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Abstract
Due to its high spatial resolution, synchrotron radiation x-ray nano-scale computed tomog-

raphy (nano-CT) is sensitive to misalignments in scanning geometry, which occurs quite fre-

quently because of mechanical errors in manufacturing and assembly or from thermal

expansion during the time-consuming scanning. Misalignments degrade the imaging results

by imposing artifacts on the nano-CT slices. In this paper, the geometric misalignment of

the synchrotron radiation nano-CT has been analyzed by partial derivatives on the CT

reconstruction algorithm and a correction method, based on cross correlation and least-

square sinusoidal fitting, has been reported. This work comprises a numerical study of the

method and its experimental verification using a dataset measured with the full-field trans-

mission x-ray microscope nano-CT at the beamline 4W1A of the Beijing Synchrotron Radia-

tion Facility. The numerical and experimental results have demonstrated the validity of the

proposed approach. It can be applied for dynamic geometric misalignment and needs nei-

ther phantom nor additional correction scanning. We expect that this method will simplify

the experimental operation of synchrotron radiation nano-CT.

Introduction
X-ray computed tomography(X-CT) has enabled the non-destructive observation of internal
structures and is a powerful analysis tool. It has become popular in medicine, biology and
materials science since its introduction in the 1970s [1–11]. Synchrotron radiation CT (SR-CT)
is the combination of synchrotron radiation light source and classical X-CT theory [12, 13]. It
presents several advantages over conventional x-ray tube sources, including narrow spectrum
and high brilliance, and can provide superior imaging contrast and spatial resolution than con-
ventional X-CT, and has therefore attracted significant interests. Over the last few decades, sev-
eral SR-CT methods have been developed. One of the recent developments is full-field
transmission x-ray microscope (TXM) nano-scale X-CT (nano-CT) [14, 15]. With outstanding
nano-scale imaging capabilities, it has been applied to a wide range of research work in biologi-
cal and materials science [15–18]. Many synchrotron radiation facilities have built this kind of
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experimental system. It has also undergone rapid improvements due to the development of
high-efficient x-ray optics.

TXM nano-CT includes essentially two steps: (i) projection data acquisition and (ii) image
reconstruction. The first step can be accomplished by combining a sample rotation with TXM.
The second step has so far been solved by using analytical and iterative algorithms such as fil-
tered back-projection (FBP) algorithm, algebraic or statistical iteration reconstruction. The
coordinate system describing the image reconstruction should coincide with the one describing
the projection acquisition geometry. Otherwise geometric misalignment will occur and lead to
misalignment of the projection data. If the aforementioned algorithms directly perform recon-
struction from the misaligned data, blurring and streaking artifacts will be generated in the CT
slice image and cause information loss and false structures [19–26].

The static geometric misalignment in X-CT systems has already been resolved well by many
methods. According to the working principle and the implementation procedure, they can be
classified in to three groups. The first group requires an additional CTmeasurement of a correc-
tion object as it is described in references [22, 27, 28]. The second one does not place additional
markers in the field of measurement [23]. The last group needs neither correction phantom nor
additional scanning [20, 21, 24–26, 29–31]. It is based on the reconstructed CT slice images or
the recorded original projections. Typically, Viskoe et al adopted a centroid registration algo-
rithm to correct for misalignment in second-generation CT system with an equiangular detector
[29]. Rivers et al corrected the horizontal shift of the projection by computing the center of grav-
ity in the sinogram [30]. Donath et al presented a center of mass method to determine the center
of rotation [31]. However, for the TXM nano-CT at the Beijing Synchrotron Radiation Facility
(BSRF), the scanning time is usually much longer and the geometric misalignment changes over
time randomly during the scanning. There is currently a scarcity of studies on dynamic geometric
misalignment and its correction. The existing techniques were mainly based on iterative calcula-
tions. For example, Donath et al presented three image metrics for the scoring of tomographic
reconstructions and an iterative procedure for the determination of the position of the optimum
center of rotation. Wang et al developed a LabVIEW-based iterative correction procedure that
adjusts the alignment of a gold particle phantommanually by human-computer interaction [19].
They are complicated, time-consuming and not convenient in nano-CT. There remains an
important need to develop the correction techniques for dynamic geometric misalignment.

The TXM nano-CT at BSRF operates continuously from 5 keV to 12 keV with fluorescence
mapping capability and has a spatial resolution better than 30 nm [15]. In this system, step-
shoot scanning is used to obtain the projection data because the x-ray detector takes about two
seconds to acquire a single image. Under this scanning, the detector remains stationary and the
sample stage rotates discontinuously to sample different view angles. During the rotation,
mechanical errors in manufacturing and assembly can cause the jittering of the rotation axis of
the sample stage such as runout, wobble and eccentricity. Thermal expansion due to tempera-
ture variation and external environmental changes during the time-consuming experiment
also have influence on the system. Due to these factors, geometric misalignment always exists
and varies over time. Moreover the extremely high precision of nano-CT may reveal mechani-
cal errors that are commonly neglected in conventional tube source X-CT. Therefore, some
misalignment correction methods which are effective in tube source X-CT probably become
ineffective when applied to nano-CT. Wang et al once developed a LabVIEW-based iterative
correction platform for nano-CT that adjusts the alignment manually [19].

In this paper, we reported a geometric misalignment correction method for TXM nano-CT
at BSRF and its experimental verification. Firstly, the misalignment was analyzed and decom-
posed into errors along three axial directions in the scanning coordinate system. The influence
of these errors on imaging results was investigated. Then the correction method was described.
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Finally the numerical simulation and the experimental demonstration using a dataset mea-
sured with TXM nano-CT at the beamline 4W1A of BSRF were presented. Compared with the
existing techniques, the proposed method can work for random misalignments and moreover
needs neither phantom nor additional scanning. It would be helpful to simplify the experimen-
tal operation of synchrotron radiation nano-CT and push its future applications.

Materials and Methods

Geometric misalignment at nano-CT
Fig 1 is the simplified scanning geometry of nano-CT at BSRF (The x-ray optical layout is here
ignored and can be found in [15]). During the scanning, the sample stage rotates step by step
for 180°. The x-ray from synchrotron radiation light source hits the sample. The x-ray detector
remains stationary and captures the two dimensional projection at each view angle. The three
dimensional CT image of the sample can finally be reconstructed by the popular FDK recon-
struction algorithm [32]

mðx; y; zÞ ¼
R 2p

0
U2 � P0ðX1;Z1; bÞdb ð1Þ

with

P0ðX;Z; bÞ ¼ ðPðX;Z; bÞ � KÞ � hðXÞ=2; ð2Þ

K ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ X2 þ Z2

p ; ð3Þ

X1 ¼
Dðxcosbþ ysinbÞ
Dþ xsinb� ycosb

; ð4Þ

Z1 ¼
Dz

Dþ xsinb� ycosb
; ð5Þ

Fig 1. The scanning geometry of nano-CT at BSRF. (a) is the simplified scanning geometry and x-ray optical layout is here ignored. (b) depicts three
Cartesian coordinate systems: (X, Y, Z) for projection image acquisition, (x, y, z) for image reconstruction and (x0, y0, z0) for the stage.

doi:10.1371/journal.pone.0141682.g001
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and

U ¼ D
Dþ xsinb� ycosb

ð6Þ

from the recorded two dimensional projection dataset.
In Eqs (1)–(6), μ(x, y, z) represents the linear attenuation coefficient of any reconstructed

point in the sample. P(X, Z, β) is the acquired projection by the detecting channel (X, Z) at the
view angle β. U and K are the geometric correction factors. h(X) is the Ram-Lak filter. D is the
distance from the rotation center to the x-ray source. Given a reconstructed point (x, y, z), we
first calculate the positions of the corresponding detecting channels for each view angle with
Eqs (4) and (5). And then the projections recorded by these channels are filtered, summed,
averaged and weighted to get the CT image.

For the following discussion on the vertical vibration error of the stage, the parallel-beam
imaging geometry in Fig 1a is generalized to the cone-beam geometry in Fig 1b since the paral-
lel-beam reconstruction algorithm does not involve the vertical coordinate (A parallel-beam
geometry can be treated as a cone-beam geometry with infinitely small cone-angle.). In Fig 1b,
the detector is moved to the position of the rotation center of the sample stage. This movement
does not change the validity of this method. Fig 1b depicts three Cartesian coordinate systems:
(X, Y, Z) for projection image acquisition, (x, y, z) for image reconstruction and (x0, y0, z0) for
the rotation stage. (x0, y0, z0) is the rotation transform version of (x, y, z).

The above FDK algorithm assumes that the coordinate system (x0, y0, z0) keeps stable during
the rotation scanning. However, those factors mentioned in the “Introduction” section would
cause the instability of the sample stage. This leads to the shift of the coordinate system (x0, y0,
z0) randomly and causes geometric misalignment.

Influence on CT images
Because the shift of the coordinate system (x0, y0, z0) can be treated equivalently as the shift of
the coordinate system (x, y, z), the influence of this instability on the image reconstruction can
be analyzed by taking the partial derivatives on x, y and z in Eqs (4)–(6). The partial derivative
analysis on y can be replaced by the one on D since the shift along axis y actually changes the
value of D.

We first analyze the influence from the shift of D. Eqs (7)–(9) list the partial derivatives on
D. In the nano-CT system at BSRF, the value of D (tens of meters) is much bigger than the
image size x and z (from several to tens of micrometers). The x-ray beams are approximately
parallel each other and the cone-angle is close to zero. Obviously these partial derivatives in
Eqs (7)–(9) approach zero and show that the influence from the shift of D is tiny and can be
ignored.

@X1

@D
¼ ðxcosbþ ysinbÞðxsinb� ycosbÞ

ðDþ xsinb� ycosbÞ2 � 0; ð7Þ

@Z1

@D
¼ zðxsinb� ycosbÞ

ðDþ xsinb� ycosbÞ2 � 0; ð8Þ

@U
@D

¼ xsinb� ycosb

ðDþ xsinb� ycosbÞ2 � 0: ð9Þ

Eqs (10)–(12) and Eqs (13)–(15) list the partial derivatives on x and z. Obviously the shifts
along x and z will affect the calculation of X1 and Z1. The detecting channel recording the

Correction of Dynamic Geometric Misalignment for Nano-CT at BSRF

PLOSONE | DOI:10.1371/journal.pone.0141682 October 28, 2015 4 / 17



projection cannot be accurately determined. So, it is necessary to correct these two shifts in
experiments.

@X1

@x
� @ðxcosbþ ysinbÞ

@x
¼ cosb ð10Þ

@Z1

@x
� @ðzÞ

@x
¼ 0 ð11Þ

@U
@x

� @ð1Þ
@x

¼ 0: ð12Þ

@X1

@z
� @ðxcosbþ ysinbÞ

@z
¼ 0 ð13Þ

@Z1

@z
� @ðzÞ

@z
¼ 1 ð14Þ

@U
@z

� @ð1Þ
@z

¼ 0: ð15Þ

Based on the original projection images recorded by the detector, a geometric misalignment
correction method was developed. It includes two stages: (i) correction of the vertical shift on
axis z and (ii) correction of the horizontal shift on axis x. The first one is based on the cross cor-
relation of the plane integral curves at each view angle. The second is based on the least-square
sinusoidal fitting of the center of mass of the sample. It is the same as the one reported in [30].
The shift correction on z is executed first because it is independent of the shift along x.

Correction of the vertical shift
This correction involves the concept of the plane integral curve of the sample, depicted in Fig
2. In CT, each detecting channel provides the line integral of the sample and the sum of the line
integrals along the row of the detector produces the plane integral of the cross-section. The
plane integral curve is formed if this sum operation is executed along all the rows of the detec-
tor. For parallel-beam imaging geometry in Fig 1, there exists a fact that the plane integral
curve does not vary over view angle if the sample has no change during the scanning. So the
vertical shift of the stage just leads to the vertical shift of this curve and does not change its
shape and size. When the stage has a vertical shift Δz, this curve also shifts vertically Δz. The
idea of this correction is to measure this shift Δz for every view angle and input it into Eq (5) to
correct the projection address.

The vertical shift Δz can be determined by the concept of the cross correlation. In time-
domain signal processing, the cross correlation is a measure of similarity of two signals as a
function of the lag of one relative to the other. In our case, it is adopted to find the position at
which two space-domain signals have the biggest similarity. Obviously it reaches a peak when
two plane integral curves coincide. So the position of the peak of the cross correlation curve
provides the vertical shift Δz. The cross correlation discrete formula is expressed by Eq (16).
Here Pp(Z, β1) and Pp(Z, βi) represent two plane integral curves at the first view angles β1 and
the ith view angle βi. N is the number of the data points in the plane integral curve.m repre-
sents the distance between two signals. This operation is executed in space-domain. It can also
be implemented by calculating the cross power spectrum in frequency-domain. The results are
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the same.

RPpðZ;b1ÞPpðZ;biÞðmÞ ¼ 1

N

XN

Z¼0

PpðZ; b1ÞPpðZ þm; biÞ: ð16Þ

The implementation procedure for this correction is therefore as follows: (i) Perform a loga-
rithm operation on the recorded image sequence to get P(X, Z, β); (ii) Sum P(X, Z, β) along X
to get Pp(Z, β); (iii) Do the operation in Eq (16) for all view angles and find the positions corre-
sponding to the peaks; (iv) Correct the vertical shift by inputting the correction value to Eq (5).

Correction of the horizontal shift
For parallel-beam imaging geometry in Fig 1, the correction of the horizontal shift can be sim-
plified to the two dimensional plane (x, y) when the above correction of the vertical shift is
completed. This correction of the horizontal shift is based on a fact that the rotation trajectory
of the center of mass of the sample should be a sinusoidal curve in the two dimensional plane,
depicted in Fig 3. When the horizontal shift along x happens, the actual rotation trajectory of
the center of mass will be a curve vibrating around the ideal sinusoidal curve. So the horizontal
shift can be corrected if the ideal sinusoidal curve is determined from the actual trajectory.

In practice, the ideal sinusoidal curve can be estimated from the actual one using the least-
square sinusoidal curve fitting. This operation can be implemented by adopting the Matlab
function “lsqcurvefit” or other tools. The actual curve is formed by calculating the coordinate X
of the center of mass of the sample for each view angle using Eq (17) at the selected Zth cross-
section. Here M is the number of the detecting channels along the row direction.

CmXðbÞ ¼
1

PM
i¼0 PðXi;Z; bÞ

XM

i¼0

PðXi;Z; bÞXi ð17Þ

The implementation procedure of this correction is listed as follows: (i) Perform a logarithm

Fig 2. The plane integral curves of the sample with the shift along vertical axis z.

doi:10.1371/journal.pone.0141682.g002
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operation on the recorded image series to get P(X, Z, β); (ii) Select one cross-section to calculate
the center of mass by fixing the value of Z; (iii) Do the operation in Eq (17) for all view angles
and get the actual rotation trajectory of the center of mass; (iv) Do least-square sinusoidal
curve fitting to estimate the ideal trajectory from the actual one in step (iii) by using the Matlab
function “lsqcurvefit” or other tools; (v) Correct the horizontal shift by inputting the difference
between the actual trajectory and the fitted one into Eq (4).

As stated by Donath et al [31], this kind of correction approaches based on the center of
mass is sensitive to noise. In our experiment, we averaged the sinograms of three adjacent lay-
ers to suppress the influence from noise. One can also do this correction for many layers and
average the results to let it more robust to noise.

Numerical simulation
Numerical simulations were performed to validate the proposed method. The phantom is the
well-known Shepp-Logan phantom with a size 7.5 × 7.5 × 7.5 μm3 and consists of some ellip-
soids with different diameters, which are attributed different linear attenuation coefficients
ranging from 0 to 1. The detector has 256 × 256 pixels with a size 30 nm for each pixel. The
simplified imaging geometry in Fig 1 was used to acquire the two dimensional projection
images. They were calculated using the analytical forward projection method which is based on
the general equations of ellipsoids and lines in space. The random ranges of shifts along x, y
and z are set to be [−150nm, 150nm], [−150mm, 150mm] and [−150nm, 150nm] respectively.

Fig 4 shows the influence of the geometric misalignment by presenting the imaging results
of the 160th row in the detector. Fig 4a and 4b are two projections under two different view
angles. They shows clearly the horizontal and vertical shifts of the stage. Fig 4c–4g are the pro-
jection sinograms and (h)-(l) the reconstructed CT images. Fig 4c and 4h correspond to the
case without shift, (d) and (i) with shift along axis y, (e) and (j) with shift along x, (f) and (k)
with shift along z and (g) and (l) with shifts along x, y and z simultaneously. The red arrows in
Fig 4e, 4f and 4g mark the sawtooth-shaped edges caused by these shifts of the stage. The
regions of interest marked by the yellow arrows in Fig 4j, 4k and 4l show that the shifts along x
and z blur the CT image and make it difficult to recognize some structure details. In contrast,
the edges in Fig 4c and 4d are continuous and the structures in Fig 4h and 4i are clear. Fig 4
supports the above analysis based on the partial derivatives that the shifts along axis x and z
must be calibrated in experiments and the shift along axis y can be ignored.

Fig 5 shows the correction procedure and results for the vertical shift along z. Panel I in Fig
5 is the step for producing the correction curve. In panel I, the plane integral curve at the first
view angle was calculated by the sum operation along the horizontal direction of the recorded

Fig 3. The trajectory of the center of mass of the sample. (a) depicted the rotation trajectory of the center
of mass of the sample in the two dimensional plane without the horizontal shift along x. (b) shows the position
shift of the mass of center when the horizontal shift along x happens.

doi:10.1371/journal.pone.0141682.g003
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projection image and displayed in Fig 5a. Using the same operation, this curve can be drawn
for every view angle. Fig 5b presents the plane integral curve at the first view angle marked by
the solid blue line, and the one at some other view angle marked by the dashed red line. Obvi-
ously, there exists an interval between these two curves due to the vertical shift. Fig 5c shows
the cross correlation result of these two curves. We can find that the peak of the cross correla-
tion appears at the position indexed by 258. So the correction value for this view angle is 2
since the center of the position index of the plane integral curve is 256. Doing the operations in
Fig 5c for all view angles leads to the correction curve in Fig 5d. In this figure, the dashed red
line is the simulated vertical shift curve, the solid blue one the correction curve and the bold
green one the correction error. We would like to make two remarks on Fig 5d. First, it demon-
strates that the proposed method can correct the vertical shift. Second, it shows that the correc-
tion error is a constant and always equals 2. It is caused by the vertical shift at the first view
angle. In our method, we selected the plane integral curve at the first view angle as the standard
one and made the cross correlation calculation between it and the curves at other view angle.

Fig 4. The influence of the geometry misalignment on the CT images. (a) and (b) are two projections under two different view angles. (c)-(g) are the
projection sinograms and (h)-(l) the reconstructed CT images. (c) and (h) correspond to the case without jittering, (d) and (i) with shift along axis x, (e) and (j)
with shift along axis y, (f) and (k) with shift along axis z and (g) and (l) with shifts along x, y and z simultaneously.

doi:10.1371/journal.pone.0141682.g004
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So the correction error corresponds to the vertical shift at the first view angle. This error does
not affect the image reconstruction since every cross-section can be treated as the central plane
in the parallel beam imaging geometry.

Panel II in Fig 5 demonstrates the correction effect by displaying the imaging results of the
160th row in the detector. Fig 5e and 5f are the sinograms before and after the correction. Fig
5g and 5h are the corresponding CT slice images. Observing the regions of interest marked by
the red arrows in Fig 5g and 5h, we can find that the result after correction is much closer to

Fig 5. The correction procedure and results for the vertical shift. (a) shows how to produce the plane integral curve at the first view angle. (b) depicts the
vertical shift between two view angles by the plane integral curves. (c) is the cross correlation curve of the two signals in (b). (d) compares the calibrated
curve with the simulated shift curve. (e) shows how to form the sinogram from the recorded two dimensional projection image sequence. (f) is the calibrated
sinogram. (g) and (h) are the reconstructed CT images by the algorithm in Eq (1) with the sinogrms in (e) and (f) respectively. (i) provides the grey value
profiles of the 200th row of the images in (g), (h) and the phantom.

doi:10.1371/journal.pone.0141682.g005
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the phantom than the one before correction. It validates the proposed correction method for
the vertical shift. Fig 5i compares the grey value profiles of the 200th row of the images with the
phantom and supports quantitatively this conclusion.

Fig 6 shows the correction procedure and results for the horizontal shift along x. Panel I in
Fig 6 is the step for producing the correction curve. In panel I, the actual trajectory of the center
of mass of the phantom was first calculated using Eq (17) for the sinogram in Fig 5f and repre-
sented by the discontinuous white curve in Fig 6a. Fig 6b displays the fitted trajectory with the
Matlab function “lsqcurvefit”. The shift curve, the correction curve and their difference are

Fig 6. The correction procedure and results for the horizontal shift. (a) shows the actual trajectory of the center of mass of the phantom. (b) presents the
fitted trajectory using Matlab function “lsqcurvefit”. (c) compares the calibrated curve with the simulated shift curve. (d) is the corrected trajectory of the center
of mass of the phantom. (e) and (f) are the reconstructed CT images by the algorithm in Eq (1) with the sinogrms in (a) and (d) respectively. (i) provides the
grey value profiles of the 200th row of the images in (e), (f) and the phantom.

doi:10.1371/journal.pone.0141682.g006
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drawn in Fig 6c. The correction curve clearly approaches the shift curve and the error is smaller
than 0.5 pixel. The error is caused by the numerical calculation and the discretization of the
image.

Panel II in Fig 6 demonstrates the correction effect by displaying the imaging results of the
160th row in the detector. Fig 6d shows the calibrated trajectory of the center of mass of the
phantom. Compared with the one before correction in Fig 6a, it is much more continuous. Fig
6e and 6f are the CT slice images reconstructed by Eq (1) with the sinograms in Fig 6a and 6d.
Observing the regions of interest marked the red arrows in Fig 6e and 6f, we can find that the
result after correction matches the phantommuch better than the one before correction. It vali-
dates the proposed correction method for the horizontal shift. Fig 6g compares the grey value
profiles of the 200th row of the images with the phantom and supports quantitatively this
conclusion.

Experiments
The experimental dataset that was measured to test the proposed correction method was
recorded with the TXM nano-CT setup at the beamline 4W1A of BSRF. The sample was a
ZrB2/SiC nanocomposite ceramic. It was fabricated by mixing nanosized SiC particle (100 nm)
into microsized ZrB2-based (2 μm) nanocomposite ceramics with spark plasma sintering
(SPS). The sample was first crushed, ground and sieved to 250 mesh to achieve particles with a
size 60 μm. AB epoxy adhesive was used to fix the sample particle on the top of a pin under the
help of an optical microscope. Finally the pin with the particle was mounted to the rotation
sample stage. Some gold particles with size smaller than 3 μmwere also adhered to the sample
as image quality indicators.

The general description of the TXM nano-CT setup at the beamline 4W1A of BSRF can be
found in [15]. It is primarily composed of a condenser, sample stage, zone plate and CCD
detector. The SR x-ray beam is focused onto the sample by a elliptically shaped capillary con-
denser. Then the objective zone plate produces a magnified projection image of the sample on
a scintillator crystal. The resulting visual image is then further enlarged with a microscope
objective lens and captured by a 16-bit 1024 × 1024 CCD camera. When the size of the sample
is smaller the depth of focus of the microscope, this imaging layout can be equivalently treated
as the parallel-beam imaging geometry in Fig 1a. The x-ray energy was set to be 8keV. 360 pro-
jections was acquired over 180° rotation with 20 seconds exposure per projection. Fig 7 shows
some TXM nano-CT projection images of ZrB2/SiC nanocomposite ceramic under different
view angles. The first row is the original images recorded by CCD camera and the second row
is after processing logarithm operation.

Fig 8 presents the correction procedure and results for the vertical shift with the experimen-
tal data. Panel I in Fig 8 shows how to calculate the correction curve. In order to avoid the
influence from the non-uniformity of the irradiation field (see the first row in Fig 7), we
selected the region marked by the green rectangle with a size 400 × 1024 in Fig 8a to calculate
the plane integral curve. In panel I, Fig 8a is one of the two dimensional projection images after
logarithm operation. Fig 8b displays the plane integral curve at the first view angle marked by
the solid blue line and the one at other view angle marked by the dashed red line. Fig 8c shows
the cross correlation result of these two curves in Fig 8b. The peak of the cross correlation
appears at the position indexed by 393. So the correction value for this view angle is 7 since the
center of the position index of the plane integral curve is 400. The correction curve in Fig 8d is
depicted after doing the operations in Fig 8c for all 360 view angles. Obviously, this curve
shows that the stage is descending vertically with respect to view angle during the scanning.
Although it exhibits some periodicity, this shift is generally random.

Correction of Dynamic Geometric Misalignment for Nano-CT at BSRF

PLOSONE | DOI:10.1371/journal.pone.0141682 October 28, 2015 11 / 17



Panel II in Fig 8 shows the correction results of one typical slice, the 690th row in the detec-
tor. Fig 8e and 8h are the sinogram and the CT image before correction. Fig 8f and 8i are after
correction. Fig 8g and 8j show the differences of sinograms and CT images before and after cor-
rection. Some observations can be made for Panel II. Due to the vertical shift of the stage, the
sinogram of the 690th row is incomplete and misaligned by the neighbor rows. Before correc-
tion, some structures marked by the red arrow are distorted or disappear and the edge is
blurred. In contrast, these problems are mitigated after correction. The results in Panel II dem-
onstrate the validity of the proposed correction method for vertical shift of the stage.

Panel III in Fig 8 repeats the demonstration on the correction performance with the experi-
mental data of gold particles adhered to the sample. Fig 8k and 8n are the sinogram and the CT
image before correction. Fig 8l and 8o are after correction. Fig 8m and 8p shows the differences
of sinograms and CT images before and after correction. The observation to Panel III provides
the same conclusion as the one to Panel II.

Fig 9 presents the correction procedure and results for the horizontal shift with experimen-
tal data. Panel I in Fig 9 shows how to calculate the correction curve. Fig 9a is the sinogram of
the 690th row with a size 360 × 1024 after the vertical shift correction. It also displays the actual
trajectory of the center of mass of the sinogram calculated by Eq (17). Fig 9b depicts the actual
trajectory of the center of mass and the fitted one. The adopted fit function in Matlab is y =
Asin(x/360�π+B)+C. In this function, y represents the trajectory index and x the view angle
index. The fitted results are A = 87.0621, B = 1.1457 and C = 512.8613. Fig 9c shows the sino-
gram and the trajectory of the center of mass calibrated using the curve in Fig 9d.

Panel II in Fig 9 shows the correction results of the 690th row. Fig 9e and 9h are the sino-
gram and the CT image before correction. Fig 9f and 9i are after correction. Fig 9g and 9j show
the differences of sinograms and CT images before and after correction. Obviously, the struc-
ture distortion and the edge blur marked by the red arrows disappear after correction. The
results in Panel II demonstrate the validity of the proposed correction method for horizontal
shift of the stage.

Panel III in Fig 9 repeats the demonstration on the correction performance with the experi-
mental data of gold particles adhered to the sample. Fig 9k and 9m are the sinogram and the

Fig 7. The TXM nano-CT projection images of ZrB2/SiC nanocomposite ceramic. The first row is the original images recorded by CCD camera under five
view angles. The second row is the ones after logarithm operation.

doi:10.1371/journal.pone.0141682.g007
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Fig 8. The correction procedure and results for the vertical shift with the TXM nano-CT experimental data. (a) is one of the two dimensional projection
images after logarithm operation. (b) depicts the plane integral curve at the first view angle marked by the solid blue line and the one at other view angle
marked by the dashed red line. (c) shows the cross correlation result of these two curves in (b). (d) is the correction curve. (e) and (h) are the sinogram and
the CT image of the 690th row of the projection before correction. (f) and (i) are after correction. (g) shows the difference between (e) and (f). (j) shows the
difference between (h) and (i). (k) and (n) are the sinogram and the CT image of gold particles before correction. (l) and (o) are after correction. (m) shows the
difference between (k) and (l). (p) shows the difference between (n) and (o).

doi:10.1371/journal.pone.0141682.g008
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Fig 9. The correction procedure and results for the horizontal shift with the TXM nano-CT experimental data. (a) is the sinogram of the 690th row of
the projection with a size 360 × 1024 after the vertical shift correction. (b) depicts the actual trajectory of the center of mass and the fitted one. (c) is the
calibrated sinogram and the trajectory of the center of mass using the correction curve in (d). (e) and (h) are the sinogram and the CT image before
correction. (f) and (i) are after correction. (g) and (j) show the differences of sinograms and CT images before and after correction. (k) and (m) are the
sinogram and the CT image of gold particles before correction. (l) and (n) are after correction.

doi:10.1371/journal.pone.0141682.g009
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CT image before correction. Fig 9l and 9n are after correction. Obviously the observation to
Panel III provides the same conclusion as Panel II.

Fig 10 is the false color map of the typical slice in Fig 9i. It clearly provides the distribution
of the nanosized SiC particles in microsized ZrB2-based nanocomposite ceramics, marked by
the green arrow in Fig 10a. The imaging results show the existence of aggregation of SiC parti-
cles marked by the red arrows in Fig 10a and 10b. It also allows for the inspection of holes in
the sample marked by the green arrow in Fig 10b. This information is helpful to the perfor-
mance analysis and improvement of this nanocomposite. A comparison between Figs 8h and
10 demonstrates the validity of the proposed correction method.

Discussion and Conclusion
In summary, we have analyzed the geometric misalignment in the TXM nano-CT at BSRF and
established a correction method for this system. We have also demonstrated its validity and
performance both numerically with simulation and experimentally with real data. This method
is based on the cross correlation of the plane integral curves and the least-square sinusoidal fit-
ting of the center of mass of the projection sinogram. It avoids the use of a correction phantom
and additional scanning and can work for dynamic geometric misalignment. Additionally it
can be implemented automatically without human supervision and will simplify the experi-
mental operation of the TXM nano-CT.

It should be pointed that the proposed method is applicable only for rigid body motion and
only applies for translation correction, which is fine for most of the cases in nano-CT where
samples are not too radiation sensitive and do not deform during the scans. Additionally it
assumes that the motions introduced by the wobble of the rotary stages are negligible vertically
and can be approximated as simple horizontal displacement. The technique for vertical align-
ment does not generate cumulative errors, which is an asset in regard to other approaches reg-
istering consecutive projections. In the future, other fitting approaches could be used to further
improve the correction accuracy.

Fig 10. The false color map of the typical slice in Fig 9i.

doi:10.1371/journal.pone.0141682.g010

Correction of Dynamic Geometric Misalignment for Nano-CT at BSRF

PLOSONE | DOI:10.1371/journal.pone.0141682 October 28, 2015 15 / 17



Acknowledgments
The experimental data set used for this proposed work was measured at the beamline 4W1A of
Beijing Synchrotron Radiation Facility (BSRF, Beijing). The authors are grateful to the opera-
tion team at the beamline 4W1A of BSRF. Special thanks are also given to Dr. Scott Hsieh at
Stanford University for English proofreading. J Fu completed his contribution to this work at
Department of Bioengineering and School of Medicine of Stanford University as a visiting
scholar.

Author Contributions
Conceived and designed the experiments: JF. Performed the experiments: JF. Analyzed the
data: JF CL ZL. Contributed reagents/materials/analysis tools: JF. Wrote the paper: JF.
Designed the software used in analysis: JF.

References
1. Hounsfield G N. A method of and apparatus for examination of a body by radiation such as X- or gam-

maradiation. British Patent No 1.283.915, London, 1972.

2. Herman GT. Image Reconstructions from Projections. New York: Academic Press; 1980.

3. Kak AC, Slaney M. Principles of Computerized Tomographic Imaging. New York: IEEE Press; 1988.

4. Wang Z, Zhu P, HuangW, Yuan Q, Liu X, Zhang K, et al. Analysis of polychromaticity effects in X-ray
Talbot interferometer. Anal Bioanal Chem. 2010; 397:2137–2141. doi: 10.1007/s00216-010-3640-9
PMID: 20358186

5. Wang Z, Zhu P, HuangW, Yuan Q, Liu X, Zhang K, et al. Quantitative coherence analysis with an X-ray
Talbot-Lau interferometer. Anal Bioanal Chem. 2010; 397:2091–2094. doi: 10.1007/s00216-010-
3632-9 PMID: 20306176

6. Zhang K, Hong Y, Zhu P, HuangW, Yuan Q, Liu X, et al. 3D visualization of the microstructure of Que-
dius beesoni Cameron using micro-CT. Anal Bioanal Chem. 2011; 401:837–844.

7. Fu J, Velroyen A, Tan R, Zhang J, Chen L, Tapfer A, et al. A reconstruction method for cone-beam dif-
ferential x-ray phase-contrast computed tomography. Optics Express. 2012; 20(9): 21512–21519. doi:
10.1364/OE.20.021512 PMID: 23037271

8. Fu J, Tan R, Chen L. Analysis and accurate reconstruction of incomplete data in X-ray differential
phase-contrast computed tomography. Anal Bioanal Chem. 2014; 406:897–904. doi: 10.1007/s00216-
013-7482-0 PMID: 24292432

9. Fu J, Tan R, Wang Q, Deng JS, Liu M. A cone beam computed tomography inspection method for fuel
rod cladding tubes. Nucl InstrumMeth A. 2014; 688:1–6. doi: 10.1016/j.nima.2012.05.093

10. Fu J, Biernath T, Willner M, Amberger M, Meiser J, Kunka D, et al. Cone-beam differential phase-con-
trast laminography with x-ray tube source. EPL (Europhysics Letters); 106:68002. doi: 10.1209/0295-
5075/106/68002

11. Fu J, Hu X, Velroyen A, Bech M, Jiang M, Pfeiffer F. 3D algebraic iterative reconstruction for cone-
beam x-ray differential phase-contrast computed tomography. PLoS One. 2015; 10(3): e0117502. doi:
10.1371/journal.pone.0117502 PMID: 25775480

12. Thompson AC, Llacer J. Computed tomography using synchrotron radiation. Nuclear Instruments and
Methods in Physics Research. 1984; 222: 319–323. doi: 10.1016/0167-5087(84)90550-7

13. Cho ZH, Hong KS. Three-dimensional microtomography with synchrotron radiation using planar inte-
gral projection data. Nucl InstrumMeth A. 1984; 227:385–92. doi: 10.1016/0168-9002(84)90151-7

14. Yin GC, Tang MT, Song YF, Chen FR, Liang KS,Duewer FW, et al. Energy-tunable transmission x-ray
microscope for differential contrast imaging with near 60 nm resolution tomography. Appl Phys Lett.
2006; 88:241115. doi: 10.1063/1.2211300

15. Yuan Q, Zhang K, Hong Y, HuangW, Gao K, Wang Z, et al. A 30 nm-resolution hard X-ray microscope
with X-ray fluorescence mapping capability at BSRF. J Synchrotron Rad. 2012; 19:1021–1028. doi:
10.1107/S0909049512032852

16. Andrews JC, Meirer F, Liu Y, Mester Z, Pianetta P. Transmission X-ray microscopy for full-field nano-
imaging of biomaterials. Microsc Res Tech. 2011; 74(7):671–681. doi: 10.1002/jemt.20907 PMID:
20734414

Correction of Dynamic Geometric Misalignment for Nano-CT at BSRF

PLOSONE | DOI:10.1371/journal.pone.0141682 October 28, 2015 16 / 17

http://dx.doi.org/10.1007/s00216-010-3640-9
http://www.ncbi.nlm.nih.gov/pubmed/20358186
http://dx.doi.org/10.1007/s00216-010-3632-9
http://dx.doi.org/10.1007/s00216-010-3632-9
http://www.ncbi.nlm.nih.gov/pubmed/20306176
http://dx.doi.org/10.1364/OE.20.021512
http://www.ncbi.nlm.nih.gov/pubmed/23037271
http://dx.doi.org/10.1007/s00216-013-7482-0
http://dx.doi.org/10.1007/s00216-013-7482-0
http://www.ncbi.nlm.nih.gov/pubmed/24292432
http://dx.doi.org/10.1016/j.nima.2012.05.093
http://dx.doi.org/10.1209/0295-5075/106/68002
http://dx.doi.org/10.1209/0295-5075/106/68002
http://dx.doi.org/10.1371/journal.pone.0117502
http://www.ncbi.nlm.nih.gov/pubmed/25775480
http://dx.doi.org/10.1016/0167-5087(84)90550-7
http://dx.doi.org/10.1016/0168-9002(84)90151-7
http://dx.doi.org/10.1063/1.2211300
http://dx.doi.org/10.1107/S0909049512032852
http://dx.doi.org/10.1002/jemt.20907
http://www.ncbi.nlm.nih.gov/pubmed/20734414


17. Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, et al. Evolution of xylem lignifica-
tion and hydrogel transport regulation. Proc Natl Acad Sci USA. 2004; 101(50): 17555–17558. doi: 10.
1073/pnas.0408024101 PMID: 15574502

18. HarrisH HH, Vogt S, Eastgate H, Peter AL. A link between copper and dental caries in human teeth
identified by X-ray fluorescence elemental mapping. J Biol Inorg Chem. 2008; 13(2):303–306. doi: 10.
1007/s00775-007-0321-z PMID: 18034269

19. Wang SH, Zhang K, Wang ZL et al. A user-friendly nano-CT image alignment and 3D reconstruction
platform based on LabVIEW. Chin Phys C. 2015; 39:018001. doi: 10.1088/1674-1137/39/1/018001

20. Debbeler C, Maass N, Elter M, Dennerlein F, Buzug T M. A new CT rawdata redundancy measure
applied to automated misalignment correction. Proceedings of the 12th international meeting on fully
three-dimensional image reconstruction in radiology and nuclear medicine, edited by Richard Leahy
and Jinyi Qi, 2013, pp. 264–267.

21. Maass N, Dennerlein F, Aichert A, Maier A. Geometrical jitter correction in computed tomography. Pro-
ceedings of the third international conference on image formation in X-ray computed tomography,
edited by Frederic Noo, Salt Lake City, 2014, pp.338–342.

22. Sawall S, Knaup M, Kachelrie M. A robust geometry estimation method for spiral, sequential and circu-
lar cone-beammicro-ct. Med Phys. 2012; 39(9):5384–5392. doi: 10.1118/1.4739506 PMID: 22957606

23. Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA. Accurate technique for complete geometric calibration
of cone-beam computed tomography systems. Med Phys. 2005; 32(4):968–83. doi: 10.1118/1.
1869652 PMID: 15895580

24. Varslot T, Kingston A, Myers G, Sheppard A. High-resolution helical cone-beammicro-CT with theoreti-
cally-exact reconstruction from experimental data. Med Phys. 2011; 38(10):5459–5476. doi: 10.1118/
1.3633900 PMID: 21992365

25. Kingston A, Sakellariou A, Varslot T, Myers G, Sheppard A. Reliable automatic alignment of tomo-
graphic projection data by passive auto-focus. Med Phys. 2011; 38(9):4934–4945. doi: 10.1118/1.
3609096 PMID: 21978038

26. Panetta D, Belcari N, Del Guerra A, Moehrs S. An optimization-based method for geometrical calibra-
tion in cone-beamCT without dedicated phantoms. Phys Med Biol. 2008; 53:3841–3861. doi: 10.1088/
0031-9155/53/14/009 PMID: 18583729

27. Gullberg GT, Tsui B MW, Crawford CR, Ballard JG, Hagius JT. Estimation of geometrical parameters
and collimator evaluation for cone beam tomography. Med Phys. 1990; 17(2): 264–272. doi: 10.1118/
1.596505 PMID: 2333053

28. Bronnikov AV. Virtual alignment of x-ray cone-beam tomography system using two calibration aperture
measurements. Opt Eng. 1999; 38(2):381–386. doi: 10.1117/1.602100

29. Viskoe A. Computed tomography postacquisition data correction for system alignment Errors. IEEE
Transactions on instrumentation and measurement. 1999; 48(5): 972–977. doi: 10.1109/19.799656

30. Rivers ML andWang Y. Recent developments in microtomography at GeoSoilEnviroCARS. Proc. of
SPIE. 2006; 6318: 63180J. doi: 10.1117/12.681144

31. Donath T, Beckmann F, Schreyer A. Automated determination of the center of rotation in tomography
data. JOSA. 2006; 23:1048–1057. doi: 10.1364/JOSAA.23.001048

32. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. JOSA. 1984; 1:612–619. doi: 10.
1364/JOSAA.1.000612

Correction of Dynamic Geometric Misalignment for Nano-CT at BSRF

PLOSONE | DOI:10.1371/journal.pone.0141682 October 28, 2015 17 / 17

http://dx.doi.org/10.1073/pnas.0408024101
http://dx.doi.org/10.1073/pnas.0408024101
http://www.ncbi.nlm.nih.gov/pubmed/15574502
http://dx.doi.org/10.1007/s00775-007-0321-z
http://dx.doi.org/10.1007/s00775-007-0321-z
http://www.ncbi.nlm.nih.gov/pubmed/18034269
http://dx.doi.org/10.1088/1674-1137/39/1/018001
http://dx.doi.org/10.1118/1.4739506
http://www.ncbi.nlm.nih.gov/pubmed/22957606
http://dx.doi.org/10.1118/1.1869652
http://dx.doi.org/10.1118/1.1869652
http://www.ncbi.nlm.nih.gov/pubmed/15895580
http://dx.doi.org/10.1118/1.3633900
http://dx.doi.org/10.1118/1.3633900
http://www.ncbi.nlm.nih.gov/pubmed/21992365
http://dx.doi.org/10.1118/1.3609096
http://dx.doi.org/10.1118/1.3609096
http://www.ncbi.nlm.nih.gov/pubmed/21978038
http://dx.doi.org/10.1088/0031-9155/53/14/009
http://dx.doi.org/10.1088/0031-9155/53/14/009
http://www.ncbi.nlm.nih.gov/pubmed/18583729
http://dx.doi.org/10.1118/1.596505
http://dx.doi.org/10.1118/1.596505
http://www.ncbi.nlm.nih.gov/pubmed/2333053
http://dx.doi.org/10.1117/1.602100
http://dx.doi.org/10.1109/19.799656
http://dx.doi.org/10.1117/12.681144
http://dx.doi.org/10.1364/JOSAA.23.001048
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612

