Additional file 2 contains details of gene expression
changes summarized in Table 1. An intersection of the
differentially expressed genes at each dose (Additional
file 3) indicated that the set of differentially expressed
genes after 4.45 Gy included most of the genes changed
at lower doses.

We performed gene ontology analyses on the sets of
differentially expressed genes. Among the sets of genes
responding to 0.56 or 2.23 Gy at low dose rate, PAN-
THER GO-slim analysis reveal only one significantly af-
fected function after LDR 0.56 Gy exposure, DNA repair
(with a p-value of 3.7 X107). Genes in this category were
XPC, DDB2, POLH, GADD45A and PCNA, all of which
are sensitive radiation response genes.

The genes responding to the 4.45 Gy dose at both dose
rates showed additional significantly enriched biological
processes. A comparison of significantly enriched bio-
logical terms and the genes belonging to each category
are shown in Table 2. Cellular processes, immune pro-
cesses, B cell mediated immunity and cell communica-
tion were common biological functions affected by both
low-dose rate and acute exposure. Unique to the low
dose-rate response genes, was the pyrimidine nucleobase
metabolic process (p-value 2.7 x 107%) with genes involved
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in DNA editing. After acute 4.45 Gy exposures, biological
processes affected included natural killer cell activation
(p-value 6.7 x 10°) and other cell signaling processes
(p-value 1.3 x 107), not observed after LDR. GO-slim
molecular functions revealed that receptor activity and
binding were significantly affected by both LDR 4.45 Gy
(p-value 2.2 x 107%) and acute 4.45 Gy (p-value 1.8 x 10"
doses, with an additional molecular function category of
chemokines (p-value 1.3 x 107) significant only after acute
exposure, not observed after LDR.

Comparison of low-dose rate and acute exposure

We also directly compared the gene expression response
to 24-hour continuous LDR exposure with that of the
acute exposure at 4.45 Gy (Table 1). There were 243 genes
differentially expressed when comparing the two different
exposure rates, with a moderate range of fold change be-
tween 0.3 and 3.9. Gene ontology analysis of these 243
genes revealed enrichment of two processes: glycolysis
(p-value 374 x 10 and monosaccharide metabolic
process (p-value 2.5 x 10). Genes included in these two
categories were members of the glycolysis pathway (lactate
dehyrogenase A, LDHA; glyceraldehyde 3-phosphate
dehydrogenase, GAPDH; 6-phospho-fructokinase type C,
PKFP; enolase 1, ENOI; and hexokinase 2, HK2), all of
which were expressed at lower levels in cells exposed to
the protracted dose.

Validation of gene expression by quantitative PCR

We validated gene expression changes from microarrays
using real time qRT-PCR in independent biological repli-
cates. These samples were true independent biological
replicates representing different donors from those used
in the microarray hybridizations. We chose genes that
were in common between all doses and dose-rates and
are also known radiation response genes [3]. Fold changes
by qRT-PCR agreed well with our microarray measure-
ments and data are shown for both 4.45 Gy exposed
groups (Fig. 2). We also validated gene expression levels
for the lower doses (2.23 Gy and 0.56 Gy) and these data
along with the 4.45 Gy results, mean and SEM, are in-
cluded in Additional file 4.

Table 1 Summary of genes differentially changed (p <0.001) in various class comparisons

Class comparison Number of genes

significantly changed

False discovery rate

Number of down
regulated genes

Number of up
regulated genes

LDR 4 Gy vs 0 Gy 354 0.03
Acute 4 Gy vs 0 Gy 565 0.02
LDR 2 Gy vs 0 Gy 213 0.06
Acute 2 Gy vs 0 Gy 205 0.06
LDR 0.5 Gy vs 0 Gy 71 0.16
Acute 0.5 Gy vs 0 Gy 65 0.18
LDR 4 Gy vs Acute 4 Gy 243 0.10

236 118
354 21
134 79
150 55
49 22
55 10
116 127
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Table 2 Biological process enrichment analysis using PANTHER
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PANTHER GO-Slim Biological Process LDR 4 Gy LDR 4 Gy Acute 4 Gy Acute 4 Gy
genes p-value genes p-value
Cellular process 110 2.65E-04 199 598E-13
Cell communication 68 1.11E-03 112 1.45E-06
Immune system process 43 2.24E-03 78 9.19E-09
Pyrimidine nucleobase metabolic process 6 2.73E-02 NS®
B cell mediated immunity 11 4.10E-02 21 6.01E-06
Response to stimulus 38 4.66E-02 72 377807
Immune response NS? 41 3.08E-08
Natural killer cell activation NS? 13 6.69E-05
Developmental process NS? 93 6.11E-04
Cell-cell signaling NS? 35 131E-02

NS not significant

Gene expression patterns

We searched for gene expression patterns that were in
common between LDR and acute dose-rates and also
those that showed differences that could distinguish
samples that received a dose by a lower dose-rate. We
identified more than 20 genes that showed a similar pat-
tern of response where the dose rate appeared not to

affect the changes. There were both up regulated and
down regulated genes that belonged to this group and
genes showing this characteristic behavior, AEN and
CDKNIA (up in LDR and acute) and MYC and E2F5
(down in both LDR and acute), are shown in Fig. 3a and
b, respectively. The other pattern of interest was genes
that only appeared to respond to LDR and not to acute

log2 (fold change)

log2 (fold change)
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Fig. 2 Validation of microarray results by gRT-PCR. Shown here are log, (fold changes) of genes that were determined to be differentially regulated by
the 445 Gy dose by both dose-rates. The graph on the left shows the mean log, (fold change) after LDR 4.45 Gy; and the graph on the right is the
mean of log, (fold change) after Acute 445 Gy exposure. All microarray (blue bars, five biological replicates) and gRT-PCR (red-bars, three biological
replicates) results are average fold-change from paired analyses; SEM values for all data are included in Additional file 4
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Fig. 3 Patterns of gene expression response, shown as microarray results of representative genes, in all panels (a-d), open symbols with solid
lines represent Low dose-rate (Idr) responses and closed symbols with dotted lines represent acute dose rate (acute) gene expression responses.
a AEN (circles) and CDKNTA (squares) are representative genes in the group that showed similar up regulation of mRNA levels by both dose-rates.
b MYC (circles) and E2F5 (squares) are representative genes in the group that showed similar down regulation of mRNA levels by both dose-rates.
¢ RBM3 (circles) and GRM?2 (squares) are representative genes for the group that showed up regulation only by LDR. d DUSP3 (circles) and ID1
(squares) are representative genes for the group that showed down regulation only by LDR. All points are mean of 5 biological replicates (from
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dose. There were two types of genes in this group, one
in which the genes were up regulated by LDR only, not
acute doses (RBM3 and GRM?2, Fig. 3¢) and the other in
which genes were down regulated by LDR only, not
acute doses (DUSP3 and ID2, Fig. 3d). This preliminary
assessment of different gene expression response pat-
terns by LDR suggested that there are genes that could
distinguish between the dose-rate for the same dose de-
livered. For some genes, such as APOBEC3H, FDXR and
PHLDA3, induced at all doses by LDR and acute, the
change in gene expression after the 4.45 Gy dose was
higher in the acute dose group suggesting protection of
response by low dose-rate.

Class predictions

We used the Class Prediction tool in BRB-ArrayTools to
determine a classifier that would correctly discriminate
between dose-rates. Initially, we identified a classifier
that distinguished between un-irradiated and acute or
LDR-irradiated samples; in which a set of 121 genes
(p-value <0.0001) correctly identified samples as 0 Gy
control (CTL), Acute, or LDR with 94 % accuracy
(Table 3) using Diagonal Linear Discriminant Analysis

(DLDA). Next we tested and found that a 62-gene classi-
fier could correctly classify exposed samples as Acute or
LDR with 100 % accuracy using Support Vector Ma-
chines (Table 4). Lastly, we determined a classifier gene
set comprised of 140 genes that correctly classified sam-
ples by dose without regard to the rate of exposure, with
90 % accuracy using Diagonal Linear Discriminant Ana-
lysis (Table 5). Details of classifier gene sets and per-
formance of classifiers in cross-validations are included
in Additional file 5; all classification analyses were per-
formed on normalized gene expression signal intensities.

Discussion
A variety of exposure types and combinations of expo-
sures could result from an improvised nuclear device

Table 3 Performance of the Diagonal Linear Discriminant
Analysis classifier (121 genes) on irradiation and dose rate

Class Sensitivity Specificity
Acute 0.867 1

0 Gy 1 1
LDR 1 09
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Table 4 Performance of the SVM machine classifier (62 genes)
on dose rate

Class Sensitivity
Acute 1 1

LDR 1 1

Specificity

(IND) or radioactive dispersal device (RDD). In order to
develop appropriate radiological triage approaches, bio-
dosimetry assays must be tested and optimized for their
ability to detect the contribution of various factors such
as dose and dose-rate. A tiered approach to triage in
large-scale scenarios [33, 34] would ideally include a
low-dose rate detection assay to identify individuals who
have received exposure over a prolonged time, so that
their treatment can be adjusted accordingly. In a recent
NATO study involving different laboratories that cross-
validated results for different radiation biodosimetry
assays, the dicentric chromosome assay, micronucleus
assay, Yy-H2AX and gene expression were assessed for
their sensitivity and it was concluded that a combination
of assays would be optimal for the estimation of dose
and “never versus ever” exposure [35, 36]. Therefore, it
is possible that a gene expression signature that can dis-
criminate between low dose-rates and acute exposures,
in combination with other assays that estimate dose, will
enhance the ability to identify individuals with an imme-
diate need for clinical treatment in a large-scale event.
Low dose-rate studies have also been done for very
low cumulative doses, to assess the gene expression re-
sponse. One such study on a prostate cancer cell line
measured gene expression changes after a 24-hour
chronic exposure to dose-rates as low as 7-17 puGy/min,
and unexpectedly, found that the gene expression re-
sponse was more similar to that of a 2 Gy acute dose
than a 10 cGy acute dose [15]. In another study in mice,
which were given a 5-week continuous dose of radiation
at 2 uGy/min (cumulative dose 10.5 cGy, which was previ-
ously shown to be effective on gene expression as a single
acute dose [6]) there was no significant change in gene ex-
pression. The effects observed at these very low doses may
be the result of various factors inherent to the study de-
sign, the extended time in the second study or the origin
and type of cells in the first, but it emphasizes the need
for biodosimetry experiments to be designed to establish

Table 5 Performance of the Diagonal Linear Discriminant
Analysis classifier (140 genes) on dose

Class Sensitivity Specificity
0 Gy 1 0.933
0.56 Gy 1 1
2.23 Gy 08 0933
445 Gy 08 1
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the range of dose rates and exposure times likely to
impact on biodosimetric estimates and triage decisions.

Using an ex vivo blood irradiation model that has pre-
viously shown changes in radiation response genes that
are sensitive to dose and time [3, 37], we exposed blood
samples to relatively high total doses (up to 4 Gy), in
the range of Acute Radiation Syndrome (ARS), either
acutely, or over a period of 24 h. The prolonged radi-
ation exposure time was to approximate exposure to
fallout from an improvised nuclear device (IND) or
radioactive dispersal device (RDD) that might occur be-
fore first responders arrive on the scene and are able to
begin taking samples for biodosimetry.

In the current study, we detected gene expression
changes at all doses, with increasing numbers of genes
responding with increasing dose, as expected (Table 1).
The number of genes differentially expressed at lower
doses (0.56 Gy and 2.25 Gy) by LDR (p-value <0.001)
was slightly higher than those after acute doses, however,
the period of time from end of exposure to harvest was
shorter after low dose-rate exposures, which may con-
tribute to this difference. In the case of LDR 4.45 Gy
however, the number of genes differentially expressed
was less than acute 4.45 Gy (Additional file 2).

We focused our analyses on the 4.45 Gy dose re-
sponses, because they allowed us to determine and com-
pare maximum differences in gene expression and
biological function. These comparisons revealed that the
acute exposure elicits many responses similar to LDR,
but may also affect additional processes related to nat-
ural killer cells and cell-cell signaling via chemokines. In
contrast, the gene expression response to LDR initiated
some of the same functions as acute exposure, but
additional processes related to nucleotide metabolism
(Table 2) and DNA repair were also affected.

Further GO analyses of the LDR gene expression re-
sponse against PANTHER pathways revealed that the
p53 pathway was found to be significantly affected at all
doses (LDR 0.56Gy, p-value 5.0 x 10% LDR 2.23 Gy, p-
value 4.8 x 107°; and LDR 4.45 Gy, 1.5 x 10™). This sug-
gests that at 24 h after the start of exposure at all doses,
p53-regulated functions in cell stress, cell cycle and
DNA damage repair are important; even after the short-
est LDR exposure. We focused on p53 target genes as
this pathway was the top scoring biological pathway con-
trolling gene regulation across all doses and dose-rates.
The heat map in Fig. 4 depicts genes that are regulated
by p53 across all three doses in the LDR treatment
group. More p53-regulated genes were involved in the
response after the highest dose (4.45 Gy) where blood
cells were exposed continuously to the LDR radiation
with no recovery period. In the case of the lowest dose
(0.56 Gy) and intermediate dose (2.23 Gy) a subset of
these genes responded and changes in mRNA were still
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detectable at 24 h after the start of exposure. This sug-
gests that there is an accumulation of stress and damage
during the protraction of dose, possibly mediated by p53
and also other transcriptional regulators [38, 39], that
persists and is not completely resolved at 24 h after the
start of exposure.

We were also able to identify groups of genes that
were more responsive to LDR than acute dose rate
(Fig. 3c and d). Genes such as RBM3 and GRM?2 that

were up regulated after LDR appeared to respond to
doses 22.23 Gy. In the case of down regulated genes,
DUSP3 and ID1, the response was significant (p-value
<0.001) at even the lowest dose, LDR 0.56 Gy. The down
regulation of /DI mRNA after LDR was interesting be-
cause it is a known radiation response gene to acute
y-irradiation in cell lines [40]. In our study it was not
induced significantly above background by acute dose
but persistently down-regulated by LDR. Other genes
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shown here, RBM3 (RNA binding motif protein 3) and
GRM?2 (Glutamate receptor, metabotropic 2) and DUSP3
(Dual specificity phosphatase 3) have not been previ-
ously shown to be affected by radiation in blood and
may represent candidate genes for further studies on
dose-rate effects in radiation biodosimetry.

A comparison of gene expression changes by dose rate
between LDR and acute only, revealed the lowered ex-
pression of genes encoding glycolytic enzymes, by the
protraction of exposure at 24 h. These genes are in-
volved in glucose metabolism and energy production in
cells and the continuous delivery of radiation at LDR
may have a dampening effect on the activity of these
metabolic functions. In another study using the same
LDR, 3.1 mGy/min for 24 h in mice, measurement of
metabolites in urine at 48 h after the beginning of ex-
posure showed that citrate in the TCA cycle was de-
creased by both LDR and acute exposure [41]. In the
same study, hexanoylcarnitine and tiglylcarnitine from
fatty-acid oxidation pathways were decreased by LDR
exposure compared to controls or acute exposure to the
same dose, consistent with the perturbations we found
reflected in the gene expression data.

The changes observed in blood gene expression after
24 h in the current study support the development of
dosimetry signatures to distinguish between dose-rates of
exposure, as well as between doses. We performed class
predictions by irradiation status and dose-rate (Tables 3
and 4) and dose (Table 5). The classifier gene set that
performed best and distinguished between LDR and
acute exposure included the LDR-only response genes
DUSP3 and ID1 (Fig. 3d). This suggests that it may be
possible to develop a gene-based signature that can detect
protracted exposures without the need for a pre-exposure
sample. Further independent validation studies will of
course be needed, but such a test could also be used in
conjunction with other strictly dosimetric assays, including
gene expression or cytogenetic endpoints, to provide a
better and more practical biodosimetry assay.

Conclusions

This study investigated the effects of dose-rate on human
blood cell gene expression, over a 24-hour period. Although
there were many similarities in immune function and stress
response genes, we found that low dose-rate exposure can
result in distinctive gene expression patterns compared
with acute exposures. Typical p53 gene responses were also
seen at all doses delivered by the lower dose rate. We were
able to successfully distinguish low dose-rate exposed sam-
ples from acute dose exposures, using classification algo-
rithms on our gene expression data. These genes are
candidates for further validation studies to develop a gene-
based signature that can detect low dose-rate exposures for
large-scale biodosimetry.
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