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Pancreatic adenocarcinoma (PAAD) is a malignant cancer with high incidence and
mortality. Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of PAAD
and contributes to tumorigenesis and progression through numerous mechanisms.
This study aimed to identify a novel glycolysis-related lncRNA-miRNA-mRNA ceRNA
signature in PAAD and explore its potential molecular function. We first calculated the
glycolysis score for each PAAD patient by the ssGSEA algorithm and found that patients
with higher hallmark glycolysis scores had poorer prognosis. Subsequently, we obtained a
novel glycolysis-related LINC02432/hsa-miR-98–5p/HK2 axis from the TCGA and GEO
databases using comprehensive bioinformatics analysis and developed a nomogram to
predict overall survival. Furthermore, functional characterization analysis revealed that
LINC02432/hsa-miR-98–5p/HK2 axis risk score was negatively correlated with
ferroptosis. The tumor immune infiltration analysis suggested positive correlations
between ceRNA risk score and infiltrated M0 macrophage levels in PAAD. Correlation
analysis found that ceRNA risk scores were positively correlated with four chemokines
(CXCL3, CXCL5, CXCL8 and CCL20) and one immune checkpoint gene (SIGLEC15).
Meanwhile, tumor mutation burden (TMB), an indicator for predicting response to
immunotherapy, was positively correlated with ceRNA risk score. Finally, the drug
sensitivity analysis showed that the high-risk score patients might be more sensitive to
EGFR, MEK and ERK inhibitors than low-risk score patients. In conclusion, our study
suggested that LINC02432/hsa-miR-98–5p/HK2 axis may serve as a novel diagnostic,
prognostic, and therapeutic target in PAAD treatment.
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1 INTRODUCTION

Pancreatic cancer is a devastating cancer of the digestive system
with poor prognosis, short survival rate, and high mortality (Cai
et al., 2021). Pancreatic adenocarcinoma (PAAD) accounts for
more than 95% of all pancreatic cancers and is the most common
type of pancreatic cancer (Luchini et al., 2021). So far, surgical
resection is the only viable curative therapy for PAAD (Tummers
et al., 2019). Unfortunately, at least 80% of PAAD patients are
originally identified as unresectable or transference tumors. As a
result, a substantial number of patients develop either local
recurrences or distant metastases after surgical resection. Even
with resection, PAAD has a poor prognosis with a 5-years overall
survival rate of less than 10% (Yang et al., 2020; Carotenuto et al.,
2021). In spite of the tremendous developments in diagnostic
tools, surgical approaches, chemotherapy, radiotherapy, and
targeted therapy, these approaches can only provide very few
survival advantages for PAAD patients (Brero et al., 2020).
Clearly, a better understanding of the mechanisms behind
PAAD development, is urgently needed to identify novel
biomarkers for early diagnosis, prognosis, and treatment.

Whole-genome sequencing shows that roughly 93% of the
DNA in the human genome is transcribed into RNA. But, only
about 2% of the DNA sequence ultimately encodes a protein. The
remaining 98%were called non-coding RNAs (ncRNAs) (Pi et al.,
2021). According to the length of the sequences, ncRNAs can be
divided into long non-coding RNAs (lncRNAs, over 200
nucleotides) and microRNAs (miRNAs, 19–23 nucleotides in
length) (Zhang et al., 2021a). With the deeper research into
ncRNA function, the complex regulatory network involving
lncRNA, miRNA, and mRNA is drawing increasing research
attention worldwide. LncRNAs can act as competitive
endogenous RNAs (ceRNAs) to sequester miRNAs from their
target mRNAs. This effectively reduces the suppressive effects of
miRNAs on mRNA which plays a role in many human diseases,
particularly various cancers (Anastasiadou et al., 2018).
Abnormal tumor metabolism is increasingly acknowledged as
an important hallmark of cancer, leading to renewed interest in
therapeutic strategies targeting glycolysis. Studies have identified
that the normal pancreas metabolizes glucose through oxidative
phosphorylation, whereas PAAD cells prefer aerobic glycolysis
for glucose metabolism, known as the Warburg effect. Therefore,
exploring the glycolysis-related ceRNA network may offer an
attractive new target for prognostic and therapeutic interventions
for PAAD.

Ferroptosis, a novel non-apoptotic cell death mode, is closely
related to the disturbance of iron-dependent lipid peroxides (Wu
et al., 2022). These accumulated lipid reactive oxygen species
could lead to ferroptotic cell death. The SLC7A11-GSH-GPX4
signaling axis constitutes the major surveillance system to defend
against ferroptosis in cancer cells (Koppula et al., 2022). SLC7A11
and GPX4 are considered as the central regulators of ferroptosis,
and SLC7A11 expression and GPX4 activity are always regarded
as markers of ferroptosis (Liu P. et al., 2020; Zhang et al., 2021b;
Yuan et al., 2021). GPX4 is on the downstream of SLC7A11,
utilizing GSH to detoxify lipid peroxides and prevent ferroptosis.
SLC7A11 is overexpressed in many cancers, especially in PAAD

(Zhou et al., 2021). Research showed that the deletion of
SLC7A11 was sufficient to decrease cystine import,
downregulate GSH activity, induce tumor ferroptosis, and
inhibited PAAD growth (Ping et al., 2022). Studies have
shown that, in addition to lipid, lactic acid is also
indispensable in the ferroptosis process (Liao et al., 2021).
Lactic acid as a glycolytic metabolite has been shown to be a
negative regulator of ferroptosis (Zhao et al., 2020). Lactic acid
can induce the formation of monounsaturated fatty acids through
the HCAR1/MCT1-SREBP1-SCD1 pathway and resist oxidative
stress-induced ferroptosis in hepatocellular carcinoma (HCC)
cells (Zhao et al., 2020; Liu et al., 2021). It has been suggested
that the rerouting of tumour cell metabolism from glycolysis to
OXPHOS could make cells more vulnerable to GSH depletion
and ferroptosis (Ždralević et al., 2018). Recent studies have shown
that ferroptosis is associated with PAAD prognosis and
chemotherapy, but its relationship to glycolysis in PAAD
remains unclear (Tang et al., 2022). Therefore, this study
revealed a new molecular regulatory mechanism of PAAD by
investigating the relationship between glycolysis-related ceRNAs
and ferroptosis.

The tumor microenvironment (TME) is a complex overall
system formed by the association of cancer cells with surrounding
stromal and immune cells (Melaiu et al., 2020). It participates in
the whole process of tumor occurrence, development, and drug
reaction (Li andWang, 2020; Kumari et al., 2021). PAAD patients
have a highly immunosuppressive TME, which is a major cause of
immunotherapy resistance in PAAD (Qiu et al., 2021).
Accumulation of lactate resulting from aerobic glycolysis
forms an acidic environment facilitating tumor invasion,
which plays a significant role in shaping the
immunosuppressive TME (Lecoultre et al., 2020). Tumor-
associated macrophages (TAMs), regulatory T cells (Tregs),
and Myeloid-derived suppressor cells (MDSCs) are the
principal components of this immunosuppressive TME. These
cells have been reported to facilitate systemic T cell dysfunction,
allowing PAAD to evade immune detection (Liang et al., 2021;
Truong and Pauklin, 2021). Studies have shown that knockdown
of interferon-inducible protein 16 (IFI16) significantly enhances
gemcitabine treatment in PAAD, which may be associated with
reduced TAMs infiltration in the tumor microenvironment
(Chen et al., 2021). Recent clinical studies have identified
tumor mutation burden (TMB) as an indicator for predicting
response to immunotherapy (Zhang W. et al., 2021). High TMB
have better response to PD-1/PD-L1 therapy across diverse
tumor entities (Ak et al., 2021). Therefore, analyzing the
relationship between glycolysis-related ceRNA networks,
tumor-infiltrating immunity, TMB and drug sensitivity is
critical to explain the potential molecular mechanisms
implicated in the development of PAAD, and identify
promising biomarkers and novel therapeutic drugs.

In this study, we comprehensively analyzed several databases
to construct a novel glycolysis-related LINC02432/hsa-miR-
98–5p/HK2 ceRNA network and constructed a three-gene
signature using Cox regression survival analysis to forecast the
prognosis for PAAD patients. Next, we downloaded ferroptosis-
related gene sets (driver, suppressor, and marker) from FerrDb
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and analyzed the correlation between the LINC02432/hsa-miR-
98–5p/HK2 axis risk score and ferroptosis. Meanwhile, we probed
the relationship among the ceRNA axis and immune cell
infiltration in PAAD by ImmuCellAI and the CIBERSORT
algorithm. Furthermore, we explored the correlation between
LINC02432/hsa-miR-98–5p/HK2 ceRNA network and the
expression levels of 40 known chemokines and eight immune
checkpoint genes through Pearson correlation analysis in PAAD
cancers.We downloaded somatic mutation data fromThe Cancer
Genome Atlas (TCGA) GDC data to assess the relationship
between the ceRNA network and TMB. Finally, the R package
oncoPredict and the Genomics of Drug Sensitivity in Cancer
(GDSC) database were used to predict potential drugs for PAAD
patients with high risk score. In conclusion, a novel glycolysis-
related LINC02432/hsa-miR-98–5p/HK2 ceRNA network
targeting PAAD patients was constructed and its functions
were analyzed, which may establish new insights for clinical
decision making and precision medicine.

2 MATERIALS AND METHODS

2.1 Gene Expression Profile Data Collection
Download two lncRNA expression arrays (GSE57144 and
GSE86436) from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/). The GSE57144
dataset contained three pancreatic cancer tissues and three
adjacent normal tissues. The GSE86436 dataset contained six
pairs of pancreatic tumor tissues with normal adjacent tissues.
Meanwhile, seven mRNA microarray datasets (GSE15471,
GSE16515, GSE28735, GSE32676, GSE62165, GSE62452, and
GSE71729) were obtained from the GEO database. GSE15471
contained 39 PAAD tumor tissues and 39 adjacent normal
controls. GSE16515 included 36 PAAD tumors and 16
adjacent non-tumor tissues. GSE28735 contained 45 PAAD
tumors and 45 adjacent non-tumor tissues. GSE32676
included 25 PAAD samples and seven adjacent non-tumor
samples. GSE62165 contained 118 PAAD tissues and 13
adjacent control tissues. GSE62452 included 69 PAAD tumors
with 61 adjacent non-tumor tissues. GSE71729 contained 145
PAAD tumors and 46 adjacent non-tumor samples. In addition,
the level 3 RNA sequencing data (lncRNA, miRNA, and mRNA)
and corresponding clinical information for patients with PAAD
were obtained from TCGA database by the TCGAbiolinks
package of R software (version 4.0.4).

2.2 Evaluation of Glycolysis Score
The gene sets associated with the glycolysis pathway (reactome
glycolysis and hallmark glycolysis) were obtained from the
Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb). Then, single sample Gene Set
Enrichment Analysis (ssGSEA) was used to calculate the
glycolysis score for each PAAD patient. We divided PAAD
patients into high glycolysis score and low glycolysis score
groups based on the median glycolysis score. Finally, the
association of glycolysis score with prognosis was assessed by
Kaplan-Meier survival analysis.

2.3 Identification of Glycolysis-Related
Genes
The GEO2R web application (http://www.ncbi.nlm.nih.gov/geo/
geo2r) was performed to analyze differentially expressed
lncRNAs (DELs) and differentially expressed genes (DEGs)
among PAAD tumor tissues and adjacent non-tumor tissues.
Meanwhile, we used the R package limma to determine DELs and
DEGs among the high glycolysis score and low glycolysis score
groups. The log2 (fold change) >= 1.0 or <= -1.0 and p-value < 0.
05 were set as the cut-off criteria. We used Venn diagram analysis
to further screen for glycolysis-related lncRNAs and mRNAs in
PAAD. Meanwhile, through Kaplan-Meier analysis, Pearson
correlation analysis, and univariate Cox regression analysis,
the key prognostic genes of glycolysis-related were identified.

2.4 Construction of a Glycolysis-Related
lncRNA-miRNA-mRNA ceRNA Network
The downstream miRNAs of the target lncRNAs were predicted
by miRNet database (https://www.mirnet.ca/) and starBase
database (http://starbase.sysu.edu.cn/index.php). The
miRTarBase database (http://mirtarbase.cuhk.edu.cn/) was
used to forecast upstream miRNAs of key mRNAs. We
selected mRNA-miRNA interactions with strong experimental
evidence (reporter analysis or western blot) for further study.
Based on ceRNA theory and the association between lncRNAs,
miRNAs and mRNAs, ceRNA networks were established by
Cytoscape software (version 3.8.0). We calculated the
expression correlations of lncRNA-mRNA, lncRNA-miRNA,
and mRNA-miRNA pairs by Pearson correlation analysis. We
chose gene pairs with |r| > 0.1 and p-value < 0.05 for further
analysis.

2.5 Gene Expression and Subcellular
Localization Analysis
We used UALCAN to explore the HK2 protein expression in
PAAD with data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC). Moreover, the immunohistochemistry
(IHC) staining data of protein expression and distribution of
HK2 in PAAD tissues and normal tissues were obtained from the
Human Protein Atlas (HPA) database (https://www.proteinatlas.
org/). lncLocator (http://www.csbio.sjtu.edu.cn/bioinf/
lncLocator/) was used to obtain subcellular localization of
LINC02432. We also examined the specificity of SIGLEC15
mRNA expression in different pancreatic single cell types
using the single-cell RNA-seq (scRNA-seq) data through the
HPA dataset.

2.6 Construction and Assessment of
ceRNA-Related Prognostic Model
We used multiple Cox regression analysis of the LINC02432/hsa-
miR-98–5p/HK2 axis levels to calculate the risk scores in PAAD
patients. According to the median risk score, we performed
Kaplan-Meier analysis in PAAD patients using the survminer

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9374133

Tan et al. LINC02432/Hsa-miR-98–5p/HK2 Axis in PAAD

http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.mirnet.ca/
http://starbase.sysu.edu.cn/index.php
http://mirtarbase.cuhk.edu.cn/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


R package. At the same time, we used the ROC package in R to
draw receiver operating characteristic (ROC) curves for 1-year, 3-
years and 5-years survival rates, and calculated the corresponding
area under the curve (AUC) to evaluate the predictive power of
ceRNA-related features. Based on Cox proportional hazards
regression analysis, we developed a 5-years overall survival risk
stratified nomogram based on prognostic factors using the rms
library in R.

2.7 Correlation Analysis Between
Ferroptosis and Glycolysis
A total of 259 ferroptosis-related genes were downloaded
from the FerrDb website (http://www.zhounan.org/ferrdb/
legacy/index.html), including 108 driver genes, 69
suppressor genes, and 111 marker genes. The ssGSEA
heatmap was done using the pheatmap R package to show
the enrichment of the three ferroptosis-related gene sets
across all PAAD samples. The correlation heatmap was
generated by R software with the corrplot function
package. The GEPIA2 database (http://gepia2.cancer-pku.
cn/) was used to explore the differential expression of
important ferroptosis suppressor genes between PAAD and
normal tissues. Survival analyses of key ferroptosis suppressor
genes were conducted with the Kaplan-Meier plotter (http://
kmplot.com/analysis/).

2.8 Tumor Immune Infiltration Analysis
The ImmuCellAI and the CIBERSORT algorithm were used to
evaluate the abundance of tumor-infiltrating immune cells.
We used the ImmuCellAI (Immune Cell Abundance
Identifier, http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/)
algorithm to forecast the abundance of 24 immune cells
from transcriptome data using gene set signatures.
Meanwhile, we visualized the 24 immune cell infiltration
estimation of TCGA samples as a heatmap by the R
package ComplexHeatmap. According to the CIBERSORT
algorithm, we selected the LM22 gene signature and 1000
permutation parameters in R to analyze the score of 22
immune cells. LM22 is an annotated gene signature matrix
consisting of 547 genes that defines 22 immune cell subtypes
and can be downloaded from the CIBERSORT portal (http://
cibersort.stanford.edu/). Macrophage lineage expression
profiles in LM22 signature were derived from freshly
isolated monocytes in peripheral blood monocytes. M0
macrophages were generated by monocyte differentiation in
human serum for 7 days. M1 macrophages were generated by
monocyte differentiation in colony stimulating factor 1
(CSF1) for 7 days and then stimulated with LPS and IFNγ
for 18 h. M2 macrophages were generated by monocyte
differentiation in CSF1 for 7 days and then stimulated with
IL-4 for 18 h (Newman et al., 2015). The proportions of 22
immune cell infiltrations in PAAD patients were visualized by
cumulative histograms using the ggplot2 package. We
calculated the Pearson correlation coefficients of ceRNA
risk scores and tumor-infiltrating immune cells by the R
package ggpubr.

2.9 Expression Levels Analysis of
Chemokines and Immune Checkpoint
Genes
The expression of chemokine and immune checkpoint genes was
compared between PAAD tumors and adjacent normal samples
by the GEPIA2 database website (http://gepia2.cancer-pku.cn/).
We summarized the differential expression of chemokine and
immune checkpoint genes among high and low ceRNA risk score
groups as boxplots by the ggplot2 package in R software. The
clustering analysis of differentially expressed chemokines and
heatmap visualization of the correlation matrix were performed
using the R corrplot package. The Pearson correlation analysis of
ceRNA risk score with the key chemokines and immune
checkpoint genes was performed and visualized using the R
package ggpubr.

2.10 Association Among Somatic Mutation
and Risk Score
We used the maftools package in R software to organize the
single-nucleotide polymorphism (SNV) data downloaded from
the TCGA database in multiple alignment (MAF) format.
Meanwhile, we plotted horizontal histograms showing the
genes with the highest mutation frequencies by the maftools
package in R. The Pearson correlation coefficient between the top
10 frequently mutated genes was calculated and plotted using the
corrplot package in R. We assessed TMB values for each sample
and analyzed the overall survival in the high and low TMB groups
using the Kaplan-Meier method. Meanwhile, we compared TMB
values among high- and low risk groups, and assessed the
association of TMB with risk scores.

2.11 Tumor Immune Dysfunction and
Exclusion (TIDE) Analysis in PAAD.
The TIDE (http://tide.dfci.harvard.edu/) model was a
computational method, which integrated the expression
signatures of T cell dysfunction and T cell exclusion to model
tumor immune evasion. The clinical response of immune
checkpoint blockade (anti-PDCD1 and anti-CTLA4) could be
predicted by TIDE algorithm based on pre-treatment tumor
profiles. The TIDE score was compared between high risk
score and low risk score groups.

2.12 Drug Sensitivity Analysis
Genomics of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org/) is the largest publicly available
pharmacogenomics database which can be used to predict
response to anti-cancer drugs. In this study, we used data
from GDSC2, an updated version of GDSC containing 809 cell
lines and 198 compounds. Based on this database, we used the R
software package oncoPredict to predict the antineoplastic drug
susceptibility for PAAD patients with the high- and low risk
groups. The regression analysis was conducted to obtain the half-
maximal inhibitory concentration (IC50) estimated value of each
specific antineoplastic drug treatment.
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FIGURE 1 | Identification of glycolysis-related differentially expressed lncRNAs andmRNAs. (A) Kaplan-Meier survival analysis of PAAD patients based on hallmark
glycolysis score. (B) Volcano map of the DELs among high-glycolysis and low-glycolysis groups. (C) DELs volcano maps between PAAD tissues and normal tissues in
the GSE57144 and GSE86436 datasets. Upregulated lncRNAs were indicated by red dots and downregulated lncRNAs were indicated by blue dots. (D) Venn diagram
depicting the overlap among three sets of DELs. (E) The Pearson correlation analysis was performed to evaluate the association between glycolysis ssGSEA score
and three lncRNAs. (F) Volcano plots of DEGs between PAAD tissues and normal tissues in the GSE15471, GSE16515, GSE28735, GSE32676, GSE62165,
GSE62452, and GSE71729 datasets downloaded from the GEO database (G) Venn diagram of upregulated DEGs based on the sevenGEO datasets. (H)DEGs volcano
plot among high-glycolysis and low-glycolysis groups. (I) The overlapping upregulated DEGs were identified by Venn plot. (J) Heat map of 48 upregulated DEGs related
to glycolysis.
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2.13 Statistical Analysis
Most statistical analysis was done by the aforementioned
bioinformatics tools. The R software (version 4.0.4) was used
for all the rest of the statistical analyses. Two-tailed Student’s t test
was used to estimate the differential expression levels of mRNA,
miRNA, and lncRNA. The p-value adjustment was performed by
the Benjamini–Hochberg FDR method. The correlation was
assessed by the Pearson correlation coefficient. A p-value <
0.05 was considered as statistically significant.

3 RESULTS

3.1 Identification of Glycolysis-Related
lncRNAs and mRNAs in PAAD.
The flowchart in Supplementary Figure S1 outlines the entire
design and process of this research. We first obtained two
glycolysis pathway gene sets (hallmark glycolysis and reactome
glycolysis) from theMSigDB. Next, a heatmap was drawn to show
the glycolytic activity of each pathway in each TCGA-PAAD
sample quantified by the ssGSEA algorithm (Supplementary
Figure S2A). Kaplan–Meier survival analysis results indicated
that the PAAD overall survival was associated with the hallmark
glycolysis score (Figure 1A), but was not associated with the
reactome glycolysis score (Supplementary Figure S2B). Patients
with higher hallmark glycolysis scores had poor prognoses.

To identify glycolysis-related lncRNAs, we first obtained the
DELs between high/low hallmark glycolysis score groups
(Figure 1B). The volcano maps showed the lncRNA
expression patterns between PAAD and normal tissues based
on the GEO datasets (GSE57144 and GSE86436) (Figure 1C). To
investigate potential overlaps of the three sets of significant DELs,
we created a visualization of the overlaps as a Venn diagram. We
found three upregulated glycolysis-related lncRNAs (LINC02432,
AL451042.2, and AC011352.1), but no downregulated glycolysis-
related lncRNAs were found (Figure 1D). Pearson correlation
analysis indicated that the expression of LINC02432,
AL451042.2, and AC011352.1 were positively associated with
glycolytic activity level (Figure 1E).

To further explore DEGs between PAAD and normal samples,
we downloaded seven gene microarrays datasets from the GEO
database: GSE15471, GSE16515, GSE28735, GSE32676,
GSE62165, GSE62452, and GSE71729. The distribution of all
DEGs according to the two dimensions of -log10 (p-value) and
log2 (fold change) were represented by volcano maps in
Figure 1F. In the ceRNA network, the correlation of lncRNA
and mRNA was positive. Given that the three glycolysis-related
lncRNAs (AC011352.1, AL451042.2, and LINC02432) were all
found to be upregulated in PAAD, we further identified
upregulated DEGs. Among the upregulated DEGs from the
seven GEO datasets, we obtained 70 overlapping upregulated
DEGs through Venn diagram analysis (Figure 1G). Then, DEGs
between high/low hallmark glycolysis score groups were analyzed
using the volcano map, of which, 394 were upregulated and 638
were downregulated (Figure 1H). The result of Venn analysis
suggested that 48 upregulated DEGs related to glycolysis were
identified for further study by overlapping the 70 DEGs and 394

upregulated genes (Figure 1I). In addition, we drew a cluster heat
map for 48 upregulated DEGs expressions in Figure 1J. Finally,
univariable Cox regression analysis was performed to assess the
prognostic impact of 48 upregulated DEGs related to glycolysis
(Supplementary Figure S3). The results showed that 30 of the 48
upregulated DEGs (p-value < 0.05 and HR > 1.2) were considered
key prognostic genes of glycolysis-related. The above 30 genes
were marked with red font in Figure 1J. We used the Pearson
correlation analysis to determine the associations between three
lncRNAs and 30 key mRNAs. We found that the expression of
AL451042.2 and LINC02432 was significantly positively
correlated with the expression of 30 key mRNAs, while the
expression of AC011352.1 was significantly positively
correlated with 23 of these genes (Supplementary Figure S4).

3.2 Construction and Analysis of
Glycolysis-Related ceRNA Network
Based on the ceRNA network theory, we predicted the
downstream potential miRNA that could potentially bind to
three upregulated glycolysis-related lncRNAs (AC011352.1,
AL451042.2, and LINC02432) using starBase and miRNet.
Potential upstream miRNAs targeting 30 key glycolysis-related
genes were then analyzed using miRNA-target interactions
supported by strong experimental evidence in miRTarBase.
Meanwhile, the lncRNA-miRNA-mRNA ceRNA network was
integrated by Cytoscape software, which contained one lncRNA,
79 miRNAs and 13 mRNAs (Figure 2A). From the lncRNA-
miRNA-mRNA ceRNA network, two potential regulatory axes
(LINC02432/hsa-miR-98–5p/HK2 and LINC02432/hsa-miR-
133b/MET) were identified. To select the most meaningful
ceRNA regulatory axis in this study, we only selected mRNAs,
miRNAs, or lncRNAs that were significantly related to the
prognosis of PAA. First, by correlation analysis of each
element in the two potential regulatory axes, we found that
LINC02432 was positive correlated with HK2 and MET, and
was negatively correlated with hsa-miR-98–5p (Figure 2B), but
not correlated with hsa-miR-133b (Supplementary Figure S5A).
At the same time, hsa-miR-98–5p was significantly negatively
correlated with HK2 (Figure 2B), while hsa-miR-133b was not
correlated with MET (Supplementary Figure S5B).
Furthermore, Prognostic survival analysis showed LINC02432
high expression, hsa-miR-98–5p low expression, and HK2 high
expression were correlated with poor prognosis (Figure 2C). As
shown in Supplementary Figure S5C, the expression of hsa-miR-
133b in pancreatic cancer was not associated with prognosis.
Therefore, the LINC02432/hsa-miR-98–5p/HK2 axis is
considered to be the most meaningful glycolysis-related
ceRNA regulatory axis. Analysis of the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) database using
UALCAN found that protein expression levels of HK2 were
significantly increased in PAAD tissues compared with
adjacent healthy tissues (Figure 2D). Moreover, the IHC
results from the HPA database showed HK2 was highly
expressed in PAAD tissues, and the elevated HK2 was mainly
localized in the cytoplasm of PAAD cells (Figure 2E).
Cytoplasmic lncRNAs usually acted as ceRNA by binding

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9374136

Tan et al. LINC02432/Hsa-miR-98–5p/HK2 Axis in PAAD

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


miRNAs. We found that LINC02432 was expressed in the
cytoplasm through the lncLocator website (Figure 2F). A
schematic figure describing the LINC02432/hsa-miR-98–5p/
HK2 axis showing that LINC02432 regulates glycolytic rate-
limiting enzyme HK2 expression and PAAD progression by

acting as a ceRNA against hsa-miR-98–5p (Figure 2G).
Moreover, the predicted targeting sites of hsa-miR-98–5p on
the LINC02432 and HK2 were identified (Figure 2H). We found
two putative binding sites for has-miR-98–5p in LINC02432,
located at 617–624 bp (Site 1) and 829–836 bp (Site 2).

FIGURE 2 | Identification of glycolysis-related ceRNA network modules. (A) A diagram of lncRNA-miRNA andmRNA-miRNA interactive networks was constructed
by Cytoscape software. (B) The Pearson correlation analysis was performed to identify the correlation between genes (LINC02432, HK2, MET, and hsa-miR-98–5p). (C)
Survival analysis of LINC02432, hsa-miR-98–5p and HK2 was performed using Kaplan-Meier survival curves. (D) HK2 protein expression of PAAD patients was
evaluated in the CPTAC datasets via the UALCAN database. (E) IHC staining of HK2 protein was analyzed in the HPA database. (F) Subcellular localization of
LINC02432 was predicted using the lncLocator website. (G) Schematic illustration of the LINC02432/hsa-miR-98–5p/HK2 ceRNA axis. (H) Identification of target sites
for hsa-miR-98–5p on the 3′-UTR of LINC02432 and HK2.
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3.3 Construction of the Three-Gene-Based
PAAD Prognostic Model
To estimate the association between LINC02432/hsa-miR-
98–5p/HK2 axis and clinical prognosis, all 177 TCGA
PAAD samples were randomly divided into a training
cohort (n = 133) and a testing cohort (n = 44) at a ratio of
3:1. The risk curves, scatterplots and Kaplan-Meier curve
analysis were performed in training cohort. The risk curves
and scatterplots showed that PAAD patients in the high risk
group had higher risk factors and mortality in the training
cohort. Heat map showing the expression profiles of the
LINC02432/hsa-miR-98–5p/HK2 axis in the training cohort
(Supplementary Figure S6A). The result of the Kaplan-Meier
curve showed that the overall survival of the high risk group
was significantly lower than that of the low risk group in the

training cohort (Supplementary Figure S6B). This result was
consistent with that of the testing cohort (Supplementary
Figures S6C,D) and the entire cohort (Figures 3A,B). In
addition, we executed time-dependent ROC curve analysis
to assess the sensitivity and specificity of survival prediction
for the three-gene signature in TCGA. The AUC values of the
risk scores corresponding to 1-year, 3-years, and 5-years
survival were 0.646, 0.639, and 0.746, respectively
(Figure 3C). This further confirms the high sensitivity and
specificity of the three-gene signature as a reliable predictor of
overall survival in PAAD. The univariate Cox regression
demonstrated that risk score, age, grade, and pathological N
could forecast poorer PAAD survival (Figure 3D). As shown
in Figure 3E, we created a nomogram model combining the
three-gene-based risk score with clinicopathological

FIGURE 3 | Construction of a prognostic model of PAAD based on the LINC02432/hsa-miR-98–5p/HK2 ceRNA network. (A) Risk curves and scatter plots for
each sample in the TCGA-PAAD cohort after rearrangement by the ggrisk algorithm. The heat map exhibited the expression levels of LINC02432, hsa-miR-98–5p, and
HK2 in the high risk score and low risk score groups. (B) Kaplan-Meier analysis showing overall survival in low-risk and high-risk patient groups. (C) The time-dependent
ROC curves and AUC for 1-year, 3-years, and 5-years overall survival. (D) Univariate Cox regression analysis was used to assess the association of
clinicopathological features and risk scores. (E) A nomogram model was constructed using four independent prognostic factors (risk score, age, grade, and
pathological T).
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characteristics (age, grade and pathological N) to evaluate the
probability of survival at 1-year, 3-years, and 5-years overall
survival in PAAD. Our results demonstrated that the

LINC02432/hsa-miR-98–5p/HK2 ceRNA axis might be
especially important for the development and prognosis of
PAAD by influencing glycolytic activity.

FIGURE 4 | The correlation between LINC02432/hsa-miR-98–5p/HK2 axis and ferroptosis. (A)Heatmap of ssGSEA scores for the three ferroptosis-related genes
in PAAD samples. (B) Dot plot of Pearson correlation between ceRNA risk score and ferroptosis suppressor gene set score. (C) The Pearson correlation was used to
assess the relationship between glycolysis score and ferroptosis suppressor gene set score. (D) Correlation heatmap showing the clustering of ferroptosis suppressor
gene expression. (E) The correlation heatmap demonstrated the relationship between the LINC02432/hsa-miR-98–5p/HK2 axis and two ferroptosis suppressor
gene clusters. (F) GEPIA data analysis exhibited the differential expression of HELLS, PROM2, CA9, MUC1, NQO1, and SRC in PAAD compared to normal tissue. (G)
Pearson correlation analysis was applied to assess the relationship between SLC7A11 and LINC02432/hsa-miR-98–5p/HK2 axis. (H) Comparison of sorafenib IC50
between low and high risk score groups in PAAD. (I) Correlation between LINC02432 expression and sorafenib IC50 values.
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3.4 Glycolysis-Related LINC02432/
Hsa-miR-98–5p/HK2 Axis Inhibited
Ferroptosis
To investigate the role of the glycolysis-related ceRNA network in
regulating the ferroptosis pathway, we first downloaded a total of
259 ferroptosis-related genes from the FerrDb database, including
108 driver genes, 69 repressor genes, and 111marker genes. Then,
the ssGSEA scores of the three ferroptosis-related gene sets were
plotted through a heatmap in PAAD samples (Figure 4A). We
found that the correlation of ceRNA risk score was strongest with
the ferroptosis suppressor gene set score. Pearson correlation
analysis revealed that ceRNA risk score was significantly
positively correlated with ferroptosis suppressor gene sets
score (R = 0.66, p < 0.001) (Figure 4B). Meanwhile, we found
a significant positive correlation between the glycolysis score and
the ferroptosis inhibitory genome score (Figure 4C). Following
the correlation heatmap cluster analysis of ferroptosis suppressor
gene expression data, two clusters of genes were identified as key
ferroptosis suppressor genes in PAAD (Figure 4D). Further, we
analyzed the correlation between the ceRNA axis and the two
clusters of ferroptosis suppressor gene. We found six ferroptosis
suppressor genes (HELLS, PROM2, CA9, MUC1, NQO1, and
SRC) were significantly positively correlated with risk score,
LINC02432, and HK2 and significantly negatively correlated
with hsa-miR-98–5p (Figure 4E). GEPIA expression analysis
showed that the mRNA expression levels of these six
ferroptosis suppressor genes were significantly higher in
PAAD tissues than in adjacent normal tissues (Figure 4F).
Kaplan-Meier survival analysis demonstrated that high
expression of HELLS, PROM2, CA9, MUC1, NQO1, and SRC
was significantly associated with a poor prognosis in PAAD
patients (Supplementary Figure S7). To gain more evidence
that the ceRNA network regulates ferroptosis in pancreatic
cancer, we analyzed the relationship between the ceRNA axis
and SLC7A11. We found that SLC7A11 expression was positively
correlated with the expression of LINC02432 and HK2, and
negatively correlated with the expression of hsa-miR-98–5p
(Figure 4G). In addition, sorafenib was a ferroptosis inducer.
Drug sensitivity analysis showed that the IC50 of sorafenib in the
high risk group was significantly higher than that in the low risk
group (Figure 4H). Correlation analysis indicated that the
expression of LINC02432 was positively correlated with
sorafenib IC50 in PAAD (Figure 4I).

3.5 CeRNA Risk Score Was Positively
Correlated With M0 Macrophages
Infiltration
To assess the relationship among ceRNA risk scores and immune
cell infiltration, we applied the ImmuCellAI tool to calculate the
abundance of 24 immune cell subsets in PAAD samples. As shown
in Supplementary Figure S8A, the association among immune cell
infiltration and ceRNA risk score was demonstrated by a heat map.
We then investigated the infiltration differences of 24 immune cells
between the high ceRNA risk score and low ceRNA risk score
groups. We discovered that the expression signatures for three

types of infiltrating cells (Th17 cells, macrophages, and
neutrophils) were elevated in the high ceRNA risk score group.
The low ceRNA risk score group had higher infiltration levels of
CD4+ naive cells, Tex cells, Tr1 cells, iTreg cells, Th2 cells, Tfh cells,
Tcm cells, MAIT cells, NK cells, CD4+ T cells and CD8+ T cells
(Figure 5A). Univariate Cox regression analysis revealed that,
among the 14 differentially infiltrating immune cells, only
macrophages was a significant prognostic factor for the overall
survival of PAAD patients (Figure 5B). Furthermore, Kaplan-
Meier curve analysis suggested that high macrophage infiltration
PAAD patients had poor overall survival (Figure 5C). Finally, the
Pearson correlation analysis revealed that macrophage infiltration
levels were positively correlated with ceRNA risk score,
LINC02432, and HK2, which was also negatively correlated
with hsa-miR-98–5p (Figure 5D).

The macrophages could be split into three subtypes (M0, M1,
and M2), of which M0 was the inactive subtype and could
differentiate into either the M1 or M2 activated subtypes. In
the present study, we investigated the correlations among ceRNA
risk scores and three macrophage subtypes by the CIBERSORT
algorithm. The histogram of immune cell infiltration clearly
showed that PAAD patients had a high abundance of M0
macrophages, M2 macrophages, and CD4+ memory resting
T cells (Figure 5E). In addition, the box plot of the
discrepancy of immune cell infiltration revealed that the
abundance of CD8+ T cells and naive B cells were significantly
higher in the low risk group, and the levels of M0 macrophages
was significantly higher in the high risk group (Figure 5F).
Subsequently, we performed a Kaplan-Meier survival analysis
of the three differentially infiltrating immune cells. We found that
only higher M0 macrophage infiltration was significantly
associated with decreased overall survival (Figure 5G).
However, more CD8+ T cells and naive B cells infiltration
were not significantly associated with overall survival
(Supplementary Figure S8B). Then, a Pearson correlation
analysis was performed to assess the correlation between M0
macrophages infiltration and ceRNA risk score. We discovered
that the infiltration level of M0 macrophages was positively
correlated with ceRNA risk score (Figure 5H).

3.6 CeRNA Risk Scores Were Associated
With Chemokine Levels in PAAD
Chemokines, also referred to as chemotactic cytokines, have long
been recognized as critical mediators of the inflammatory response
and played a key role in the infiltration and activation of immune
cells. To elucidate the relationship between ceRNA risk scores and
chemokine levels in PAAD, we compared the gene expression
levels of 40 known chemokines among the high-risk score and low-
risk score groups. We found that six chemokines (CCL7, CCL20,
CCL24, CXCL3, CXCL5, and CXCL8) were upregulated in the
high-risk score group, while 14 chemokines (CCL2, CCL3, CCL4,
CCL5, CCL14, CCL16, CCL17, CCL19, CCL21, CCL23, CXCL12,
CXCL13, XCL1 and XCL2) were downregulated in the high risk
score group (Figure 6A). As showed in Figure 6B, the GEPIA
analysis showed that 13 of the above 20 chemokines were
significantly upregulated in PAAD. Furthermore, through the
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FIGURE 5 | Relationship between LINC02432/hsa-miR-98–5p/HK2 ceRNA network and tumor-infiltrating immune cells in the TME of PAAD. (A) The box plots
showed the differences in the proportions of 24 tumor-infiltrating immune cells among the high ceRNA risk score and low ceRNA risk score groups. (B) Univariate Cox
regression analysis of 14 differentially expressed tumor-infiltrating immune cells. (C) Kaplan-Meier curve analysis of overall survival in high macrophages fraction and low
macrophages fraction groups. (D) The Pearson correlation among the fraction of macrophages and the LINC02432/hsa-miR-98–5p/HK2 ceRNA network. (E)
Based on the CIBERSORT algorithm, histograms showed the infiltration of 22 immune cells in each sample. (F) The box plots showed the difference of the 22 infiltrating
immune cells between groups with different ceRNA risk scores. (G) Kaplan-Meier curves of M0 macrophages for overall survival in PAAD patients. (H) The Pearson
correlation between the fraction of M0 macrophages and the ceRNA risk score.
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FIGURE 6 |Correlation between ceRNA risk scores and chemokine levels. (A) The box plots showed the expression differences of 40 chemokines among high risk
score and low risk score groups of TCGA-PAAD patients. (B) The box plot revealed the expression levels of chemokines between PAAD tissues and normal tissues by
the GEPIA2 tool. (C) The clustered heatmap showed the Pearson correlation of 13 differentially expressed chemokines. (D) The Pearson correlation analysis of two
chemokine clusters based on the ssGSEA scores. (E) The Kaplan-Meier curves of PAAD overall survival based on the ssGSEA scores of two chemokine clusters.
(F) The Pearson correlation analysis of two chemokine clusters with LINC02432/hsa-miR-98–5p/HK2 ceRNA network and macrophages infiltration levels.
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cluster heatmap of Pearson correlation hierarchical clustering
analysis based on the 13 differentially expressed chemokines
pattern, we identified two gene clusters: cluster one included
four genes (CXCL3, CXCL5, CXCL8, and CCL20), and cluster
two included eight genes (CCL2, CCL3, CCL4, CCL5, CCL17,

CCL19, CCL21, and CXCL13) (Figure 6C). The Pearson
correlation analysis demonstrated that ssGSEA score of cluster
one was negatively correlated with cluster two score (Figure 6D).
Moreover, Kaplan-Meier survival analysis showed that high cluster
one score patients had worse overall survival, and high cluster two

FIGURE 7 | Correlation of ceRNA risk score with the expression of immune checkpoint genes for PAAD. (A) The expression of eight immune checkpoint genes
between PAAD tissues and normal pancreas tissues. (B) The expression differences of eight immune checkpoint genes among different groups. (C) Statistical analysis of
TIDE scores between low and high risk groups. (D) The correlation between SIGLEC15 expression and ceRNA risk score was analyzed by Pearson correlation analysis.
(E) The prognostic significance of SIGLEC15 assessed by Kaplan-Meier analysis. (F) SIGLEC15 expression was identified in different human pancreas cell types by
scRNA-seq data from the HPA.
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FIGURE 8 | The relationship between TMB and risk score. (A) The mutation signatures of the top 10 significant mutated genes in the high and low LINC02432
expression groups. (B) The heatmap showing the co-occurrence and mutually exclusive mutations within the top 10 frequently mutated genes. (C) The distribution ratio
of PAAD patients in different risk subgroups. (D) The expression levels of LINC02432, hsa-miR-98–5p, and HK2 in the WT and Mut groups of KRAS, TP53, and SMAD4
genes. (E) Kaplan-Meier survival analysis for PAAD patients stratified by TMB score. (F) TMB score between patients from the high and low ceRNA risk score
subgroups. (G) The Pearson correlation analysis between risk score and TMB score.
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score patients had better overall survival (Figure 6E). Finally, we
performed Pearson correlation analysis to investigate the
relationship between LINC02432/hsa-miR-98–5p/HK2 ceRNA
network and two chemokine clusters. As shown in Figure 6F,
we found that cluster one score was positively correlated with
macrophages, M0 macrophages, risk score, LINC02432, and HK2,
and negatively correlated with hsa-miR-98–5p. On the contrary,
cluster two score was negatively correlated with macrophages, M0
macrophages, risk score, LINC02432, and HK2, as well as
positively correlated with hsa-miR-98–5p.

3.7 Correlation Between ceRNA Risk
Scores and Immune Checkpoint Genes
Immune checkpoint genes, as key genes regulating immune
responses, were frequently dysregulated in tumor and immune
cells, leading to immune evasion of cancer cells. In order to further
analyze the association between ceRNA risk scores and immune
checkpoint genes, we first compared differential expression of the
eight immune checkpoint genes (CD274, CTLA4, HAVCR2,
LAG3, PDCD1, PDCD1LG2, SIGLEC15, and TIGIT) in PAAD
samples and normal samples. We found that all eight immune
checkpoint genes had high expression levels in PAAD tissues
(Figure 7A). As presented in Figure 7B, LAG3 and PDCD1
were downregulated in the high risk group, but they were not
significantly different between LINC02432 high and low
expression groups. Only SIGLEC15 was significantly up-
regulated in the high-risk score group and the high LINC02432
expression group. TIDE analysis showed no correlation between
ceRNA risk score and immunotherapy (anti-PDCD1 therapy and
anti-CTLA4 therapy) (Figure 7C). We then assessed the
correlation between SIGLEC15 and ceRNA risk score by
Pearson correlation analysis. We found that SIGLEC15
expression was significantly positively correlated with ceRNA
risk score and LINC02432 expression (Figure 7D). Moreover,
Kaplan-Meier analysis indicated that high expression of SIGLEC15
could predict poor prognosis of PAAD patients (Figure 7E). This
was uniform with the prognostic results of LINC02432 and HK2.
To further validate the expression of SIGLEC15 across different cell
types in pancreas tissues, we used the scRNA-seq data from the
HPA. We discovered that SIGLEC15 was expressed almost
exclusively in cluster c-13 corresponding to macrophages of the
pancreas (Figure 7F).

3.8 LINC02432/Hsa-miR-98–5p/HK2 Axis
Was Related to TMB in PAAD
TMB, the total number of somatic mutations in tumors, was
emerging as a promising biomarker for immunotherapy response
in cancer patients. To analyze the relationship between ceRNA
risk scores and TMB, somatic mutation analysis was performed to
show the top 10 frequently mutated genes associated with PAAD
tumorigenesis. The mutation frequency of high LINC02432
expression group was mostly higher than that of low
LINC02432 expression group, especially KRAS, TP53, SMAD4
and CDKN2A (Figure 8A). Subsequently, the results of mutual
exclusion and co-occurrence analysis of the top 10 frequently

mutated genes were shown in Figure 8B. KRAS mutations, as the
highest frequency mutations in PAAD, were co-occurrence with
TP53, SMAD4, and CDKN2A mutations. The 169 PAAD
samples were divided into four groups according to gene
mutational status (WT: wild type; MUT: mutant) and high/
low risk score. As shown in Figure 8C, the mutation
frequencies of KRAS, TP53, and SMAD4 genes were
significantly higher in the high-risk score patients than that in
the low-risk score patients. Furthermore, we analyzed the
differential expression of the LINC02432/hsa-miR-98–5p/HK2
ceRNA axis in the MUT and WT groups. The results
demonstrated that LINC02432 and HK2 were significantly
upregulated in the KRAS, TP53, and SMAD4 mutant groups,
and hsa-miR-98–5p was significantly downregulated in the KRAS
and TP53 mutant groups (Figure 8D). Based on TCGAmutation
data of whole-exome sequencing, we calculated the TMB score for
each PAAD patient. The survival curve showed that the survival
time of patients in the high TMB score group was significantly
shorter than that in the low TMB score group (Figure 8E).
Meanwhile, patients with high ceRNA risk score had
remarkably higher TMB score than patients with low ceRNA
risk score (Figure 8F). Finally, Pearson correlation analysis
indicated that TMB scores were positively correlated with the
ceRNA risk score in PAAD patients (Figure 8G). Previous studies
reported that patients with high TMB had better response to
immunotherapy. Combined with the above results, PAAD
patients in the high risk group might be more sensitive to
anti-SIGLEC15 immunotherapy, but not to anti-PD-L1 and
anti-CTLA4 immunotherapy.

3.9 Correlation Analysis Between Risk
Score and the Drug Sensitivity
Previous studies have shown that the high rates of tumor cell
glycolysis would make them resistant to many forms of
chemotherapy. To identify potential drugs for PAAD
patients with high risk scores, we first estimated IC50s for
198 drugs using the oncoPredict package in R software. As
shown in the correlation heatmap, the results showed that the
risk score was positively correlated with the IC50 values of
most anti-tumor drugs (Figure 9A). This suggests that
patients with high-risk had less sensitive to most antitumor
drugs. Further analysis found that only two clusters
containing 10 compounds were negatively associated with
risk scores (Figure 9B). Meanwhile, differential analysis of
drug IC50 values showed that EGFR inhibitors (afatinib,
lapatinib and sapitinib), MEK inhibitors (PD0325901,
trametinib and selumetinib) and ERK inhibitors
(Ulicocitinib, VX-11e, SCH772984, and ERK_6604) had
lower IC50 values in the high risk group compared with
the low risk group (Figure 9C). Pearson correlation
analysis indicated that the IC50 of the other nine drugs
except lapatinib were significantly positively correlated with
lINC02432 expression (Figure 9D). These results suggested
that high-risk PAAD patients with high immune infiltration
and TMB might be more sensitive to EGFR, MEK, and ERK
inhibitors.
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FIGURE 9 | Drug sensitivity analysis of the risk score. (A) The correlation heatmap between the IC50 values of anti-tumor drugs and risk score. (B) Correlation
heatmap showing the association of two clusters drugs (containing 10 compounds) with risk scores. (C) Differential analysis of drug IC50 values between high risk score
and low risk score groups. (D) Scatter plots showed correlation between IC50 values of 10 compounds and lINC02432 expression.
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4 DISCUSSION

Cancer cells almost universally showed metabolic
reprogramming with an increased reliance on aerobic
glycolysis (Warburg effect) (Telarovic et al., 2021). Recent
studies indicated that metabolically reprogrammed aerobic
glycolysis promoted cell proliferation and cell metastasis of
PAAD (An et al., 2017; Fan et al., 2019; Cao et al., 2020; Yu
et al., 2021). In PAAD, targeting aerobic glycolysis is considered a
potential therapeutic strategy to improve patient outcomes
(Zhang and Zhang, 2021). Although there is a lot of research
on the involvement of glycolysis in PAAD progression, there were
seldom reports on studies involving glycolysis-related biomarkers
and prognosis in PAAD patients. LncRNA is an RNA transcript
that does not encode a protein and is longer than 200 nucleotides.
Mounting evidence has shown that lncRNAs, functioning as a
ceRNA by competitively binding to miRNAs, affect aerobic
glycolysis and participate in cancer progression and treatment
resistance. For example, Jia et al. demonstrated that the lncRNA
LNCAROD induced pyruvate kinase isoenzyme M2 (PKM2)
upregulation via sponging miR-145–5p, increased aerobic
glycolysis in hepatocellular carcinoma cells, and was eventually
involved in tumor malignancy and chemoresistance (Jia et al.,
2021). Xu et al. had reported that LINC01448 promoted cell
proliferation, cell invasion, and glucose consumption by
modulating the miR-505/HK2 pathway in PAAD (Xu Z. et al.,
2020). Therefore, in-depth investigation of the mechanism of
lncRNA regulation of aerobic glycolysis in PAAD may provide
new strategies for clinical tumor management.

In this study, combined with the TCGA and GEO databases,
we used bioinformatics technology to obtain the LINC02432/hsa-
miR-98–5p/HK2 ceRNA axis, which might influence the
development and prognosis of PAAD by affecting glycolytic
activity. Current research showed that HK2 and PKM2 were
two important enzymes that directly modulate glycolysis. In
PAAD, upregulated expressions of HK2 and PKM2 were
associated with lactate production and poor clinical prognosis
(Bernier et al., 2017; Yu et al., 2021). Numerous studies have
shown that hsa-miR-98–5p was downregulated in some
malignancies and could function as a tumor suppressor (Jiang
F. et al., 2019). Fu et al. suggested that hsa-miR-98–5p inhibited
cell proliferation and cell metastasis by downregulating the
counter-regulatory mitogen-activated protein four kinase 4
(MAP4K4) in PAAD (Fu et al., 2018). Zhu et al. found that
hsa-miR-98–5p inhibited colon cancer cells glycolysis by directly
targeting HK2 (Zhu et al., 2017). Additionally, hsa-miR-98–5p
has been proved to be a target of lncRNA TMPO-AS1, inhibiting
the progression of colorectal cancer cells by downregulating the
expression of branched chain amino acid transaminase 1
(BCAT1) (Ye et al., 2022). For the first time, the present study
found that hsa-miR-98–5p was sponged by the LINC02432 and
regulated HK2 in PAAD cells. To our knowledge, LINC02432 had
only been reported to be highly expressed in the kidney and
pancreas (Fagerberg et al., 2014; Qu et al., 2021). There was no
report about the function of LINC02432. Our research results
provided a new potential target for glycolysis-targeted therapy
of PAAD.

In the present study, we found that six ferroptosis suppressors
(HELLS, PROM2, CA9, MUC1, NQO1, and SRC) were
significantly positively associated with the ceRNA network.
Jiang et al. found that HELLS interacted with WDR76 (WD
repeat domain 76) to inhibit ferroptosis by activating metabolic
genes, including glucose transporter 1 (GLUT1), and sterol-CoA
desaturase 1 (SCD1), and fatty acid desaturase 2 (FADS2) (Jiang
et al., 2017; Mazhar et al., 2021). Luo et al. revealed that PROM2
promoted iron export and ferroptosis resistance via formation of
multivesicular bodies (MVBs) in BLCA (Luo et al., 2021). Li et al.
demonstrated that carbonic anhydrase 9 (CA9), a classical HIF1A
target gene, promoted malignant mesothelioma resistance to
ferroptosis and apoptosis under hypoxia (Li et al., 2019; Tang
et al., 2021). Meanwhile, MUCIN 1 (MUC1) could bind to the
CD44 variant to enhance the stability of SLC7A11, thereby
inhibiting erastin-induced ferroptosis in triple-negative breast
cancer cells (Hasegawa et al., 2016; Tang et al., 2021). NAD(P)H:
ubiquinone oxidoreductase-1 (NQO1) functioned as a CoQ
oxidoreductase and mitochondrial ROS inhibitor and has been
demonstrated to suppress ferroptosis (Sun et al., 2016; Peng et al.,
2022). Studies have shown that the activation of SRC proto-
oncogene non-receptor tyrosine kinase (SRC) can inhibit cancer
cell ferroptosis by inhibiting the expression of acyl-CoA
synthetase long-chain family member 4 (ACSL4) (Brown
et al., 2017; Ye et al., 2021). This further suggested the
regulatory role of LINC02432/hsa-miR-98–5p/HK2 axis on
ferroptosis inhibition. At the same time, studies have
confirmed that SLC7A11 is a key regulator of ferroptosis in
response to sorafenib (Huang et al., 2021). Sorafenib could
induce ferroptosis by the inhibition of SLC7A11 (glutamate-
cystine exchanger xCT) (Wang H. et al., 2021; Wang et al.,
2022). In this study, we found that the expression of SLC7A11
was positively correlated with LINC02432 and HK2. This may be
a possible mechanism that the patients in the high-risk group
were more insensitive to sorafenib.

Pancreatic TME, and in particular infiltrating inflammatory
cells (largely macrophages), represented an important
contributing factor to PAAD aggressiveness and resistance to
treatment (Mohseni et al., 2021). Macrophages in the TME were
often called tumor-associated macrophages and contained three
phenotypes: M0, M1, and M2 (Xu C. et al., 2020). Studies have
shown that M1 macrophages had pro-inflammatory and anti-
tumor effects and were associated with good prognosis in certain
cancers. M2 macrophages had immunosuppressive and tumor-
promoting effects (Zhang J. et al., 2020; Yu et al., 2020). M0
macrophages, as a non-polarized subtype, were independent
predictors of poor prognosis in PAAD patients (Zhang
J. et al., 2020; Xu C. et al., 2020). Tekin et al. discovered that
M0 macrophages secreted matrix metalloprotease 9 (MMP9) to
induce mesenchymal transition in PAAD cells via protease-
activated receptor 1 (PAR1) activation (Tekin et al., 2020).
Consequently, we explored the relationship among ceRNA
network and tumor-associated macrophages in PAAD using
ImmuCellAI and CIBERSORT algorithms. In this study, we
found that LINC02432/hsa-miR-98–5p/HK2 ceRNA risk score
was remarkably positively associated with the infiltration level of
M0 macrophages. These results strongly suggested that the
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LINC02432/hsa-miR-98–5p/HK2 axis played an outstanding role
in the regulation of PAAD immune cell infiltration.

Chemokines (chemotactic cytokines), as a type of small
molecular proteins, have been shown to accelerate cell
proliferation, cell invasion, and cell migration, and regulate
immune cell infiltration in various tumors (Nagarsheth et al.,
2017; Wu and Chu, 2021). Therefore, we elucidated the
relationship among ceRNA risk scores and 40 known
chemokines levels in PAAD. Found that the LINC02432/hsa-
miR-98–5p/HK2 ceRNA risk score was positively correlated with
CXCL3, CXCL5, CXCL8 and CCL20. Current research has shown
that CXCL3, CXCL5, and CXCL8 were CXC chemokines strongly
associated with tumor angiogenesis. CXCL5 was upregulated in
PAAD tissues and was associated with poor patients prognosis
(Zhang R. et al., 2020). Meanwhile, studies have shown that the
GABRP-KCNN4 complex could promote the transcription of
CXCL5 and CCL20 by activating NF-kappaB, ultimately inducing
macrophage infiltration in PAAD (Jiang S. H. et al., 2019). It
suggested that the LINC02432/hsa-miR-98–5p/HK2 axis might
be involved in the angiogenesis of PAAD. In addition, we also
found ceRNA risk score was significantly negatively correlated
with CCL2, CCL3, CCL4, CCL5, CCL17, CCL19, CCL21 and
CXCL13. Numerous studies have suggested that CCL2 and CCL5
could promoteM2macrophages generation in TME (Smida et al.,
2020; Kang et al., 2021). M2 macrophages secreted chemokines
such as CCL17 and CXCL13 (Liu Y. et al., 2020; Xie et al., 2021).
Meanwhile, CCL19 and CCL21 were shown to be associated with
M1 macrophage chemotaxis (Xuan et al., 2015; Boibessot et al.,
2021). Chemokines such as CCL3 and CCL4 were upregulated in
M1 macrophages compared to M2 macrophages (Hörhold et al.,
2020). These chemokines were lowly expressed in the high risk
score group of PAAD patients, which might be the main reason
why tumor-associated macrophages maintained an
undifferentiated M0 phenotype.

Immune checkpoint blockade has demonstrated substantial
usefulness in non-small cell lung cancer, melanoma, renal cancer,
and other cancers, while its role in PAAD was limited (Wang G.
et al., 2021). TAMs have been found to play a significant function
in regulating PAAD tumorigenesis and immune checkpoint
responses (Li et al., 2018). Therefore, analyzing the
relationship between the macrophages infiltration related
ceRNA network and immune checkpoint genes had important
guiding significance for the immunotherapy of PAAD. In this
study, we found that the transcript levels of eight immune
checkpoint genes (CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, SIGLEC15, and TIGIT) were all upregulated in
PAAD tissues. However, only SIGLEC15 were significantly
positive correlated with LINC02432/hsa-miR-98–5p/HK2
ceRNA risk score. This might be the reason why the ceRNA
risk score was not related to the TIDE score (predictor for anti-
PDCD1 and anti-CTLA4 therapy). SIGLEC15 was recently
reported as an immunosuppressive molecule expressed by
TAMs and upregulated in some solid tumors including PAAD
(Li Q. T. et al., 2020; Läubli and Varki, 2020). In the TME,
SIGLEC 15 could bind to putative responder protein expressed on
CD8+ T cells to induce subsequent suppression of antitumor
immune responses (Cao et al., 2019). A human Phase I clinical

trial is currently underway to evaluate the efficacy of a humanized
mAb (NC318) against SIGLEC15 in solid tumors (Wang et al.,
2019). So, LINC02432/hsa-miR-98–5p/HK2 axis was therefore
suggested as an auxiliary marker for SIGLEC15 blocking
immunotherapy, and as a potential therapeutic target for PAAD.

Repeated somatic mutations in specific genes have been
identified as potential cancer promoters (Balmain, 2020; Pan
et al., 2022). In pancreatic cancer, four genes are often mutated:
KRAS, CDKN2A, SMAD4, and TP53 (Ciernikova et al., 2020).
Previous studies have shown that KRAS mutations first drived
pancreatic precancerous lesions, followed by inactivation of
CDKN2A, TP53, and SMAD4 (Kato et al., 2016; Qin et al.,
2020). Recent studies have revealed that inactivation of tumor
suppressors could promote cellular aerobic glycolysis. For
example, PAAD driver (KRAS and TP53 genes) mutations
could elevate the expression of glucose transporter 1 (GLUT1),
hexokinase 1 (HK1), hexokinase 2 (HK2), and lactate
dehydrogenase A (LDHA) (Oba et al., 2018; Chisari et al.,
2021). Meanwhile, SMAD4 inactivation in PAAD could
promote upregulated expression of PGK1 and enhance
glycolysis and tumor invasiveness (Liang et al., 2020; Zhu
et al., 2021). Therefore, we analyzed the correlation between
LINC02432/hsa-miR-98–5p/HK2 ceRNA network and somatic
mutations in PAAD. We found that the ceRNA network was
mainly associated with KRAS and TP53 mutations. PAAD
patients with KRAS and TP53 mutant genes had high
expression levels of LINC02432 and HK2, and low hsa-miR-
98–5p expression levels. The number of somatic mutations
present in the tumor genome was represented by TMB. High
TMB score was associated with the poor prognosis of PAAD
patients (Li L. et al., 2021). Meanwhile, high TMB could increase
the emergence of neoantigens, thereby enhancing
immunotherapy response (Lin et al., 2021). In this study, we
found ceRNA risk score was positively associated with TMB
score. Our results suggested that PAAD patients with high risk
score might be more sensitive to anti-SIGLEC15 immunotherapy.
In recent years, the discovery of antitumor targets has led to the
development of cancer therapy from traditional cytotoxic drugs
to new specific antitumor drugs (Li C. et al., 2020; Li C. et al.,
2021). Our drug susceptibility analysis showed that high-risk
PAAD patients might be more sensitive to EGFR, MEK, and ERK
inhibitors. The results showed that the risk score model based on
the LINC02432/hsa-miR-98–5p/HK2 ceRNA network could well
predict the drug sensitivity of PAAD patients and guide the
clinical selection of appropriate drugs to a certain extent.

CONCLUSION

In conclusion, through integrated bioinformatics analysis, we
constructed a novel glycolysis-related LINC02432/hsa-miR-98–5p/
HK2 ceRNA network in which all RNAs had significant predictive
values for PAAD prognosis. At the same time, the ceRNA network
wasmarkedly associated with ferroptosis, immune infiltration, tumor
mutational burden, and drug sensitivity. The results of the present
study may further elucidate the mechanisms underlying PAAD
progression and provide novel targets for the treatment of PAAD.
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