Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 834237, 10 pages
http://dx.doi.org/10.1155/2014/834237

Research Article

The Laws of Natural Deduction in Inference by DNA Computer

Lukasz Rogowski"? and Petr Sosik'

! Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and Science,

Silesian University in Opava, 74601 Opava, Czech Republic

2 Department of Math and Computer Science, University of Lodz, 90238 £6d%, Poland

Correspondence should be addressed to Petr Sosik; petr.sosik@fpf.slu.cz

Received 10 January 2014; Accepted 26 March 2014; Published 3 July 2014

Academic Editor: Lin He

Copyright © 2014 L. Rogowski and P. Sosik. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a DNA-based implementation of reaction system with molecules encoding elements of the propositional logic, that is,
propositions and formulas. The protocol can perform inference steps using, for example, modus ponens and modus tollens rules and
de Morgan’s laws. The set of the implemented operations allows for inference of formulas using the laws of natural deduction. The
system can also detect whether a certain proposition a can be deduced from the basic facts and given rules. The whole protocol is
fully autonomous; that is, after introducing the initial set of molecules, no human assistance is needed. Only one restriction enzyme
is used throughout the inference process. Unlike some other similar implementations, our improved design allows representing
simultaneously a fact a and its negation ~a, including special reactions to detect the inconsistency, that is, a simultaneous occurrence

of a fact and its negation. An analysis of correctness, completeness, and complexity is included.

1. Introduction

Deoxyribonucleic acid (DNA) computing is the computa-
tional paradigm which uses organic molecules instead of
traditional computer technologies to store and manipulate
data. It is an interdisciplinary crossroad of biotechnology,
nanotechnology, and computer science, based on manipu-
lations with DNA strands in special laboratory conditions.
The biggest advantage is the massive parallelism of reactions
which led us to making trillions of similar calculations at the
same moment [1, 2].

The idea was first implemented in 1994 by L.M. Adle-
man, a computer scientist from the University of Southern
California. He presented a concept of how to solve in that
way a well-known NP-complete problem HPP—how to find
a Hamiltonian path in a graph. Nodes and edges of the graph
were encoded by special single-stranded DNA molecules and
then mixed in a test tube. All possible paths were created
during the reaction and then only the Hamiltonian paths were
filtered out by standard laboratory steps. The experiment was
tested in laboratory for a 7-node graph [3]. This idea of solving

problems (creating every possible candidate solution and
then checking in parallel if they meet all required conditions)
is called computing by carving and recently it is utilized not
only in DNA computing [4].

After Adleman’s work, many following ideas of solving
computational problems by DNA were presented. There were
ideas about how to solve another NP-complete problem
called SAT [5-7], to simulate finite automata [8, 9], pushdown
automata [10], data compression algorithms [11], logical gates
[12, 13], and more. DNA computing can be successfully
combined with other bioinspired computing techniques as
the evolutionary computing, quantum computing, particle
swam optimization, and others [14]. The research which
we are going to present here was primarily inspired by
Benenson’s idea of implementing simple 2-state and 2-symbol
finite automata using the concept of splicing (alternately
connecting complementary parts of DNA molecules after
cutting them by a specific restriction enzyme) [8, 9]. It
was extended in subsequent papers for more states and
more symbols [15, 16], especially, thanks to a new idea
of splicing with the possibility of utilizing two or more

http://dx.doi.org/10.1155/2014/834237

".(...)cea 3y

5-(
3'-(...)GGCCTGA-5'

3

The Scientific World Journal

5 -GACTGGGCT(...)-3' =
CCCGA(...)-5

!

! .)CCGGACTGGGCTC(. . .

5-(C..
3'-(...)GGCCTGACCCGAC. . .

FIGURE 1: Annealing and ligation.

restriction enzymes in the same mixture [17]. As an important
inspiration we took also the ideas of implementing simple
logical inference by splicing systems, suggested theoretically
[18] and with positive laboratory tests [19]. Both of them
presented the concept of deduction from one-valued facts (all
formulas encoded by DNA molecules are assumed to have the
true value) including conjunction, disjunction, and simple
conditionals. There is a possibility to ask the system whether
a certain fact can be deduced or not. A suggestion of how
to add negation (false value of facts) was shown in [18] but
in that case it was impossible to use conditional reactions.
In this paper we propose a novel implementation using both
fact values (true and false). Some preliminary concepts were
already suggested by the first author in [20].

The main advantage of our protocol is the possibility
to implement logic axioms and laws of natural deduction,
which was impossible in previous implementations [18, 19].
They include (i) completion of the modus ponens rule with
the modus tollens: even a simple implication a — b,
implemented by a single molecule, is reversible: given a, our
system deduces b, and, given ~b, the system deduces ~a; (ii)
implementation of de Morgan’s laws allowing to create a valid
and compact system compatible with the laws of classical
logic; and (iii) implementation of proofs by contradiction
which are natural in many applications of logic.

2. Basic Concepts and Terms

2.1. Mathematical Background. Elementary logic variables
are simply called facts or terms. Each of them can have two
values: true or false. Every formula consists of facts and logical
connectives: conjunction A (,,and”), disjunction V (,,or”),
negation ~ (,,not”), and conditional — (,if..., then...”),
and parentheses is called logical sentence. Using both values
of facts, it is possible to conclude (by conditionals and the
modus ponens rule) new facts which can also adopt both truth
values. In the system which is going to be presented the exact
implementation of parentheses and disjunction is impossible,
so every formula has to be written in a special form based on
conjunction and implication.

The conjunctive normal form (CNF) is a way of simpli-
tying logical formulae to be a conjunction of clauses, where
a clause is a disjunction of literals. For example the following
formulae are in CNF:~a A (b V ¢), (aV b) A (~bV ~cV d)A ~d
whilst the next ones are not in CNF:~(a V b), (a Ab) V c. To
convert every logical formula to CNE we need the following
laws of classical logic:

(i) ~(~a) = a (rule of double negation),

(ii) (~(aAb)) = ((~a)Vv ~b) (the first de Morgan’s law—
negation of conjunction),

(iii) (~ (@ v b)) = ((~a)A ~Db)(the second de Morgan’s
law—negation of disjunction),

(iv) (an(bvc)) = ((anb)v(anc)) (distributive conjunction
by disjunction),

(v) (av(bAc)) = ((avb)A(avc)) (distributive disjunction
by conjunction).

To convert every formula written in CNF to our special
form, where we want to replace disjunctions by implications,
we need some more laws:

(i) @ — b) = ((~b) — ~a) (rule of contraposition,
modus tollens),

(ii) (av b) = ((~a) — b) (disjunction represented by
negation and conditional).

When the system has every formula rewritten in that way,
it can autonomously process it and deduce new facts and
formulas using modus ponens, modus tollens, and de Morgan’s
laws. It is also possible to ask the system whether a given value
of a certain fact was deducted or not.

2.2. Elementary Operations with DNA. DNA (deoxyribonu-
cleicacid) is along polymer made from repeating units. Those
units are called nucleotides. They are composed of sugars
(deoxyribose), phosphate groups, and nucleobase attached to
the sugars. They differ from each other only by the last part
and there are four possibilities: adenine, cytosine, guanine,
and thymine, abbreviated using the letters A, C, G, T. Most
DNA molecules are double-stranded helices consisting of
two long polymers. These strands bind in opposite directions
to each other. One end has 5'-OH group whilst the second
one has 3'-OH group. The bonds are subject to the Watson-
Crick complementarity rule: adenine is always connecting
with thymine by double hydrogen bonding and cytosine
with guanine by triple hydrogen bonding. Basic laboratory
operations on DNA, which are mostly utilized for DNA
computing, are as follows.

(i) Annealing and Ligation. When parts of two DNA
sequences are complementary to each other, the molecules
can bind and create a double-stranded molecule, see Figure 1.
It is called annealing. A specific enzyme utilized to catalyse
annealing between sticky ends (short single-stranded ends of
double-stranded molecules) is named ligase.

(ii) Cutting. Some enzymes in specific laboratory conditions
(i.e., temperature) recognize a certain short sequence of

The Scientific World Journal

5'-cccceTeGacceee-3’
3’ -GGGGGAGCTGGGGG-5
+
5'-AAAAAGCGCAAAAA-3'
3' TTTTTCGCGTTTTT-5'

5’ .CCCCCTCGCAAAAA-3
3’ -GGGGGAGCGTTTTT-5'
+
5’ -AAAAAGCGACCCCC-3
3’ -TTTTTCGCTGGGGG-5'

FIGURE 2: The operation of splicing.

nucleotides, attach to this sequence, and cut the molecule in
exact place in or after that sequence (operation opposite to
ligation). Some enzymes leave molecules with sticky ends. For
example enzyme BseXI (which we are using in our system)

recognises sequence 5'-GCAGC-3' and cuts the molecule after
8 and 12 nucleotides, respectively. The recognised sentence
is marked by a color background in the following figure, N
denotes any possible value of a nucleotide and | marks the
cutting point.

5'-(...)GCAGCGCTGNNNNNNNN | NNNN(. . .)-3
3'-(...)CGTCGCGACNNNNNNNNNNNN| (. ..)-5

!
!

(iii) Gel Electrophoresis. A laboratory procedure for separating
DNA molecules by their length. It uses an electrical field and
gel matrix. The negatively charged molecules move towards
a positive electrode. The gel matrix allows shorter DNA frag-
ments to migrate more quickly than larger ones. It is possible
to distinguish molecules by their length, including even the
one-nucleotide length differences. Some modern versions
as the capillary electrophoresis are even more sensitive and
efficient.

3. A Relation to Splicing Systems

The DNA implementation of logic operations described in
this paper depends heavily on the iterated operations of
DNA ligation and cutting by a restriction enzyme and the
combination of both. These operations have been previously
used in models of DNA computing as sticker systems, ins-del
systems, splicing systems, and many more; see, for example,
[1, 2] for more details. Splicing systems represent the most
characteristic use of the combination of both operations. In
this section we briefly describe their principles. Assume two
restriction enzymes (e.g., Tagl, SciNI) with the following
cutting sites:

5-Tl1c¢ce A-3 s5-6lcg c¢-3
3.4 e¢clT-5 3-¢c cclag-5

Notice that both sites have the common pair of
nucleotides CG in the middle. Let us furthermore consider
two DNA molecules containing these sites. They can both
be cut by their respective enzymes, and the four resulting
molecules with sticky ends can then crossover anneal, pro-
ducing two new molecules. Graphically, the operation of
splicing is depicted in Figure 2.

Formally, this operation is defined using the formal
language framework. Let V' be a generalized alphabet of
symbols forming DNA strands, that is, not necessarily the

{A,C,G, T} alphabet but an arbitrary one. The operation of
splicing is defined as

(6 y) = (zw) iff x=xuux,
Y = 1Usus),
1)

Z =X U UsY,
W = Y Uzl Xy,

where (u;,u,;u;,u,) is a splicing rule and x,,x,, y;, ¥, €
V* (where V™ is a set of all strings over the alphabet V).
Furthermore, ©; and u, share a common suffix, say v, so that
the cross-annealing of u; with u, and u, with u; as in the
previous figure could happen. This operation is interpreted
in such a way that molecules x and y produce molecules w
and z.

It is known that the operation of splicing is powerful
and that the splicing systems with sets of splicing rules can
generate all recursively enumerable languages under various
restrictions. However, the use of splicing to implement logic
operations is not mentioned in the relevant literature as
(1, 2]. In this paper we use almost identical combination of
operations, although we do not require that a combination
of cutting by enzyme and subsequent ligation must be done
at each computational step. We independently allow some
cutting steps and some annealing steps.

4. A Novel DNA Implementation of Logic
Operations

The implementation which we are going to present is based
on a splicing system which was already explained. The ligase
is utilized to catalyse the annealing of complementary parts
of molecules, on one hand. On the other hand, we use the
restriction enzyme named BseXI which leaves 4-nucleotides
sticky ends; see Section 4.2.

The presented system is fully autonomous which means
that a human assistance is needed only to prepare constituents
of reaction, to mix them in a test tube, and to read an answer
by the electrophoresis after all the reactions have taken part.
There is no need to add or remove any substances during the
reaction. The restriction enzyme has to be added just once
and it autonomously finds molecules which have to be cut.

4.1. Basic Encoding. Logic variables and their values are
encoded by unique sequences of 4 nucleotides. Single-
stranded sequences assigned to the same variable with differ-
ent values (true and false) are complementary to each other
(e.g., a is always complementary to ~ a). The short DNA

The Scientific World Journal

5'-(50) CCGGCCGGCAGCGCTG (~a) CAGCGCTGCCGGCCGE (50) -3
3'-(50) GGCCGGCCGTCGCGAC(a) GTCGCGACGGCCGGCC(50)-5"

(ligation between molecules representing terms a and ~a, which are inconsistent)

5'-(50) CCGGCCGGCAGCGCTG (~a)
3'-(50) GGCCGGCCGTCGCGAC(a)GTCG

CAGCGCTGCCGGCCGG (50) -3/
CGACGGCCGGCC (50)-5'

(cutting by the restriction enzyme BseX1I)

5'-(50) CCGGCCGGCAGCGCTGCCGGCCGE (50) -3
3'-(50) GGCCGGCCGTCGCGACGGCCGGCC (50) -5
(ligation between the new molecule and the constant terminal molecule)

5'-(50) CCGGCCGGCAGCGCTGCCGG
3'-(50) GGCCGGCCGTCGCGACGGCCGGCC

CCGG(50) -3’
(50)-5'

(cutting by the restriction enzyme BseX1I)

5'-(50)CCGG(50)-3
3'-(50)GGCC(50)-5

(ligation between two instances of new molecule)

FIGURE 3: The reaction of inconsistency.

5/ .GCTG (~a) 3

3'- (a)eTCG-5' 3'-

5' -CCGGCCGGCAGCGCTGCCGG -3

!

GGCCGTCGCGACGGCCGGCC-5'

FIGURE 4: Possible artifact molecules.

sequence recognised by the restriction enzyme (3'-GTCG-5')
and some special sequences which are complementary to
themselves (e.g., 3'-AATT-5') have to be excluded from that
class. Finally it is possible to use exactly 119 unique variables
encoded by different 4 tuples.

To make examples easier to understand, sequences will be
presented in the following way:

a:3'-(a)-5'and ~a: 3'-(~a)-3'
These unique 4-nucleotide sequences will be used not

only for terms but also as a part of conditional rules or
questions asked to the system.

4.1.1. Representation of Terms. Molecules representing terms
share a common starting sequence and a constant length.
They also contain the part recognised by BseXI. They difter
from each other only by sticky ends which were already
mentioned. For example molecules representations of a and
~a look like

5'-(50) CCGGCCGGCAGCGCTG -3

3'-(50) GGCCGGCCGTCGCGAC(a)-5'

!

5'-(50) CCGGCCGGCAGCGCTG -3

3'-(50) GGCCGGCCGTCGCGAC (~a)-5'

4.1.2. Terminal Molecule. There is one special molecule which
is utilized in every reaction; it is called the terminal molecule.
It has the same beginning as the molecules representing terms

but it ends earlier, in the middle of the sequence recognised
by the restriction enzyme:

5'-(50) CCGGCCGG -3
3'-(50) GGCCGGCCGTCG-5

!

4.2. The Reaction of Inconsistency. All the molecules encod-
ing formulas in a test tube are assumed to exist in conjunction.
Therefore, the existence of both values of the same variable
at the same reaction (e.g., a and ~ a) means a logical
inconsistency. If it happens, the following reaction will start
due to the complementarity of a and ~a, and the system will
detect and signalize this situation by the existence of a special
molecule. The reaction steps are shown in Figure 3.

As a result we get a molecule with the length of 104
nucleotides in each strand. After terminating reactions, it
is possible to read the length of every molecule by the
electrophoresis. If a molecule with this length occurs in the
test tube, it means that an inconsistency occurred during
the reactions. In that case the set of encoded formulae is
unsatisfiable, and any formula can be potentially derived from
it by the deduction laws.

Observe that the enzyme BseXI can act also differently
as the binding sites in some of the molecules described above
are duplicate and symmetric. Therefore, the following artifact
molecules can be produced, see Figure 4.

The first of these molecules has the same sticky ends
as the terminal molecules and, therefore, it can compete
with them in the above reactions. However, since we assume

The Scientific World Journal

5'-(50) CCGGCCGGCAGCGCTG (~a) CAGCGCTG -3
3'-(50) GGCCGGCCGTCGCGAC(a)GTCGCGAC(b)-5'
(ligation between molecules representing a and a — b)

5'-(50) CCGGCCGGCAGCGCTG (~a)

3'-(50) GGCCGGCCGTCGCGAC(a)GTCG

CAGCGCTG -3
CGAC(b)-5'

(cutting by the restriction enzyme BseX1I)

5'-(50) CCGGCCGGCAGCGCTG -3’
3'-(50) GGCCGGCCGTCGCGAC(b)-5'

(ligation between the new molecule and the constant terminal molecule)

FIGURE 5: The reaction of inference foraanda — b.

an abundant amount of each species of molecules is present
during the reactions; this will not prevent the correct reac-
tions to take place. The second artifact molecule has self-
complement sticky ends and hence it can eventually iterate
itself. However, it cannot interfere with other programmed
reactions.

4.3. A Simple Conditional. The simplest inference step means
just one fact in antecedent and just one fact in consequent
of an implication. The contraposition rule implies that in
one conditional there are two possibilities of inference; for
example, a — b means also ~b — ~ a. The molecule
representing this rule looks like

5'-(~a) CAGCGCTG -3
3 GTCGCGAC(b)-5'

The first sticky end is always complementary to the
antecedent and the second one is identical to the consequent.
It is important to know that if we rotate view of this molecule
we obtain the molecule representing contraposition condi-
tional (without changing the orientation of DNA strands):

5'-(b) CAGCGCTG -3
3'- GTCGCGAC(~a)-5

4.3.1. Reaction of Inference for a and a — b. If we mix in
one test tube molecules representing true value of fact a, the
conditional a — b, the terminal molecule, ligase, and the
restriction enzyme BseXI, the reaction steps are shown in
Figure 5.

As a result we get the molecule representing the factb.
This molecule can take part in subsequent reaction steps
with other molecules. If initially, instead of a, the molecule
representing ~b was in test tube, analogous reactions would
create the molecule representing ~a.

4.4. Conjunction in Inference. Inference rules containing
conjunction can be implemented as a conditional with
conjunction in any part of the conditional: antecedent and
consequent.

(i) The conjunction in consequent has to be divided
into two simple conditionals. As it was mentioned
in previous explanation of mathematical laws, for

example, (@ — (bAc) = (@ - b)A(a —
¢)). Using the first de Morgan’s law and the rule
of contraposition we get ((~ bv ~ ¢) —~ a)
that also can be divided to two simple conditionals
(~b —~a)and (~ ¢ —~ a). The molecular
representation of this pair of conditionals and the
pair mentioned in the previous sentence is the same
because of modus tollens. We need two molecules
to represent conjunction between two elements, and
three molecules to represent conjunction between
three elements and so on for more elements.

(ii) The conjunction in antecedent requires a construc-
tion of a new molecule which extends the one called
simple conditional. It implements the inference using
the first de Morgan’s law and the rule of contraposi-
tion. For the conditional (a A b) — ¢ (which also
means ~¢ — (~aV ~b)) the molecular implemen-
tation is

5'-(~a) CAGCGCTG(b) (~b) CAGCGCTG -3
3'- GTCGCGAC (~b) (b)GTCGCGAC(¢)-5

When a more complex conjunction has to be considered,
thatis, (@AbAc) — d, it can be decomposed to simpler ones
by adding a new fact e and setting (aAb) — e,(eAc) — d.

4.4.1. Reaction of Inference for a, b and a Nb — c. If we
mix in one test tube molecules representing true value of fact
a, true value of fact b, the conditional (a A b) — ¢, the
terminal molecule, ligase, and the restriction enzyme BseXI,
the reaction steps are shown in Figure 6.

As a result we get the molecule representing the fact c.
This molecule can take part in subsequent reactions with
other molecules.

4.4.2. Reaction of Inference for ~c and a ANb — c. Assume
that, instead of a and b, the molecule representing ~ ¢ was
initially in test tube. If we mix in one test tube the molecules
representing false value of fact ¢, conditional (aAb) — ¢, the
terminal molecule, ligase, and the restriction enzyme BseXI,
the reaction steps are shown in Figure 7.

As a result we get the molecule representing the
conditional b — (~ a), which means exactly a A b due to

6 The Scientific World Journal

5'-(50) CCGGCCGGCAGCGCTG (~a) CAGCGCTG (b) (~b) CAGCGCTG -3
3'-(50) GGCCGGCCGTCGCGAC(a) GTCGCGAC (~b) (b) GTCGCGAC(¢)-5'
(ligation between molecules representing a and a A b — ¢)

5'-(50) CCGGCCGGCAGCGCTG (~a) CAGCGCTG(b) (~b) CAGCGCTG -3/
3'-(50) GGCCGGCCGTCGCGAC(a) GTCG CGAC(~b) (b)GTCGCGAC(¢)-5'
(cutting by the restriction enzyme BseXT)

5'-(50) CCGGCCGGCAGCGCTG (b) (~b) CAGCGCTG -3
3'-(50) GGCCGGCCGTCGCGAC (~b) (b) GTCGCGAC(¢)-5
(ligation between the new molecule and the constant terminal molecule)

5'-(50) CCGGCCGGCAGCGCTG (b) (~b) CAGCGCTG -3/
3'-(50) GGCCGGCCGTCGCGAC (~b) (b) GTCGCGAC(¢)-5'
(cutting by the restriction enzyme BseX1I)

5'-(50) CCGGCCGGCAGCGCTG (~b) CAGCGCTG -3/
3'-(50) GGCCGGCCGTCGCGAC(b) GTCGCGAC(¢)-5'
(ligation between new molecule and molecule representing b)

5'-(50) CCGGCCGGCAGCGCTG (~b) CAGCGCTG -3
3'-(50) GGCCGGCCGTCGCGAC(b)GTCG CGAC(¢)-5'
(cutting by restriction enzyme Bse X1I)

5'-(50) CCGGCCGGCAGCGCTG -3
3 (50) GGCCGGCCGTCGCGAC(c) -5'
(ligation between the new molecule and the constant terminal molecule)

FIGURE 6: The reaction of inference fora,bandaAb — c.

5'-(50) CCGGCCGGCAGCGCTG(¢) CAGCGCTG(b) (~b) CAGCGCTG -3/

3'-(50) GGCCGGCCGTCGCGAC (~c) GTCGCGAC (~b) (b) GTCGCGAC (~a)-5'
(ligation between molecules representing ~cand a A b — ¢)

5'-(50) CCGGCCGGCAGCGCTG(¢) CAGCGCTG(b) (~b) CAGCGCTG -3/

3'-(50) GGCCGGCCGTCGCGAC (~¢) GTCG CGAC(~b) (b)GTCGCGAC(~a)-5'
(cutting by the restriction enzyme BseX1T)

5'-(50) CCGGCCGGCAGCGCTG (b) (~b) CAGCGCTG -3

3'-(50) GGCCGGCCGTCGCGAC (~b) (b) GTCGCGAC (~a)-5'
(ligation between the new molecule and the constant terminal molecule)

5'-(50) CCGGCCGGCAGCGCTG (b) (~b) CAGCGCTG -3

3'-(50) GGCCGGCCGTCGCGAC (~b) (b) GTCGCGAC(~a)-5’
(restrictation by the restriction enzyme BseX1)

FIGURE 7: The reaction of inference for ~canda Ab — c.

the law representing conjunction by the negation and con- (i) The disjunction in antecedent has to be divided into
ditional. This molecule can take part in subsequent reactions two simple conditionals, in the similar way like con-
with other molecules; particularly if there is a molecule rep- junction in consequent; for example ((a V b) —
resenting fact b, it will deduce ~a, and, in the opposite way, if ¢) = ((@a » oA (b — c¢)). Using the second de
there is a molecule representing fact a it will deduce ~b. Morgans law and the rule of contraposition we get

(~¢ — (~aA ~b)) which can also be divided into two
4.5. Disjunction in Inference. The disjunction also can be simple conditionals (~¢ — ~a) and (~c¢ — ~b). The
implemented in both parts of conditional: antecedent and molecular representation of this pair of conditionals

consequent. and the pair mentioned in the previous sentence is

The Scientific World Journal

5'-(50) CCGGCCGGCAGCGCTG (~a) ATAT (250) -3
3'-(50) GGCCGGCCGTCGCGAC(a) TATA(250) -5
(ligation between the molecules representing a and a?)

5'-(50) CCGGCCGGCAGCGCTG (~a)
3'-(50) GGCCGGCCGTCGCGAC(a) TATA

ATAT(250)-3’

(250)-5'

(cutting by the restriction enzyme BseXI)

5'-(250) ATAT (250) -3’
3'-(250) TATA(250) -5’

(ligation between two new molecules)

FIGURE 8: The reaction for a and the question a?

the same because of modus tollens. We need two
molecules to represent disjunction between two ele-
ments and three molecules to represent disjunction
between three elements and so on for more elements.

(ii) The consequent part needs a construction of a new
molecule, similar to the one present in conjunction
description. It saves proper inference using second
de Morgan’s law and the rule of contraposition. For
conditional a — (b V ¢) (which also means (~bA ~
c) — ~a)itis:

5'-(~a) CAGCGCTG (~b) (b) CAGCGCTG -3
3'- GTCGCGAC(b) (~b) GTCGCGAC(¢)-5

Examples of the corresponding reactions are similar to
those presented in the section concerning conjunction. If we
mix in one test tube the molecules representing true value
of the fact a, the conditionala — (b V c), the terminal
molecule, ligase, and the restriction enzyme BseXI, we will
eventually receive the molecule representing ~b — ¢ which,
according to the laws of classical logic, represents b V c. If we
mix in one test tube the molecules representing false value of
the fact b, false value of the fact ¢, the conditional a — (bV
¢), the terminal molecule, ligase, and the restriction enzyme
BseXI, we will receive the molecule representing false value
of fact a. Every new molecule can take part in subsequent
reactions.

4.6. Asking Questions. Our reaction system can be asked
questions like “is it possible to deduce a certain value of a
given fact starting from the conditions which we know?” If
we ask a question whether a is true and we would not receive
positive answer, it does not mean that the system knows
something about ~a. It just means that a cannot be deduced. It
is possible to ask more than one question at the same moment
but the molecules representing the questions must differ from
each other by their lengths (as answers are distinguished by
lengths). It is impossible to ask two questions for different
truth values of the same variable (e.g., a? and ~a?) because
the system will treat it like disjunction and, according to the
law of the excluded middle, the answer will be always positive.

Every question contains a sticky end identifying vari-
able (the complementary part) and a unique 4-nucleotide

sequence identifying question (which has to belong to the
class of sequences complementary with themselves, exclud-
ing 3'-GGCC-5' which has been already used for the reaction
of inconsistency). The question is then completed with an
arbitrary sequence (not containing the binding site of the
restriction enzyme) to get a unique length of the molecule.
For example, the molecules representing a? and ~b? can look
like:

5'-(~a) ATAT(250) -3’

3~ TATA(250)-5'

5'_(b)AATT(350)-3'
3'- TTAA(350)-5'

4.6.1. Reaction for a and the Question a?. If we mix in one
test tube molecules representing true value of the fact a, the
question a?, ligase and the restriction enzyme BseXI, the
reaction steps are shown in Figure 8.

As a result we get a molecule with the length of 504
base pairs (bp). This length means a positive answer for
the question a?. Absence of this molecule would mean that
nothing is known about a. Analogously, the existence of a
molecule of 704 bp long would mean a positive answer to the
question b?. As it was mentioned, this kind of questions does
not exclude each other.

5. Soundness and Completeness

In this subsection we show that (a) if a positive answer
to a question is deducible from the initial set of formulas,
then there are reactions which would eventually produce
the corresponding molecule of length 504 bp, and (b) if the
system gives a positive answer, then it is truly deducible
from the initial set of formulas. We can take for granted
three simple reactions (based on splicing and possible only
when some molecules have complementary sticky ends):
the reaction of inconsistency (presented in Section 4.2), the
simple inference (Section 4.3.1), and the positive answer reac-
tion (Section 4.6.1). Their correctness was already checked in
similar laboratory experiments [17, 19].

In the mathematical way, let B be the set of all known basic
terms (atomic facts with their values) present in a test tube, let
T be the set of other formulae in the test tube (implications

and the rest which can be rewritten by implications using the
laws of classical logic that is, (a Vb) = (~a — b)), and let
Q be the set of questions in the test tube. Accordingly let |B|,
|T|, and |Q| mean the quantity of their elements.

We define the formula of inconsistency as INCONS =
(3(a € B) A (~a € B)). An inference of this formula implies
that it makes no sense to analyze further answers and that the
ones already received may be incorrect. Now the evidence is
focused on situation when the inconsistency does not occur
and only this situation can be considered as finished with
proper deducible answer.

For the proof we treat sets B and Q as arbitrary, but
assume that B is consistent; that is, the formula INCONS is
false for B (in the opposite case the system immediately runs
the reactions in Section 4.2). The proof of completeness is
based on mathematical induction on the number of elements
inT.

(1) Let |T| = 0; then two cases are possible and the system
reacts correctly in both of them by Sections 4.3.1 and
4.6.1:

(a) (3 (@aeB) 3 (beQ)(a=Db)) = reactions give
the positive answer molecule;

(b) ~(3 (a € B) 3 (b eQ) (a=Db)) = reactions do
not give the positive answer molecule.

(2) Let us assume that the system gives the correct
answer for a given set T. We show that, when any
new implication i is added, the system of reactions
described in Section 4 will reduce the situation to the
correctness for T. Let the new set be marked as NT,
where NT =T U {i} and INT| = |T| + 1. We analyse all
the possibilities of construction implication i and its
resolution by the reaction in Section 4:

(a)i=(a — b):

(i) (ae B)A(~b ¢ B) = (B/ = BuU{b}) A
(NT/ = NT - —{i} = Tu {i}-{i} = T),

(ii) (a ¢ B)A(~b € B) = (B/ = BU {~a}) A
(NT/ = NT - -{i} = Tu/{i}-{i} = T),

(iii) (a € B) A (~b € B) = INCONS,

(ivy(a ¢ B)A(~b ¢ B) = there is no
reaction in this situation so there is no
impact for the final answer; we can also
treat this case as (NT'=NT-{i}= T U {i}-{i}
=T). If a or ~ b appears later as a result
of new formulae added to T, then i can be
readded and treated as in paragraphs (i),
(ii), or (iii) above.

b)i=(a - (bvc)=(a — (cvb)):

(i) (a € B) = (i’ =~b — ¢) = (then further
analysis is like that in paragraph (a)),

(ii) (~b € B) = (i’ = a — ¢) = (then further
analysis is like that in paragraph (a)),

(iii) (~ce B) = (i’ = a — b) = (then further
analysis is like that in paragraph (a)).

(iv) (a € B) A (~b € B) A (~c € B) =INCONS,

The Scientific World Journal

(v) (a ¢ BIA(~b ¢ B) A (~c ¢ B) = there
is no reaction in this situation so there is

no impact for the final answer, we can treat
that as (NT'=NT-{i}= T U {i}-{i} = T).

(c)i=((anb) - ¢)=((bAa) — ¢):

(i) (a € B) = (i=b — ¢) = (then further
analysis is like that in paragraph (a)),

(ii) (b € B) = (i = a — ¢) = (then further
analysis is like that in paragraph (a)),

(iii) (~c € B) = (i = a — ~b) = (then further
analysis is like that in paragraph (a)),

(iv) (a € B) A (b € B) A (~c € B) = INCONS,

(v) (a ¢ BYA(b ¢ B) A(~c ¢ B) = thereis

no reaction in this situation, so there is no

impact for the final answer; we can hence

treat that as (NT'=NT-{i}= T U {i}-{i}=T).

(di=(@aAb) - (cvd)=(bra) - (dVo)):

(i) (@ e B) = (i’ = (b —» (cvd)) = (then
further analysis is like that in paragraph
(b)),

(ii) (b € B) = (i’ = (a — (cVvd)) = (then
further analysis is like that in paragraph
(b)),

(iii) (~c € B) = (i’ = (aAb) — d)) = (then
further analysis is like that in paragraph
(),

(iv) (~d € B) = (i’ = (aAb) — ¢)) = (then
further analysis is like that in paragraph
(),

(v)(a e BIA(b € BYA(~c € B)A(~d €
B) =INCONS,

(vi)(@a ¢ B)A(~b ¢ B)A(~c ¢ B)A(~d ¢
B) = there is no reaction in this situation
so there is no impact for final answer; we
can also treat this case as (NT'=NT-{i}=
=T u{i}-{i}=T).

(e) Further possible implication schemes (up to 4
symbols) are (a — (b A ¢)), ((avb) — o),
(@Ab) — (cAd), (@vb) — (cvad),
and (@ A b) — (cV d)) and they could
be easily transformed to the schemes presented
in paragraphs ((a)-(d)) above using the laws of
logic presented in Section 2.1 and then analyzed
accordingly. Implications including more than 4
symbols can be always decomposed to simpler
formulas analyzed above due to the existence of
normal forms of formulas described in Section 2
and transformation in Section 4.4.

(3) Let us denote completeness of inference by C(T),
where T is the set of other terms present in the
test tube. In paragraph (1) above we demonstrated
C(2), and in paragraph (2) we showed that, for any
formulaw, C(T)= C(T U{w}). According to the rule
of mathematical induction we can take for granted
also C(T) for an arbitrary T which ends this part of
the proof.

The Scientific World Journal

For the proof of soundness, let us assume that the
molecule representing positive answer emerged during the
reactions in our test tube. One can observe the following.

(1) When the molecule representing positive answer
was produced in final test tube, it means that the
molecules representing a basic fact and a question
with mutually complementary sticky ends existed
before. Only the molecules representing basic terms
have restriction enzyme BseXI in the position which
can create the final molecule of positive answer.

(2) If the molecule representing this basic term did not
exist in B at the beginning, it had to be deducted
by known implications whose correctness was proved
in the first part of this proof. The terms received
by inference have the same molecular representation
(with enzyme BseXI in the proper position) which
was shown in Section 4.3.1.

(3) There are no more possibilities of creating the
molecule representing the positive answer because
only the molecules representing facts (even received
during some inferences) have enzyme BseXI in the
proper position. Observe that, although the longer
artifact molecules described in Section 4.2 could
eventually (although very unlikely) iterate to a length
similar to that of a positive answer molecule, in this
case they would be cut again by the enzyme BseXI.

Due to the above given reasons, we deem our system
as sound and complete. Using the laws of classical logic, it
can run every possible inference and answer any question
connected with it.

6. Computational Complexity

The experiment steps in laboratory can be briefly described
as follows:

(1) encoding every clause to DNA molecules,

(2) mixing all the molecules in one test tube and leting all
the possible ways of resolution be done automatically:
looking for inconsistency; expanding the knowledge
about facts and its value by modus ponens rule of
deduction; and answering the questions,

(3) filtering the result using (gel) electrophoresis: check-
ing if the molecule signalizing inconsistency was cre-
ated during the reaction; otherwise checking if some
of the molecules connected with prepared questions
were produced. The process ends here.

Steps 1 and 3 are constant time operations which means
time complexity O(1). Step 2 needs more operations because
it utilizes ligations and restriction reactions (regarded both
as similar complexity). Looking for inconsistency in formula
with k-variables needs maximally (k + 1) ligations and k
restriction reactions; hence the time complexity of it is O(k).
Deductions and answering the questions are running in
parallel at the same time and it needs maximally (k + 1)
ligations and k restriction reactions too (in the worst case

each of k-variables takes part in one deduction step; typically
answering one question does not require knowledge about all
variables). Hence the time complexity of step 2 is O(k) and
for the complete DNA algorithm it is also O(k).

The space complexity is regarded as an asymptotic num-
ber of different DNA molecules (note that for proper reaction,
each of them has to be present in many copies). Every
fact, question, and simple implication needs exactly one
molecule. For more complicated implications (using more
than one literal in antecedent and/or more than one literal in
consequent) it is better to prepare (k/2) molecules, because
it lets every literal be represented by one sticky end, that
is, in deduction rule (a A b — ¢); there is no possibility
of any resolution if we have knowledge only about fact b;
but adding the second molecule representing (b A a —
c) solves the problem and resolution can be done even in
this case. Theoretically in the most complicated situation
there can be k rules of deductions, each represented by (k/2)
molecules which gives the whole complexity O(k*). During
the second step of algorithm, maximally every molecule can
react with every molecule in subsequent inference steps (as
it was already mentioned, each of them has to be present
in many copies); the space complexity grows exponentially
which means O(Zk).

7. Summary

In this paper we introduced a new DNA inference system
based on the classical idea of splicing. It works with any
formulae presented in special normal form which uses
negation, conjunction, and implication. According to the laws
of classical logic, every other formula can be transformed to
such a form. The actual goal was to show that it is possible
to run logical inference by DNA with two possible values
of facts (true/false) which differ from the base concept of
Shapiro’s implementation of simple logic programs [19] which
physically implements only one value.

Implementation of the most important laws of classical
logic, which are necessary in connection with negation, was
also presented so that the system is capable of any sequence
of natural deduction steps. The presented model utilizes
restriction enzyme BseXI and a ligase enzyme so that its
laboratory implementation is very similar to experiments
already performed in [17, 19]. The system is autonomous; the
only moment when human assistance is needed is preparing
molecules before the reaction and reading the answer by gel
electrophoresis after the reaction.

In conclusion, given that elementary reactions of splicing
were laboratory-verified in [17, 19], we can assume that our
new concept of compact inference system also works during
the potential lab experiment.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

10

Acknowledgment

This work was supported by the European Regional Devel-
opment Fund in the IT4Innovations Centre of Excellence
Project (CZ.1.05/1.1.00/02.0070).

References

(1]

(2]

(3]

(10]

(11]

(15]

(16]

(17]

G. Rozenberg, T. Back, and J. Kok, Eds., Handbook of Natural
Computing, Springer, 2012.

A. Martyn, DNA Computing. The Encyclopedia of Complexity
and System Science, Springer, 2008.

L. M. Adleman, “Molecular computation of solutions to com-
binatorial problems,” Science, vol. 266, no. 5187, pp. 1021-1024,
1994.

V. Manca, C. Martin-Vide, and G. Paun, “New computing
paradigms suggested by DNA computing: computing by carv-
ing,” BioSystems, vol. 52, no. 1-3, pp. 47-54, 1999.

R. J. Lipton, “DNA solution of hard computational problems,”
Science, vol. 268, no. 5210, pp. 542-545,1995.

K. Sakamoto, H. Gouzu, K. Komiya et al., “Molecular computa-
tion by DNA hairpin formation,” Science, vol. 288, no. 5469, pp.
1223-1226, 2000.

N. A. Rodriguez-Patén, I. Sainz de Murieta, and K. P. Sosik,
“DNA strand displacement system running logic programs,’
Biosystems, vol. 115, pp. 5-12, 2014.

Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E.
Shapiro, “Programmable and autonomous computing machine
made of biomolecules,” Nature, vol. 414, no. 6862, pp. 430-434,
2001.

Y. Benenson, “Biomolecular computing systems: principles,
progress and potential,” Nature Reviews Genetics, vol. 13, no. 7,
pp. 455-468, 2012.

T. Krasinski, S. Sakowski, and T. Poptawski, “Autonomous push-
down automaton built on DNA,” Informatica, vol. 36, pp. 263
276, 2012.

S. M. Hossein, P. K. Mohapatra, and D. De, “DNA compression
algorithm based on R2 techniques,” Journal of Bioinformatics
and Intelligent Control, vol. 1, no. 2, pp. 183-188, 2012.

M. Ogihara and A. Ray, “Simulating Boolean circuits on a
DNA computer,” in Proceedings of the Ist Annual International
Conference on Computational Molecular Biology (RECOMB *97),
pp. 326-331, January 1997.

L. Qian and E. Winfree, “Scaling up digital circuit computation
with DNA strand displacement cascades,” Science, vol. 332, no.
6034, pp. 1196-1201, 2011.

M. Karakose and U. Cigdem, “QPSO-based adaptive DNA
computing algorithm,” The Scientific World Journal, vol. 2013,
Article ID 160687, 8 pages, 2013.

O. Unold, M. Tro¢, T. Dobosz, and A. Trusiewicz, “Extended
molecular computing model,” WSEAS Transactions on Biology
and Biomedicine, vol. 1, pp. 15-19, 2004.

M. Soreni, S. Yogev, E. Kossoy, Y. Shoham, and E. Keinan,
“Parallel biomolecular computation on surfaces with advanced
finite automata,” Journal of the American Chemical Society, vol.
127, no. 11, pp. 3935-3943, 2005.

T. Krasinski and S. Sakowski, “Extended Shapiro finite state
automaton,” Foundations of Computing and Decision Science,
vol. 33, pp. 241-255, 2008.

(18]

(19]

(20]

The Scientific World Journal

O. Unold and M. Tro¢, “Biomolekularne modele obliczeniowe,”
in Inzynieria Komputerowa, pp. 73-85, Wydawnictwa Komu-
nikacji i Lacznosci, 2005.

T. Ran, S. Kaplan, and E. Shapiro, “Molecular implementation
of simple logic programs,” Nature Nanotechnology, vol. 203, no.
2, pp. 1-7, 2000.

L. Rogowski, Implementacje systemow logicznych za pomocg
DNA—koncepcje i pomysly rozbudowy, Wydzial Matematyki i
Informatyki Uniwersytetu Lodzkiego, 2011.

