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Abstract
The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil

creates serious threat to human health through fresh vegetables growing on them. How-

ever, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly.

Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genet-

ically modified E. coli strains is also not yet assessed. Hence in the present study, the sur-

vival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433)

and genetically modified (DH5α) strains on different tropical agricultural soils and on a vege-

table growing medium, cocopeat under controlled condition. The survival pattern clearly dis-

criminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than

those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical

latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland

and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other

two strains. The survival data were successfully analyzed using Double-Weibull model and

the modeling parameters were correlated with soil physico-chemical and biological proper-

ties using principal component analysis (PCA). The PCA of all the three strains revealed

that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents

of the soil decided the survival of E. coli strains in those soils and cocopeat. The present

research work suggests that the survival of O157 differs in tropical Indian soils due to

varied physico-chemical and biological properties and the survival is much shorter than

those reported in temperate soils. As the survival pattern of non-pathogenic strain,

MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model

organism for open field studies.
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Introduction
Shiga-like toxin producing Escherichia coli (STEC) strains are considered as an important food-
borne pathogen [1]. STEC strains produce Shiga-like toxins (Stx1 and Stx2) and associated vir-
ulent factors such as intimin and enterohaemolysin [2]. Due to these, they can cause haemor-
rhagic colitis and haemolytic-uremic syndrome to human [3, 4]. STEC are common survivors
in the ruminants’ intestine and can be transmitted to human through unprocessed foods [5, 6].
Elderly people and young children are most sensitive to STEC mediated food-borne infections.
Though several serogroups (O26, O55, O91, O103, O111 or O145) are associated with human
diseases, E. coliO157:H7 is the most frequent serotype involved in the worldwide outbreaks.

Contaminated foods such as dairy products, undercooked minced beef and raw fruit and
vegetables from contaminated field are the important sources for O157:H7 based illness [7, 8].
Cattle and other farm animals are the main reservoir for O157:H7 and their direct or indirect
contract with agricultural soils associated to an increasing number of infections [5, 6]. E. coli
O157:H7 can survive in soil and animal based manures for long period (ranged from 25 to
more than 365 days) [9, 10] and low cell load (10–500 per g) is enough to cause the infection to
human [11]. Partially decomposed manures, animal slurries, slaughterhouse wastes and
human sewage are the potential source of contamination of arable agricultural lands [12–14].

Several studies have focused on the survival of E. coli O157:H7 in soil [15–21]. The survival
of E. coli O157:H7 depends on the soil type [17, 22–24], texture [25], physico-
chemical properties and indigenous soil microbiome [26, 27] and land use patterns [28, 29].
The soil organic carbon (SOC) and organic nitrogen are the major drivers reported for long
survival of E. coli O157:H7 in organically manured soils [17]. Likewise, Van Elsas et al. [30]
pointed out that soil microbial community shift due to fumigation significantly influenced the
survival of E. coli O157:H7. High moisture content of the soil (17–32%) hasten the decay of
O157:H7 as compared to low moisture levels (2–8%) [23]. Yao et al. [31] and van Elsas et al.
[32] showed E. coli O157:H7 survival was affected by indigenous microorganisms in soil. The
difference in survival of E. coli O157:H7 in soil due to various factors indicate the difference in
the potential risk of pathogen contamination from soil environment. Hence, more knowledge
on survival of E. coli in soils will facilitate to reduce the risk of pathogen contamination and
avoiding infection from the pathogen. Under Indian perspective, no study has been so far done
on the survival of E. coli O157:H7 in Indian agricultural soils, though the climatic and
soil physico-chemical properties of Indian sub-continent favour the E. coli existence.

E. coliO157:H7 can survive in organic manures with virulence up to 70 days [33]. Compost-
ing process generates sufficient heat due to microbial actions may kill the pathogens including
O157:H7. Obviously, the well-decomposed compost should be free from pathogens. However,
the environmental conditions, temporal variability of composting materials and improper han-
dling of compost may not kill all the pathogens. When such manures are spread on the lands
can lead to pathogen entry to the food chain. Root and leafy vegetables, especially, raw eaten
vegetables have the risk of contamination from such manure application to soil. The water used
for irrigation can also spread the pathogen in the agricultural soils. Such introduced E. coli var-
ied in their survival pattern depending upon the soil type, clay contents, soil organic carbon
content and so on. Genetically modified strains by recombinant DNA techniques have the
potential to interfere with native microbial populations and their processes in soil. The geneti-
cally modified E. coli strain had less competitive survival than the wild strain in soil and its sur-
vival potential depends on the inoculum level and soil microflora [34]. Hence, in the present
work, the survival of E. coliO157:H7 was compared with non-pathogenic and genetically modi-
fied E. coli strains in four Indian agricultural soils and an organic medium for nursery (coconut
coirpith waste called cocopeat) suitable for vegetables cultivation. The incubation studies were
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conducted under controlled lab condition to address the following key questions: 1. How-
long O157 can survive in Indian agricultural soils, 2. Is there any difference in survival rates
between pathogenic E. coli and non-pathogenic E. coli in agricultural soils.

Materials and Methods

E. coli strains
E. coli O157, isolated, characterized for presence of stx1 and stx2 (Shiga-like toxins producing
genes), eae (intimin producing gene) from contaminated irrigation water at Tamil Nadu Agri-
cultural University, Coimbatore (designated as O157-TNAU) was used for this study. This iso-
late showed susceptibility to ampicillin antibiotic. The non-pathogenic strains, MTCC433
(equivalent to ATCC15223/ DSM1058/ NCIB9552) and DH5α (genetically engineered strain)
were used for this study. The genotypic characters of all the three strains used in the experi-
ment were presented as Table 1.

Green fluorescent protein (GFP) labeled E. coli strains
For easy detection in soil under controlled condition, all the three strains were introduced with
plasmid pGreenTIR [35], a derivate of pUC18 in which mutated gfp gene (containing a double
F65L S65T amino acid change that increases green fluorescent protein (GFP) stability and fluo-
rescence) and ampicillin resistance gene are expressed. This plasmid also contains an improved
translation initiation region for prokaryotes, including the translational enhancer and the
Shine–Dalgarno regions of phage T7 gene 10, so that synthesis of GFP is enhanced. All the
three E. coli strains grown in Luria Birtani (LB) medium (HiMedia, India) were transformed
with pGreenTIR plasmid by following standard CaCl2-method with selection for ampicillin
resistance (100 μg/ml) and GFP production under UV light (Fig 1). Virulence profiles (stx1
and stx2 genes) of the three strains with and without pGreenTIR were characterized by PCR as

Table 1. E. coli strains used in the present study.

E.coli strains Genotype Reference

E.coli DH5α F-, endA1, hsdR17(rK
- mK

+), glnV44, thi-1deoR, gyrA96, recA1, relA1, supE44, Δ(lacZYA-argF) U169, λ-,
(Φ80dlacZΔM15), nupG, Non-pathogenic strain developed in the laboratory for routine cloning applications.

[71]

E.coli MTCC433 Non-pathogenic strain isolated from human intestine. Inducible for β-galactosidase [72]

E.coli
0157-TNAU

O157 strain isolated from irrigation water of TNAU farm (Storage tank water) showed positive for toxin genes stx1, stx2
and 0157 uidA allele.

Present
study

doi:10.1371/journal.pone.0130038.t001

Fig 1. Wild (A) and EGFP tagged (B) E. coli strains used in the present study. The pGreenTIR conferring
ampicillin resistance and enhanced green fluorescence under UV was transformed to all the three strains,
viz., DH5α, MTCC433 and O157-TNAU.

doi:10.1371/journal.pone.0130038.g001
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primers and conditions described by Cebula et al. [36]. Additionally, the uidA gene, responsible
for β glucuronidase activity specific to E. coli was also confirmed by PCR [36]. Further, genome
fingerprints of each strain with and without plasmid were characterized by BOX-A1R-based
repetitive extragenic palindromic-PCR (BOX-PCR) using BOX-A1R primer [37] as previously
reported by Urzì et al. [38].

Soil and organic plant growth medium
Four different soils viz., wetland soil, red lateritic soil, black cotton soil and tropical latosol soil
were collected from different agro-ecological zones of Tamil Nadu, India in sterile containers.
Samples were collected from Tamil Nadu Agricultural University research farms and three
independent samples were maintained per soil. Soil samples from 0–30 cm collected from 10
different locations of a field, pooled, removed from stones and stubbles were powdered, packed
in water and air tight plastic bags and stored at 4°C for all the analyses. The cocopeat, organic
medium for vegetable nursery was collected from local firm. Soil pH and electrical conductivity
(EC) were estimated with a glass electrode using a soil to water ratio of 1:1. Soil organic carbon
was determined by dichromate oxidation [39]. Soil available N was extracted with 2 M KCl for
1 h and determined by Kjeldahl method [40]. Available P was extracted with Olsen reagent
[0.5 M NaHCO3 (pH 8.5)] at soil-extractant ratio of 1:20, shaken for 30 min and quantified by
molybdenum—blue colorimetry [41]. Available K was extracted with neutral normal ammo-
nium acetate (pH 7.0), shaken for 25 min and measured by flame photometry [42]. The micro-
bial biomass carbon (MBC) was quantified by fumigation extraction method [43].
Dehydrogenase (EC 1.1.1.1) was determined by the reduction of triphenyltetrazolium chloride
to triphenylformazan (TPF) and reported as μg of TPF released per g soil per day [44].
The physico-chemical properties of soil samples and cocopeat were presented as Tables 2 and 3.

Inoculum preparation
Each GFP-labeled E. coli strain was grown overnight at 37°C on Luria Bertani plates [45] con-
taining ampicillin (100 μg/ml). Then, each strain was cultivated in 1 l of LB broth supple-
mented with ampicillin (100 μg/ml) at 37°C for 24 h. All the cultures reached a final

Table 2. Physico-chemical properties of soils and geographical coordinates of the soil collection sites used in the present study.

Physico-chemical
properties

Wetland soil Red lateritic soil Black cotton soil Tropical latosol

Texture Clay-loam Clay Loam Loam

pH 8.74 (±0.04)a 5.97 (±0.03)d 8.42 (±0.04)b 6.05 (± 0.01)c

EC (dSm-1) 0.23 (±0.01)a 0.24 (±0.01)a 0.31 (±0.03)a 0.56 (±0.05)a

Soil organic carbon (%) 0.45 (±0.07)bc 0.65 (±0.12)b 0.26 (±0.20)c 1.53 (±0.13)a

Available N (Kg/ha) 223.07 (±1.87)b 304.27 (±4.94)a 233.13 (±3.37)b 325.73 (±7.64)a

Available P (Kg/ha) 11.07 (±0.70)bc 12.99 (±0.71)b 8.53 (±0.71)c 18.02 (±0.30)a

Available K (Kg/ha) 273.33 (±16.67)b 270.00 (±5.77)b 376.67 (±6.67)a 273.33 (±6.67)b

Microbial biomass carbon
(μg/g)

3454.8 (±32.6)d 9957.0 (±280.3)a 5744.4 (±628.1)c 7968.9 (±576.4)b

Dehydrogenase (μg TPF
released/ g soil/day)

17.71 (±0.50)d 57.51 (±6.46)a 22.48 (±6.73)c 41.38 (±1.38)b

Geographical coordinates of
sampling site

11.12°N latitude; 76.99°E
longitude; 426 m altitude

10.4°N latitude; 78.82°E
longitude; 102 m altitude

9.17°N latitude; 77.87°E
longitude; 106 m altitude

11.41°N latitude; 76.70°E
longitude; 2242 m altitude

Values are mean (± standard error) (n = 5) and values followed by the same letter in each row are not significantly different from each other as determined

by DMRT (p � 0.05). EC—Electrical conductivity; TPF—triphenylformazan.

doi:10.1371/journal.pone.0130038.t002
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concentration of approx. 1011 colony forming units (cfu) per ml. The bacteria were pelletized
by centrifugation at 5000 g for 20 min at room temperature and cell pellets were re-
suspended in 100 ml of phosphate buffered saline (PBS) and centrifuged. This operation was
repeated and afterwards the cell pellets were re-suspended in 100 ml of PBS.

Soil incubation study
Unsterilized experimental soils and cocopeat were adjusted nearly 50% moisture holding
capacity with sterile distilled water. The E. coli cell suspension prepared as inoculum was thor-
oughly mixed with soils and cocopeat with a final concentration of 107 cfu per g in a plastic
bag. From this, a quantity of 500 g of the inoculated soil was transferred to a perforated sterile
containers (HiMedia, India) for air exchange. The same amount of non-inoculated soil added
with deionized water instead of cell suspension was maintained as control. The moisture per
cent was maintained during the course of experiment by adding additional sterile deionized
water weekly to obtain original weight of the container. Three replicates were maintained per
sample. The inoculation was done following all safety procedures in Class-II Biological safety
cabinet (Nuaire, USA) and the containers were incubated at temperature-controlled incubator
(Lab Companion, USA) at 30°C.

Sampling and enumeration of E. coli
The population of each sample measured on the day of inoculation (0 day) and subsequently at
5 days intervals for a period of 45 days. A quantity of 10 g of homogenized soil sample was
withdrawn from the container at each sampling time. E. coli cells from each sample were
extracted by 0.1% peptone buffer (HiMedia, India) and the resulting soil suspension was sub-
jected to a 10-fold serial dilutions and enumerated by plating on LB agar supplemented with
ampicillin (100 μg/ml). The fluorescent colonies visualized through UV-illuminator were
counted and expressed as cfu per g dry weight of sample. The detection limit of the plating
technique is about 100 cfu per g and sampling was stopped after the day at which one of the
strains was at below detectable limit. For safety issues, the sampling, plating, colony counting
were performed in Class-II Biological safety cabinet (Nuaire, USA) and proper disposal proce-
dures were followed for both colony containing plates and inoculated soils.

Statistical analysis and modeling of bacterial survival
All the data were subjected to statistical analysis with software, Microsoft Excel for Windows
2007 add-ins with XLSTAT version 2010.5.05 [46]. Statistically significant differences between

Table 3. Physico-chemical characteristics of cocopeat used in the present study.

Physico-chemical properties Valuea

pH 5.96 (±0.01)

EC (dSm-1) 4.74 (±0.33)

Organic carbon (%) 27.62 (±0.95)

N (%) 0.30 (±0.02)

P (%) 0.03 (±0.00)

K (%) 0.88 (±0.04)

Microbial biomass carbon (μg/g) 3145.2 (±139.2)

Dehydrogenase (μg TPF released/ g /day) 5.24 (±1.20)

a Value represents mean (± standard error) (n = 5). EC—Electrical conductivity; TPF—triphenylformazan.

doi:10.1371/journal.pone.0130038.t003
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soil samples and E. coli strains were analyzed using one-way analysis of variance (ANOVA)
and Duncan’s multiple range test (DMRT) at 5% significance level.

All the microbial counts (cfu per g) were log transformed (log10 cfu per g). The log-
transformed data were then fitted for modeling of survival of E. coli strains using GInaFIT ver-
sion 1.6 [47]. This freeware tool enables the generation of statistical measures and parameter
values of the survivor curves [47]. The double Weibull survival model [48] was constructed
based on the hypothesis that the population is composed of two subpopulations differing in
their capability on resistance to stress and deactivation kinetics of both subpopulations follows
a Weibull distribution. The size of the surviving population can be calculated using following
equation.

NðtÞ ¼
N0

1þ 10a
10� t

d1ð Þpþa þ 10�
t
d2ð Þph i

In the equation, N is the number of survivors (cfu per g), N0 is the initial inoculum size (cfu
per g), t is the time (days), p is the shape parameter (dimensionless, when p>1, convex curve is
observed; when p<1, concave curve is observed, when p = 1, a linear curve is observed), δ1 is
the time for the first decimal reduction of subpopulation 1 (days), δ2 is the time for first decimal
reduction of the second subpopulation (days) and α is the log10 of the ratio of the fraction of
more sensitive subpopulation to the fraction of less sensitive subpopulation at time zero. The
ttd (time needed to reach detection limit, 100 cfu per g soil) was calculated using GInaFiT.

To reveal the similarities and differences between samples and to assess the relationships
between the observed soil variables and E. coli survival, principal component analysis (PCA)
[49] was performed on all the data. The number of variables was reduced by excluding those
explained to less than 50% by the significant components in PCA.

Results

Stability of GFP-tagged E. coli strains
The stability of plasmid (pGreenTIR) in all the three E. coli strains and constitutive expression
of GFP were performed by repeated sub-culturing and also by long incubation (even after 6
months) in LB broth containing ampicillin (100 μg/ml) at 37°C. In all the cases, the strains
showed ampicillin resistance and stable GFP expression (Fig 1). The PCR targeting virulent
genes (stx1 and stx2) of E. coli strains with or without pGreenTIR showed same pattern of
amplification for both the genes. A 348-bp amplicon for stx1 and 585-bp amplicon for stx2
were observed in O157-TNAU strains with and without pGreenTIR (Fig 2). E. coli species

Fig 2. PCR confirmation of E. coli strains (E. coli specific uidA gene) and virulence genes (stx1 and stx2). L—100 bp DNA ladder; D—DH5α; Df—
DH5α with pGreenTIR (Fluorescent); M—MTCC433; Mf—MTCC433 with pGreenTIR (Fluorescent); O—O157-TNAU; Of—O157-TNAUwith pGreenTIR
(Fluorescent); N—Negative control.

doi:10.1371/journal.pone.0130038.g002
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specific uidA-PCR was performed for all the three strains with and without plasmid. The
results also confirmed the presence of 148-bp amplicon of partial uidA gene for both wild
and GFP-tagged strains (Fig 2). The genome fingerprints between the wild strain and its
corresponding GFP-tagged strain did not show any difference in terms of banding pattern
(Fig 3). All the three strains capable of producing 9–10 bands ranged 300–900 bp sized with
the difference in the banding patterns. These results showed that no genetic change was
observed in any of the three strains due to introduction of GFP-plasmid.

Survival of E. coli strains in soils and cocopeat
The cell counts of all the inoculated E. coli strains decreased gradually till the detection limit of
the plating method (45 days post-inoculation). Among the three strains, DH5α perished
quicker than MTCC433 and O157-TNAU (Fig 4). Except red laterite soil, all other samples
had DH5α population at below detectable limit (100 cfu per g of soil) at 45th day. The
MTCC433 and O157-TNAU exhibited uniform pattern of decay in all the five samples.
Among the four soils tested, red laterite and tropical latosol reported to have slow decline of
cell counts of E. coli (especially MTCC433 and O157-TNAU) (Fig 4A and 4D). These strains’
survival rates were differed in cocopeat, of which MTCC433 had less survival rate than O157
(Fig 4C and 4E).

When calculating the population declining per cent, all the strains and soils showed a mean
decline of about 17–20% up to 30 days of incubation and suddenly increased to 60–80% in
later stages (Fig 5). In this observation also, DH5α differed fromMTCC433 and O157-TNAU.
Among the soils and medium assessed, cocopeat showed a near uniform and gradual decline
(Fig 5E) compared to other soils, while the declining per cent was most erratic in tropical Lato-
sol (S4, Fig 5D).

Statistical measures of fits and parameter values of the fitted curves for the survival of all the
three E. coli strains in four different soil samples and cocopeat according to Double Weibull
model are presented in Table 4. All the three E. coli strains had significantly shorter t4D (about

Fig 3. BOX-PCR fingerprints of wild and GFP-tagged strains of E. coli. L—100 bp DNA ladder; D—
DH5α; Df—DH5α with pGreenTIR (Fluorescent); M—MTCC433; Mf—MTCC433 with pGreenTIR
(Fluorescent); O—O157-TNAU; Of—O157-TNAUwith pGreenTIR (Fluorescent).

doi:10.1371/journal.pone.0130038.g003
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Fig 4. Survival of E. coli strains in different tropical soils and cocopeat under controlled condition. A—Wetland soil; B—Red lateritic soil; C—Black
cotton soil; D—Tropical latosol; E—Cocopeat. Means of three replicate values plotted and errors bars indicate the standard error.

doi:10.1371/journal.pone.0130038.g004
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Fig 5. Per cent population decline of E. coli strains in different tropical soils and cocopeat under controlled condition. A—Wetland soil; B—Red
lateritic soil; C—Black cotton soil; D—Tropical latosol; E—Cocopeat. Means of three replicate values plotted and errors bars indicate the standard error.

doi:10.1371/journal.pone.0130038.g005
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10 days) in wetland soil (S1), black cotton soil (S3) and cocopeat (S5) than red laterite soil (S2)
and tropical latisol (S4). Among the strains, there is no significant difference was noticed for
t4D. The δ1 (days for first decimal reduction of sub-population) parameter value was signifi-
cantly higher in MTCC433 and O157-TNAU for S2 soil (15.54 and 14.65 respectively) than
other soils and strains. Likewise, the lowest δ1 was reported for all the three strains in S1 and
S3 soils (ranged from 3.3–4.9). The mean δ1 for cocopeat for all the three strains was about 8.0.
The δ2, days for second decimal reduction of sub-population, also followed the same trend as
that of δ1, however with relatively higher values (about 10–15 days). The significance of δ2
among the soil samples was more than δ1. Likewise, a significant difference among the soil
types and strains of E. coli was observed for shape parameter (p) also. When considering the
rate parameters of Double Weibull model (δ1, δ2 and p), it is clear that all five soils showed sig-
nificantly different survival curves for the three different strains of E. coli. In terms of E. coli
survival rate, the modeling parameters exhibited that S2 and S4 were in one group, while S1. S3
and S5 formed another group. With reference to strains, DH5α responded different than
MTCC433 and O157-TNAU. This trend was also confirmed by t4D values.

The time to reach the detection limit (ttd, 2.0 log10 cfu per gram soil) calculated according
to Double Weibull model showed significant difference among the soils (Table 5). The model
derived ttd for all the strains was significantly shorter in cocopeat (39–40 days; 69 days for
O157), Black cotton soil (40–46 days) and wetland soil (41–47 days) than red lateritic (58–68
days) and tropical latisol (60–62 days) soils. Among the three strains, O157-TNAU showed

Table 4. Statistical measures and parameter values of the fitted model describing the survival of different Escherichia coli strains in different soils
and cocopeat under controlled condition according to the DoubleWeibull model.

Soil RSME Adj R2 t4D N0 α δ1 δ2 p

DH5α

S1 0.18 0.99 26.70e 7.75a 2.82c 3.38d 24.92f 2.69bc

S2 0.23 0.97 39.00a 7.15a 2.22c 13.17b 36.54a 1.54d

S3 0.46 0.97 32.55bc 7.91a 2.70c 4.07d 24.62f 3.07ab

S4 0.46 0.98 38.45a 7.64a 4.07b 9.30c 30.42bc 1.34d

S5 0.35 0.94 27.00e 7.54a 2.88c 8.34c 25.83f 3.11ab

MTCC433

S1 0.26 0.98 29.00de 7.09a 1.38e 3.80d 22.41g 3.55a

S2 0.40 0.96 39.25a 7.05a 4.84b 15.54a 32.54b 0.96e

S3 0.27 0.98 29.95cd 6.91a 1.68e 4.56d 24.77f 3.11ab

S4 0.29 0.99 39.25a 7.56a 2.80c 9.50c 29.41cd 0.81e

S5 0.32 0.97 27.30e 7.76a 7.29a 8.43c 28.77cd 1.21de

O157-TNAU

S1 0.45 0.95 30.45cd 7.90a 3.61d 3.47d 12.45h 1.07de

S2 0.40 0.93 38.10a 7.75a 1.45e 14.65ab 32.84b 2.28c

S3 0.11 1.00 34.50b 7.49a 1.89e 4.94d 14.45h 2.90b

S4 0.28 0.98 38.65a 7.27a 2.48c 8.58c 26.55de 2.89b

S5 0.45 0.96 27.00e 7.33a 6.74a 8.19c 24.48f 1.17de

S1—Wetland soil; S2—Red lateritic soil; S3—Black cotton soil; S4—Tropical latosol; S5—Cocopeat. Values are means ± standard error of three

replicates and values followed by the same letter in each column are not significantly different from each other as determined by DMRT (p � 0.05).

RMSE, root mean sum of squared error; AdjR2, adjusted R2; t4D, time (days) to attain a 4 log reduction; N0, initial cell count (log CFU g-1); α, parameter

that relates the fraction of the first subpopulation to the second subpopulation; δ1, time (days) for first decimal reduction of subpopulation 1; δ2, time

(days) for first decimal reduction of subpopulation 2; p, shape parameter.

doi:10.1371/journal.pone.0130038.t004
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significantly varied ttd among the soil types, while MTCC433 and DH5α showed more or less
uniform trend.

Principal component analysis
The principal component analysis of assessed variables showed that first and second compo-
nents explain 74 to 80% of total variance among the E. coli strains, of which PC1 contributes
39–46%, while PC2 adds another 28–34%. The bi-plots describing the orthogonal positions of
soils and assessed variables explained by first two PCs are presented as Fig 6. For DH5α, the
pH, microbial biomass-C, N, K, DHA, ttd, t4D, δ1, δ2 contributed nearly 80% of the total vari-
ability of PC1 (46.78%) (Fig 6A). However, the concentration of K and soil pH showed negative
loading values while the other significant variable showed positive (S1 Table). In case of non-
pathogenic E. coli strain MTCC433, pH, microbial biomass-C, DHA, N, P, K, ttd, t4D, δ1, δ2
added 91.85% of total variability of PC1 (50.96%) (Fig 6B). The ttd, t4D, δ1, δ2, MBC, DHA, N,
P, K showed negative loading values with rest of the variables had positive loading values. The
soil pH, MBC, DHA, available N and K, ttd, t4D, δ1, δ2 contributed nearly 85% of PC1 (39.24)
in case of O157-TNAU strain (Fig 6C). The ttd, t4D, δ1, δ2, MBC, DHA and N had negative
loading values (S1 Table). In all the three samples, soil organic carbon showed insignificant
contribution to the PC variability.

The positions of soil samples in the bi-plot defined by first two PCs showed variability
between DH5α and rest of the strains (MTCC433 and O157-TNAU) (Fig 6). Invariable to
three E. coli strains, cocopeat (S5) is clearly discriminated from other soil samples. Among the
soils, red lateritic and tropical latosol soils (S2 and S4) clustered tightly, while wetland and
black cotton soils (S1 and S3) are indistinguishable in the bi-plots (Fig 6). With relation to the
position of samples and the assessed soil variables, a considerable variation was observed
between DH5α and rest of the strains (MTCC433 and O157-TNAU). The soil samples in
which DH5α perished slowly (S2 and S4) were positioned in the right end of PC1 while the
quickly perished soils (S1 and S3) were in the left end of PC. In case of MTCC433 and
O157-TNAU, the trend was in opposite to DH5α. Irrespective to soils and E. coli strains, the
three replicated samples are tightly clustered together.

Table 5. Time to reach the detection limit (tdd) of the plate count method (2 log10 cfu per g) for E. coli
strains in different soils and cocopeat under controlled condition according to the DoubleWeibull
model.

Soils Time to reach detection limit (ttd) of plate count method

DH5α MTCC433 O157-TNAU

S1 41.77 (± 0.16)b 44.64 (± 0.02)b 47.83 (± 0.03)c

S2 58.84 (± 0.02)a 60.13 (± 0.02)a 68.13 (± 0.03)a

S3 40.64 (± 0.03)b 41.05(± 0.06)b 42.89 (± 0.05)d

S4 41.52 (± 0.04)b 60.10 (± 0.06)a 62.02 (± 0.02)b

S5 41.50 (± 0.04)b 40.82 (± 0.12)c 69.75 (± 0.02)a

S1—Wetland soil; S2—Red lateritic soil; S3—Black cotton soil; S4—Tropical latosol; S5—Cocopeat.

Values are means ± standard error of three replicates and values followed by the same letter in each

column are not significantly different from each other as determined by DMRT (p � 0.05).

doi:10.1371/journal.pone.0130038.t005
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Fig 6. PCA biplot showing orthogonal positions of soils and cocopeat and assessed soil variables
and survival modeling parameters of three E. coli strains. A—DH5α; B—MTCC433; C- O157-TNAU. S1
—Wetland soil; S2—Red lateritic soil; S3—Black cotton soil; S4—Tropical latosol; S5—Cocopeat. Soil
variables: pH; EC, electrical conductivity; N, P, K, available nutrients; SOC, soil organic carbon; MBC,
microbial biomass carbon; DHA, dehydrogenase; TCB, total culturable bacterial count. E. coli survival
parameters: %R, population decline per cent; MP, mean population reduction rate; DR, Decimal reduction
rate. Survival modeling parameters: t4D, time (days) to attain a 4 log reduction; δ1, time (days) for first decimal
reduction of subpopulation 1; δ2, time (days) for first decimal reduction of subpopulation 2; ttd, time to reach
the detection limit.

doi:10.1371/journal.pone.0130038.g006
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Discussion
In the present study, we have examined whether the survival pattern of O157:H7 differed
among the tropical soils and vegetable growth medium and also differed from non-
pathogenic E. coli strains. We followed the survival of E. coli strains in the soil in a similar way
as performed in previous studies [18, 50, 51].

The survival of O157:H7 in soil and manure was assessed using marker strains of O157:H7
in past. Some authors used spontaneous mutants of O157:H7, devoid of stx genes showing
rifampicin or nalidixic acid resistance for assessing the survival in soil [18, 52–54]. Oliveira
et al. [19] used non-pathogenic strain of O157:H7 unable to produce virotoxins (Stx1 and
Stx2), used for soil incubation studies and counted using O157 specific medium (Sorbitol Mac-
Conkey agar supplemented with cefixime and tellurite). For controlled incubation studies, the
pathogenic strains were tagged with rifampicin and kanamycin resistant genes by trans-
conjugation and monitored their survival [21, 55]. On the other hand, several researchers
introduced stable plasmids capable of producing enhanced green fluorescent protein (pGFP or
pGFPuv) to virulent strains [24, 50, 56, 57] or to the avirulant strains [51, 58] and used for soil
incubation studies. Nevertheless, all the results are comparable for the survival of O157:H7 in
manure or soil or manure amended soils. In another exclusive study made by Ma et al. [55]
found that mutants of O157 with either stx1 or stx2 or both did not show any significant differ-
ence in the survival pattern. This result clearly suggests that the virulence genes did not play
any direct role in the survival of this pathogen in soil. In the present study, we have used a
GFP-Plasmid, pGreenTIR to tag the E. coli strains with ampicillin resistance and fluorescence
under UV light. For O157 strain, we have not mutated the toxin producing genes, as the whole
experiment was done under controlled conditions. This method found to be convenient for
quantification of the E. coli cells from soils and the methodology and results found to be com-
parable to most of the earlier works [24, 57]. To reveal the genetic stability of E. coli strains,
pulse field gel electrophoresis (PFGE) was performed in past for O157 strains [21, 57]. In pres-
ent study, we have used BOX-PCR fingerprinting method, which is quicker and cheaper
method and more discriminative than PFGE [59]. There is no significant difference
in BOX-PCR based genome fingerprints found between the wild and GFP-tagged strains fur-
ther confirmed that the introduction of marker plasmid did not cause genome integrity of
E. coli strains.

The survival time for O157:H7 in soil ecosystem varied across the global observations. It
was expected that the soils from temperate climatic condition would be different from tropical
climate because of unique differences in soil properties, moisture condition, temperature
regime and cropping pattern. The tropical soils had much shorter survival times (35–75 days:
[18]; 21–28 days: [24, 60]; 103 days: [50]) than those from temperate climate (21 months: [61];
120 days: [62]; 154–231 days: [63]; 300 days: [64]). In the present study, the survival time
reported (40–60 days in all soil types) is well-fitted to the tropical soils. These results suggest
that the biophysical conditions in the tropics might be more detrimental to E. coli O157:H7
than temperate conditions. Additionally, these results also revealed that even within tropical
isothermal conditions, the survival time varies among the soils, which mainly depends on
other soil physico-chemical and biological properties of soil. Hence, it is difficult to compare
the data of survival time of O157:H7 from other studies with the present data because of differ-
ence in soil properties and experimental set-ups.

Our results indicated that the survival of O157 in four different tropical soils and in coco-
peat depends on physico-chemical and biological properties including pH, nitrogen, potas-
sium, microbial biomass carbon and dehydrogenase activity. The principal component analysis
of assessed variables showed a substantial difference in E. coli O157:H7 survival time between
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the soils that are differed in those soil properties. Interestingly, the total organic carbon did not
correlate the survival of E. coli which recorded less contribution to the survival variability of
strains recorded among the tested soils. Franz et al. [17] explained the O157 survival by dis-
solved organic carbon and microbial biomass carbon. In the present study, the microbial bio-
mass carbon is well-correlated (positively) to the survival of O157-TNAU. Soil dehydrogenase,
the functions of total range of oxidative activity and viable microbial populations, serves as a
good indicator of soil microbial activity. It is also an indirect indicative of soil available nutri-
ents for microbial processes. More of active nutrients and carbon if present in the soil obviously
reported to have high dehydrogenase activity. In the present study, the soils with higher dehy-
drogenase (red lateritic soil and tropical latosol) recorded longer-survival of O157 than those
with low dehydrogenase (wetland soil and black cotton soil). Van Elsas et al. [30] reported that
the diversity of microbial community of soil is inversely proportional to the survival of O157:
H7. Because of competition for nutrient and niche space as well as predation, the survival of
introduced O157:H7 can be affected due to native microbial communities. It is generally
accepted that more dehydrogenase means more diversified microbial communities [65], but
still long survival of O157 was reported in those soils needs further investigations. Among the
other nutrient properties assessed, nitrogen and potassium availability positively correlated
with the survival of O157 with insignificance to phosphorus. More the nutrients recorded lon-
ger the survival of O157 is in accordance with the results of Ma et al. [55].

The soil pH influences significantly to ttd of E. coli. The study comparing the acidic and
neutral soils of China claimed that the acidic soils (between 5.1 to 4.6) had very shorter ttd
(about 7 days), while the near neutral soils (6.5 to 7.2) had longer ttd (about 30 days) [20]. In
the present study, the pH of the soils is slightly acidic (5.9 to 6.05) and alkaline (8.4 to 8.7)
nature and among which the alkaline soils had quick decline of O157 than slightly acidic condi-
tion. This result suggests that near neural pH is most conducive condition for survival of E. coli
than alkaline and acidic pH. There may be several reasons, why soil pH had significant role in
the survival of O157. At near neutral pH, any soil bacteria can adapt to the soil environment
and can freely present in the solution. When the pH falls (below 5.0), the cells intended for
sorption on the minerals and thereby decline their population [66]. Additionally, low available
P, organic N, Al and Mn toxicity are the indirect effects cause survival and activity of O157:H7
in acid soils [20, 67]. On the other hand, at alkaline pH (above 8.0), the Ca2+ and Mg2+ ions
cause significant reduction of O157, which was evident by recent work [68]. In the present
study, the reduction of O157:H7 in alkaline soil and longer-persistence in near neutral soils are
in accordance with these findings.

In contrast to four agricultural soils, cocopeat, a common root medium for vegetable nurs-
ery and medium for soil-less agriculture in greenhouses was also assessed for the O157 survival.
The results suggest that O157 can survive equally in cocopeat as compared to agricultural soils.
When compare to O157 (70 days of ttd), MTCC433 and DH5α had shorter survival (40 days
of ttd) needs further investigations. Cocopeat is one of the best media widely adopted in Europe
and several Asian countries to grow vegetables under controlled condition. Persistence of O157
reported through this investigation will be more useful to develop some simple strategies to
avoid this food borne pathogen invasion in to vegetables.

In the present study, the survival data of all the three strains were successfully modeled by
the Double Weibull model. This model is based on the assumption that there are two subpopu-
lations present in the introduced strain and they differ in level of resistance to stress and sur-
vival of both the subpopulations followWeibull distribution. The subpopulation with smaller δ
perishes quickly compared to larger δ. In the present investigation, it was reported as δ1<δ2
for all the soils and for all the strains, suggests that the survival behavior of subpopulations dif-
fer significantly. However, O157:H7 had less difference between δ1 and δ2 (mean of about 15
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days for all the soils) compare to DH5α and MTCC433 (about 21 days for each). With refer-
ence to soil, S1 and S3 had very less values of δ suggesting that both subpopulations are reduced
more quickly in those soils, whereas the other soils (S2 and S4) had higher δ values, will take
longer time to perish. These modeling parameters are well-fit to our results and earlier works
([20, 21, 55]. The ttd calculated through the Double Weibull model also revealed that the soils
with high MBC and dehydrogenase had longer survival than those soils with less value, which
are in accordance with the earlier studies [18, 24, 55]. This was further evident from our PCA
results correlating the model parameters with observed soil variables. The ttd, t4D, δ1 and δ2 of
modeling data were significantly correlated with MBC and dehydrogenase activity of soils
(p = 0.001; S2, S3 and S4 Tables). Therefore the abundance of available carbon (reflected by
MBC of present study) in soil can provide more nutrients, niche for colonization of O157:H7
in soil with decreased competition with indigenous population, slow down the decline of E. coli
O157:H7.

The survival of O157:H7 in different agro-ecological soils across the world was well-docu-
mented [69, 70]. Most of the studies compared soil properties, organic amendments and envi-
ronmental conditions on the fate of O157:H7. Few studies also compared the variants of O157:
H7 on the survival under controlled [20, 21] and field conditions [9, 55]. The result clearly sug-
gests that no significant difference was noticed between stxmutants and wild O157:H7 strain
[55]. Several works comparing other STEC strains (non-O157:H7 strains) with O157:H7 also
suggest that the difference of survival pattern among these strains was trivial [21]. However, no
study has done so far by comparing natural non-pathogenic isolates and genetically engineered
strains with O157:H7. In the present study, a natural, non-pathogenic human intestine isolate
(MTCC433) and genetically engineered strain (DH5α) were compared with O157 for the soil
persistence. The results clearly showed that the survival of O157 (TNAU isolate) and
MTCC433 had a similar pattern, while DH5α had less persistence. Hence it is revealed that the
natural isolates of E. coli, either pathogenic or non-pathogenic exhibit similar pattern of sur-
vival, while the genetically modified lab strains such as DH5α had much shorter survival in
soil. The loss of competitiveness for nutrients and niche due to genetic engineering may be
the reason for less persistence in all the soils and cocopeat tested, which needs further
investigation.

Conclusions
The present study for the first time showed that the genetically engineered E. coli strain
(DH5α) perished quicker than non-pathogenic (MTCC433) and pathogenic (O157:TNAU)
natural isolates. The soil incubation studies conducted under controlled condition showed sig-
nificant difference in the survival rate of O157 and other strains among the four different tropi-
cal soils tested. O157 had the survival period ranged from 42 to 62 days in tropical soils tested
and in cocopeat, its survival is about 69 days. The physico-chemical and biological properties
which control the survival of O157 are pH, available N, K, microbial biomass carbon and dehy-
drogenase activity. These results are important with respect to microbial safety in vegetable
production. Our results indicate that if O157:H7 contaminated the agricultural soils by any
means; their survival is much shorter in these tropical soils compared to temperate soils. Bright
sunshine prevailing in this region (About 12 hours) is another detrimental factor for pathogen
survival in soil, which was not included in the present study, may still reduce the survival of
O157:H7 under natural conditions. Hence, more work has to be done to assess the fate of
O157:H7 under real field conditions of tropical soils; how different organic manures alter the
survival of this pathogen in soil and is there any translocation of pathogen takes place from soil
to vegetables when grown in contaminated soils.
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