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Abstract

Background: Most models of genome evolution concern either genetic sequences, gene content or gene order.
They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order
evolution usually have to assume constant gene content or adopt a presence/absence coding of gene
neighborhoods which is blind to complex events modifying gene content.

Results: We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted,
duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are
then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of
susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by
optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny.
Ancestral syntenies are associated with a probability of presence.
We implemented the model with the restriction that at most one gene duplication separates two gene speciations
in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the
evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a
significant number of results not supported by the posterior probability. The model is implemented in the Bio++
library. It thus benefits from and enriches the classical models and methods for molecular evolution.

Background
Genomes evolve through processes that modify their
content and organization at different scales, ranging from
substitutions, insertions or deletions of single nucleotides
to large scale chromosomal rearrangements. Extant gen-
omes are the result of a combination of many such pro-
cesses, which makes it difficult to reconstruct the big
picture of genome evolution. Instead, most models and
methods focus on one scale and use only one kind of
data, such as gene orders or sequence alignments.
Models based on sequence alignments were first

developed in the 1960’s and underwent steady develop-
ment until reaching a high level of complexity [1]. In a

recent development, they have been extended to include
gene content, modeling duplications, losses and transfers
of genes with reconciliation methods [2,3]. Reconciled
gene trees account for evolutionary events at both the
sequence level and the gene family level. They thus yield
a better representation of genome evolution and pave
the way for approaches integrating other levels of infor-
mation [4,5].
In parallel extant gene orders have long been used to

infer evolutionary relationships between organisms and
to reconstruct ancestral genomes [6-8]. Although the
early stages of their development were computational
challenges, methods based on gene orders gradually
overcame theoretical and computational constraints so
that they can now handle unequal gene content, multi-
chromosomal genomes, whole genome duplications and
dozens of genomes with large amounts of genes [9-11],
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and can be inserted into probabilistic frameworks
[12-17].
All ingredients are present to integrate gene order and

sequence evolution models, yet this leap has not been
taken, mostly because of computational issues. Recon-
structing gene order histories is often hard [18]. A com-
putational solution to reconstruct gene orders and scale
up with the size of datasets is to see a genome as a set
of independently evolving adjacencies, i.e. the links
between consecutive genes [19]. One can reconstruct
ancestral gene orders following three main steps:

• Group potentially homologous adjacencies (they
connect homologous pairs of genes)
• For each group, reconstruct the common history of
adjacencies, by recovering ancestral ones
• Assemble the ancestral adjacencies in each ances-
tral species to obtain ancestral chromosomes

The assumption that adjacencies evolve independently
allows quick computations at the second step: the size
of the data can be an order of magnitude larger than
without the assumption. But an optimization assembly
step is required because of possible conflicts between
adjacencies wrongly assumed independent [20].
Another difficulty is the integration of gene content

dynamics. Often probabilistic solutions are limited to
invariable gene content [12-14]. A solution is to encode
altogether the presence and absence of genes and adja-
cencies as binary characters and use a binary sequence
evolution model [15,16], but it lacks an evolutionary
model of gene content and order dynamics. Gene pro-
files [21] or reconciled gene trees [22,10] are more pro-
mising for integration with sequence evolution models.
They were mainly used with parsimony methods to
reconstruct ancestral adjacencies, which makes it diffi-
cult to combine with a model at a different scale.
We propose a probabilistic model of adjacency evolu-

tion accounting for gene duplications and losses, using
extant gene orders and reconciled gene trees. We base on
the parsimony algorithm of DeCo [10] that we adapt to
Felsenstein’s maximum likelihood algorithm [1] with a
birth/death process that models the evolution of adjacen-
cies. We compute the most likely adjacencies in ancestral
genomes and the quantity of gains and losses of adjacen-
cies in all the branches of a species trees, thus providing
an insight into the dynamics of rearrangements in these
lineages. The model is implemented in Bio++ [23], the
present form allowing at most one duplication node
between two speciation nodes in gene trees. We compute
the likelihood of gene orders in a set of 12 drosophila
whose genomes are annotated in the Ensembl Metazoa
[24] database. We optimize branch lengths in a species
phylogeny and construct ancestral genomes. We compare

the results with a parsimony approach, showing that
while most adjacencies inferred by parsimony have a
good probability, a non negligible proportion (> 11%) are
not supported (posterior probability < 0.5).

Methods
Input
Species tree
A rooted species tree is a binary tree that describes the
evolutionary relationships between organisms. The
leaves of the tree are available species, internal nodes
are ancestral species. The species tree has branch
lengths indicating the quantity of expected evolution.
Branch lengths can be also estimated as an output.
Adjacencies
An ordered set of genes is represented by a set of adja-
cencies, which are pairs of consecutive genes. For exam-
ple, a genome A containing the sequence of genes a1 −
a2 − a3 − a4 contains adjacencies a1a2, a2a3, and a3a4.
Adjacencies are not oriented, meaning that a1a2 is
equivalent to a2a1.
Gene trees
Genes are grouped into homologous families across gen-
omes. The evolutionary history of each family is repre-
sented by a rooted gene tree. Gene trees are reconciled
with the species tree (see precomputation below).

Principle
The principle is illustrated on Figure 1. It consists in
reconstructing hypothetical ancestral adjacencies, model-
ing the evolution of adjacencies, computing a maximum
likelihood of the model given the data, and computing
the a posteriori probability of presence for each ances-
tral adjacency.
In this section, we give an overview of the main steps

in our method. All these steps are detailed in the follow-
ing sections, except the precomputation, for which we
refer to [10].

• Precomputation: gene trees are reconciled with the
species tree in order to minimize the number of
duplications and losses (using DeCo [10]). It consists
in annotating each internal node by an ancestral
gene, together with the species it belongs to, and the
evolutionary event (speciation, duplication, loss) tak-
ing place at the bifurcation. This determines a set of
ancestral genes for all ancestral species. Gene losses
are also annotated in the trees.
• Classify extant adjacencies so that every class can
be handled independently. Inside each class, two
gene families with two trees are involved and all
adjacencies have an extremity in each family.
• For each selected pair of gene families, construct a
tree, called the tree of possible adjacencies. Its nodes
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are all the couples of nodes from each gene tree,
which are in the same extant or ancestral species
(the speciation nodes), plus some duplication nodes;
the leaves are labeled with the pattern of presence/
absence of the possible adjacencies in the data.
• Compute, between successive nodes of this tree,
the probability of presence or absence of the adja-
cency using the model of evolution described below.
• Compute the likelihood of the adjacency given the
observed adjacencies.
• Compute a posteriori probabilities of presence of
ancestral adjacencies.

The likelihood computation for one adjacency tree
allows to obtain a likelihood for the whole dataset by
multiplying all likelihoods, considered as independent,
and to optimize parameters. These can concern branch
lengths on the species tree, or a law of differential fragi-
lity for different genome sites, modeling different sus-
ceptibility to rearrangements among chromosomal
regions [25,26].

Adjacency classes
We first reduce the problem to two gene trees, without
loss of generality, by classifying adjacencies. Reconciled
gene trees define ancestral genes of ancestral species.
A necessary condition for an adjacency i1i2 to be an
ancestor of a1a2 is that i1 is an ancestor of a1 and i2 an

ancestor of a2. By the same idea a necessary condition for
adjacencies a1a2 and b1b2 to be homologous is that there
is a common ancestor i1 of a1 and b1, and a common
ancestor i2 of a2 and b2, such that i1 and i2 are in the
same species. This condition for homology is an equiva-
lence relation on all extant adjacencies, which can be
clustered and treated by equivalence classes of homology.
To a class we can associate i1 and i2 the most ancient dis-
tinct common ancestors of all adjacency extremities in
the class. So every adjacency in the class has an extremity
which is a descendant of i1 and an extremity which is a
descendant of i2. Without loss of generality we can work
with the two sub-trees rooted at i1 and i2.

Trees of possible adjacencies
We now suppose that we have G1 and G2 two reconciled
gene trees with some leaves of G1 involved in adjacencies
with some leaves of G2. Each node n in G1 and G2 is anno-
tated with an event (speciation, duplication, loss) and a
species S(n). Take each pair of nodes i1i2, where i1 and i2
are speciation nodes associated with the same ancestral
species s, i1 ∈ G1 and i2 ∈ G2. Since S(i1) = S(i2) and adja-
cencies exist between leaves of G1 and leaves of G2, i1i2 is
called a possible adjacency.
All possible adjacencies define nodes of the tree of

possible adjacencies, in which duplication nodes can be
added, as explained below.
If i1i2 is a possible adjacency such that S(i1) = S(i2) = s,

let s1 and s2 be the two children of s in the species tree.
There is a descent path in the tree of possible adjacen-
cies from i1i2 to all possible adjacencies j1j2 in s1 such
that i1 is an ancestor of j1 and i2 is an ancestor of j2,
and a similar independent path from s to s2. If there is
no duplication node between i1 and j1 and i2 and j2,
then this path is a single edge. If there is at least one
duplication node between i1 and j1 or i2 and j2, then the
path from i1i2 to j1j2 has two edges, one between i1i2
and d, a new duplication node, and one from d to j1j2.
The node i1i2 always has only two descendants, but the
node d can have an arbitrary number, according to the
number of duplications in the gene lineages.
Loss of one or both genes involved in the adjacency in

a branch leading to a species s′ leads to the loss of the
adjacency in s′. In this case, a loss leaf of the tree of pos-
sible adjacencies is constructed. An example of con-
struction of a tree of possible adjacencies for two
reconciled gene trees is drawn in Figure 2. Once each
pair of nodes i1i2 has been considered, the resulting tree
is the tree of possible adjacencies for G1 and G2 on
which we can apply a model of evolution.

Model of evolution
We consider possible adjacencies as evolutionary objects
in a binary alphabet. An adjacency can either be present

Figure 1 Principle of the method. Given two gene trees (dark
blue tree and light blue tree) reconciled within a species tree (black
tree), and sharing adjacencies in some extant species (species A and
C), we reconstruct hypothetical ancestral adjacencies (in species D
and E) using a model of evolution and maximum likelihood
algorithm. Our method allows for losses (cross in light blue tree
between species B and species D), and duplications (empty square
in dark blue tree) of genes.
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(state 1) or absent (state 0) in a genome. The transition
rate matrix for the birth/death process which describes
the evolution of a binary object is:

Q =

⎛
⎜⎝−κ + 1

2
κ + 1

2
κ + 1
2κ

−κ + 1
2κ

⎞
⎟⎠ (1)

Where � is the rate of 0 ® 1 (gain of an adjacency)
over the rate of 1 ® 0 (loss of an adjacency). Probabil-
ities of transition between two states separated by a
amount t of time can be computed using a classical bin-
ary substitution model:

P(t) =

⎛
⎜⎝

1 + κe−λt

κ + 1
κ − κe−λt

κ + 1
1 − e−λt

κ + 1
κ + e−λrt

κ + 1

⎞
⎟⎠ (2)

Where λ =
(κ + 1)2

2κ
.

In the case when there is no duplication in the two
gene trees, likelihoods can be computed directly from
the tree of possible adjacencies (which itself has no
duplication nodes) with Felsenstein’s algorithm [1].
An adjacency can be lost because of a rearrangement

(1 ® 0), or because at least one of the two adjacent
genes is lost. In the first case, the state of the leaf in the
tree of possible adjacency is simply 0. In the second
case, we assign an undetermined state ? to the loss leaf
in the tree of possible adjacencies to differentiate it
from a loss due to a rearrangement. We do not compute
probabilities of transition for branches leading to these
nodes.
In the case when there are duplication nodes, we write

the probabilities according to a model of evolution of
adjacencies in presence of duplications: when one gene
belonging to an adjacency is duplicated, the adjacency is
transmitted to one of the two copies of the gene. This is
always verified, whether the duplication is tandem or
remote. For example, consider a gene i2 involved in an

Figure 2 The tree of possible adjacencies. A tree of possible adjacencies is constructed from two reconciled gene trees (top trees). The nodes
of the tree are annotated as speciation nodes (grey nodes), duplication nodes (white squares), or losses (crossed grey nodes). A binary state is
attributed to each leaf according to the presence/absence pattern of the adjacency in extant species (light blue square). The true evolutionary
history of the adjacency is represented on the blue tree. An adjacency exists between genes a1 and a2, c1 and c2, d1 and d2. It is absent

between genes a1 and a′
2 and genes c′

1 and c2. If one extremity of the adjacency is lost (species B), the adjacency node is given an undefined

state “?”.
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adjacency i1i2 in species I with a gene i1. In species A
(descendant of species I ), i1 has one descendant a1,
whereas i2 is duplicated, giving two copies a2 and a′

2 . If
the duplication is in tandem it leads to the gene order
a1a2a′

2 , and the only adjacency conserved with a1 is
a1a2. Otherwise it leads to the gene order a1a2. . . a′

2
and again only a1a2 is conserved. Note nevertheless that
the adjacency a1a′

2 can appear later in the phylogeny
following a rearrangement.
Between two speciation events, we have no date for

duplication events. We argue that fixing a date, for
example with gene branch lengths, would be a mistake
as the position of a duplication between two speciations
influences the transition probabilities. Besides, the prob-
abilistic approach means that we can account for all
possible dates. Hence we compute an average transition
probability for the duplicated branch over all the
moments on the branch of the species where this dupli-
cation could have occurred. To do this, we integrate the
transition probabilities P(t) uniformly over the length of
this branch. Depending on the date of the duplications,
the probabilities of the several resulting adjacencies are
more or less linked. Hence, the integrated transition
probability is no longer from one adjacency to another
adjacency, but from one adjacency to the set of all the
possible adjacencies that result from the duplication. In
the previous example (one duplication), the transition
probability is from i1i2 to ((a1a2, a1a′

2) . We can fully
model such a process as several processes in parallel. If
Q is the generator of the binary model, Q ⊗ Q ⊗ ... ⊗
Q is the generator of the whole process, where ⊗ is the
Kronecker product. Here, from a single Q generator at
the beginning of the branch, along the branch each
event of duplication gives rise to a larger Kronecker pro-
duct. From a computational point of view, the whole
parallel process is considered all along the branch, but
just a subset of the transition probabilities is used.
We restrict here the description of the model to the

case when there is at most one duplication node
between two speciation nodes in the gene trees, which
means that in the tree of possible adjacencies, duplica-
tion nodes have at most four descendants (because a
gene duplication would have occurred in each gene
tree). However, in case of several duplications, the same
principle holds, with much more complicated formula.
One duplication
If there is one duplication in one gene tree (from a to a1
and a2) and no duplication in the other, then in the non
duplicated branch probabilities are settled with the
matrix P. The duplicated branch has a length drawn from
the uniform distribution on the non duplication branch
length, because it starts from the duplication. So the
average transition matrix on the duplicated branch is:

N1(t) =
1
t

∫ t

0
P (τ ) dτ (3)

As in the duplicated branch there is no adjacency
(state 0) at the moment of the duplication, we are only
interested by the (0, z) components of N1(t), z ∈ [0, 1].
Calculating the integral yields:

N1
0,0(t) =

κ − κe−λt + λt
(κ + 1)λt

(4)

N1
0,1(t) =

κe−λt − κ + κλt
(κ + 1)λt

(5)

Let x be the state of adjacency i1i2, y the state of
a1a2 and z the state of a1a′

2 , (x, y, z) ∈ [0, 1]3. Assum-

ing that a1a′
2 is on the duplicated branch, the overall

transition probabilities from x to y and z are given by

Px,y(t) × N1
0,z(t) .

The two choices for the duplicated branch are consid-
ered during the computation of the likelihood.
Two duplications
If both i1 and i2 are duplicated, we assume that both
duplications are independent. Note that with this
assumption, we do not model the case of joint duplica-
tions, where a fragment of chromosome is duplicated
(i.e. several consecutive genes are duplicated following a
single duplication event). Without loss of generality, we
assume in the computation that one duplication occurs
after the other. The average transition matrix integrated
uniformly along both branches is:

N11(t) =
2
t2

∫ t

u=0
P(u) ⊗

∫ u

v=0
P(v) ⊗ P(v)dvdu (6)

Since, as before, only one gene pair inherits the adja-
cency, we are only interested by the (., 0, 0, 0) ® (., ., .,
.) components of P(t) ⊗ N11(t) (Figure 3).

Likelihood computation
Likelihood is computed in the rooted tree of possible
adjacencies in a bottom-up way. From here, we describe
adjacency nodes with single letters for better clarity. We
denote as Di the data that is below node i.
Take a speciation node i in the tree, which descen-

dants are nodes j and k (with branch lengths respec-
tively t1 and t2). Let x, y, z ∈ [0, 1] be the respective
states of i, j, k. We compute the partial conditional like-
lihoods of Di in the classical way:

L(Di|x) = (
1∑

y=0

Pxy(t1)L(Dj|y)) · (
1∑

z=0

Pxz(t2)P(Dk|z)) (7)
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Now, let i be a duplication node with two children j
and k. Since it concerns only one branch in the species
tree, there is a unique branch length t involved. We
defined the model of evolution such that the contribu-
tion of one child is included using the basic transition
matrix P(t) and the contribution of the other child (the
child on the duplicated branch) is included using the
transition matrix N1(t). The partial likelihoods of i can
then be computed by allowing the equal possibility that
either j or k is on the duplicated branch:

L(Di|x) =
1
2

∑
yz

L(Dj|y)Pxy(t)L(Dk|z)N1
0z(t)

+
1
2

∑
yz

L(Dk|y)Pxy(t)L(Dj|z)N1
0z(t)

(8)

If we generalize this problem, computing the partial
likelihoods of a duplication node i means exploring the
combinatorics of possible states for i’s children and the
combinatorics of attributing the duplicated branch(es)
to the children. Take a duplication node i with n specia-
tion nodes as descendants in the same species. Each
node is in a binary state, which means that there are 2n

combinations of states for i’s children. We could explore
all these combinations to compute i’s likelihood but bin-
ary characters quickly lead to redundancies in the com-
putation. We can avoid some of these redundancies and
reduce the space of exploration by defining patterns. A
pattern is an unordered set of 0s and 1s. There are n+1

possible patterns representing the states of i’s children.
For each pattern p, we can compute the pattern’s
pseudo likelihood by exploring all its possible orders (i.
e. all the possible ways of ordering the 1s and 0s in the
pattern):

L(Di|p) =
∑

Y

∏
c≤n

L(Dc|Yc) (9)

where Y is one possible order of p. If i has n children,
Y is a vector of n binary characters representing the
states of the n children. Yc is thus the cth element of Y
and Dc the data below the cth child of i.
We define the weight ω(p) of the pattern p as the

number of possible orders for p : ω(p) =

(
n

N

)
, with N

the number of 1s in p. We give the generalized formula
for computing the partial likelihood of i when i has four
children (n = 4, which means that the only concerned
integrated transition matrix is N 11(t)):

L(Di|x) =
∑

p

ωp

2n
(L(Di|p)

∑
Y∈p

(P ⊗ N11)(x,0,0,0)→Y(t) (10)

This formula is valid for any number of children for
the duplication node i, provided N 11 is replaced by an
appropriate matrix.

Ancestral adjacencies reconstruction
Ancestral states, that is, posterior probabilities of pre-
sence of adjacencies in the tree of possible adjacencies,
are reconstructed by a top-down (from the root to the
leaves) algorithm following the the bottom-up likelihood
computation algorithm. In the top-down likelihood
computation algorithm, we compute the conditional
likelihoods of each node i according to the conditional
likelihood of the data below it (Di), and to the condi-
tional likelihood of the data that is on the other part of
its father f, Df , and to the conditional likelihood that is
below the brothers of i (say one brother i′).
If father f of node i is a speciation node:

L(D|y) = L(Di|y)
1∑

x=0

Pxy(t).L(Df |x) .
1∑

z=0

Pxz(t′)L(Di′ |z) (11)

where y is the state of i, x is the state of f, z the state
of i′ and t′ the length of the branch from f to i′.
If father f of node i is a duplication node with one

duplication (i.e. two sons i and i′), the likelihood of
node i is the average of both scenarios:

L(D|y) = L(Di|y).
1
2

1∑
x=0

L(Df |x).
1∑

z=0

(Pxy(t)N1
0z(t

′) + Pxz(t′).N1
0y

(t))L(Di′ |z) (12)

And the equivalent to the case of two duplications in
the bottom-up algorithm is achieved by computing i’s

Figure 3 Model of evolution with duplications. A duplication in
the same species in each of the two gene trees leads to a
duplication node with four children (white square) in the tree of
possible adjacencies between the two gene trees. Immediately after
a duplication event, the adjacency is broken for the duplicated
branch (branch leading to the rightmost red node). The second
duplication leads to the simultaneous apparition of two other
branches (leading to left and middle red nodes). The adjacency is
also broken at the beginning of these two branches. The
probabilities of transition between the duplication node and its four
children are then given by the (., 0, 0, 0) ® (., ., ., .) components of
P(t1) ⊗ N11(t1). In the likelihood computation, all positions for the
blue and red nodes are considered.
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partial likelihoods when i’s father is a duplication node
with four children i, i′, i″, i‴, and the likelihood is an
average of four scenarios:

L(D|y) = L(Di|y).
1
4

1∑
x=0

L(Df |x).

∑
wzu

(Pxy(t).N11
0,0,0→w,z,u(t) + Pxw(t)N11

0,0,0→y,z,u(t)

+Pxz(t)N11
0,0,0→w,y,u(t) + Pxu(t)N11

0,0,0→w,z,y(t))

L(Di′ |w).L(Di′′ |z).L(Di′′′ |u)

(13)

From these conditional likelihoods, a posteriori prob-
abilities of presence of adjacencies can be computed.
The result is, for each ancestral species, a set of adjacen-
cies associated with probabilities of presence. Trans-
forming it into a bona fide gene order necessitates
finding a subset of probable adjacencies in which one
ancestral gene can be adjacent to only two others. Effi-
cient methods exist [20] to do so, but they ignore the
main source of possible conflict between adjacencies
when they are seen as independently evolving charac-
ters: errors in gene trees [27]. So in general we prefer
presenting a set of adjacencies associated with probabil-
ities, and leave open the way of choosing among them
and/or correcting the input data to avoid conflict.

Implementation and availability
We implemented the model of evolution and the likeli-
hood calculation algorithm in the Bio++ library (http://
biopp.univ-montp2.fr/). The algorithm that builds the

trees of possible adjacencies was implemented in a sepa-
rate program which also uses Bio++. Reconciliation was
performed with DeCo [10]. All the analytical formulas
in our model were computed using Maxima (see Addi-
tional file 1). These programs are available upon request
to the authors.

Results
Dataset
We selected 12 drosophila species from the Ensembl
Metazoa [24] database. We used the species tree from
[28], the gene trees and the chromosomal locations from
Ensembl Metazoa. We pruned the gene trees to keep
only the drosophilae clade, and reconciled them with the
species tree using [10]. We reduced the dataset to the
9223 gene trees with at most one duplication between
two speciation nodes in reconciled gene trees. We built a
set of extant adjacencies by connecting consecutive genes
in the reduced dataset, provided they were on the same
chromosome or scaffold. We built 13059 trees of possible
adjacencies from this set of reconciled gene trees and
extant adjacencies. By maximum likelihood, we opti-
mized the branch lengths of the species tree using our
model of evolution, from the 3608 trees of possible adja-
cencies without any duplication (Figure 4). Optimizing
branch lengths over many trees remains computationally
intensive, especially for trees with several duplications
(then the combinatorics increases). The choice of the
sample to optimize from was thus a trade-off between

Figure 4 Drosophila phylogeny. The 12 Drosophila species tree with branch lengths optimized according to the model and the synteny data.
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accuracy and computational cost. While we optimized
branch lengths, we also optimized the model’s para-
meters in a non-stationary way.
Note that the drosophila genomes are not all perfectly

assembled and some are fragmented in several hundred
contigs. So all the signal does not have to be interpreted
as rearrangements, but some of it is due to the absence
of adjacencies in extant genomes.

Ancestral adjacencies
We computed posterior probabilities of presence and
absence for all possible ancestral adjacencies, given the
optimized branch lengths. We report in Table 1 the
number of genes and adjacencies in extant and ancestral
species. Note that the difference between the number of
genes and adjacencies in extant species gives the num-
ber of chromosomes or scaffolds. This goes from the
well assembled melanogaster genomes in 8 scaffolds to
simulans with 445 scaffolds, with all intermediaries.
Despite the fact that assembly is incomplete, we have
enough adjacencies in the dataset to make a signal for
the reconstruction of ancestral adjacencies. And indeed,
54222 adjacencies with posterior probability > 0.9 are

proposed. The signal is weaker for ancient species, as in
ANC10, with only 2360 adjacencies for 8026 genes,
depicting a very fragmented ancestral genome.
The “degree” column in Table 1 shows that in general

less than 4% of the genes harbor a conflicting signal
with more than 2 attached adjacencies having posterior
probability > 0.9. While this remains a high rate of
error, it means that most of the supported signal consti-
tutes linear ancestral contigs or chromosomes. The con-
flict is variable according to the lineages. A surprisingly
high amount of conflict arises for the ancestor of yacuba
and erecta, predicted as recent. Perhaps this reflects an
ambiguity in the species tree which precisely at this
place is debated [29]. It seems that rearrangements sup-
port an alternative topology.

Comparison with parsimony
We compare the results with those obtained by [10]
(DeCo software) on the same data (Figure 5). DeCo recon-
structs ancestral adjacencies according to a parsimony
principle, whereas we reconstruct all possible ancestral
adjacencies along with a posterior probability of presence
for each one. Most of the adjacencies reconstructed by

Table 1 Statistics of extant and ancestral genomes in the drosophila dataset.

Extant species genes adjacencies coverage

melanogaster 6410 6402 47%

simulans 7195 6750 50%

sechellia 7551 7261 48%

erecta 6961 6910 49%

yacuba 7313 7058 49%

ananassae 6558 6459 47%

pseudoobscura 7280 7007 48%

persimilis 7361 7025 47%

willistoni 6236 6063 43%

mojavensis 6484 6403 48%

virilis 6512 6437 48%

grimsawi 6538 6220 46%

Ancestral species genes adjacencies > 0.9 genes with more than 2 adjacencies

ANC1 8054 7164 578

ANC2 8364 5422 164

ANC3 8696 7529 1348

ANC4 9455 3746 113

ANC5 7564 5021 160

ANC6 7242 6117 58

ANC7 6677 6184 210

ANC8 6954 5777 413

ANC9 8816 2872 47

ANC10 8026 2360 24

ANC11 7157 2030 3

Column “genes” is the number of genes in the dataset. Column “coverage” is the proportion of the genes in the dataset to the total number of genes annotated
in Ensembl. Column “adjacencies” is the number of adjacencies in an extant genome or adjacencies in ancestral genomes with a posterior probability > 0.9.
Column “genes with more than 2 adjacencies” is the number of genes involved in more than 2 adjacencies of posterior probability > 0.9. This value is reported
only for ancestral genomes, as in extant all genes have 0, 1 or 2 neighbors by definition.
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DeCo are given a high probability of presence according to
our model (70% have a support > 0.9). Interestingly, a few
of them are given low probabilities of presence (11% have
probabilities of presence < 0.5), suggesting that our model
could bring a finer understanding of the evolution of these
adjacencies. Figure 5 shows the distribution of posterior
probabilities, as computed by our model, of all the possible
adjacencies (in grey), and of all the adjacencies inferred by
parsimony (in red).
We always reconstruct more ancestral adjacencies

than DeCo because DeCo reconstructs ancestral adja-
cencies up to the last common ancestor of an adjacency
class, whereas we reconstruct possible ancestral adjacen-
cies up to the most ancient ancestor of an adjacency
class. This explains why many possible ancestral adja-
cencies have low or no support in the presence/absence
pattern at the leaves.

Discussion
Probabilistic models of evolution have at least four
advantages over parsimony approaches: they provide
more accurate results in presence of many mutations;
they provide a natural support scheme of the results in
the form of a probability of ancestral states; the likeli-
hood is computed by an integration over all scenarios
rather than choosing only one, even if optimal; and sev-
eral models at different scales of the genome can be
integrated.
But most probabilistic models of gene order evolution

are computationally intractable on large datasets, work-
ing with too large state spaces. Coding gene order by
binary characters is a solution, like for many characters
characterized by their presence or absence. Then it is

possible, like in [30], to use a standard model of binary
sequence evolution to achieve a probabilistic reconstruc-
tion of phylogenies and ancestral gene orders based on
the presence/absence of adjacencies in extant species.
This way can handle unequal gene content but does not
model the processes of joint evolution of gene content
and order, and has to simplify the data to make it fit
into standard models. As a result a part of the under-
standing of genome evolution remains out of reach.
This is why we put some efforts in a model of gene

neighborhood evolution handling complex histories of
genes depicted by their reconciled phylogenies.
We gain several advantages. For example the model

allows to follow a pattern of descent of adjacencies.
Links between genes evolve, just as genes evolve too.
This can be used to detect the positional orthology
(orthology of a gene as a locus, in addition to a
sequence) when a gene is duplicated in an asymmetric
way [31] - not in tandem, so that from the loci point of
view, only one duplicate is a descendant of the unique
copy before duplication. Here we allow any kind of
duplication, symmetric or not, but in any case an adja-
cency is transmitted to one copy. In the case of a tan-
dem duplication, this does not yield an asymmetry for
the genes, because a gene has two adjacencies, and the
two can transmit a descendant to a different copy in the
case of a tandem duplication. But in the case of an
asymmetric duplication, the two adjacencies are trans-
mitted to the same copy of a gene and a positional
homolog is detected.
We also keep track of the evolutionary events that can

be responsible for the gain and loss of an adjacency. For
example an adjacency can be lost because one of the
genes is lost, or because of a rearrangement. It is two
different reasons for an adjacency to be absent, and we
are able with a model to differentiate both cases.
We found that a significant number of adjacencies

inferred by parsimony on a drosophila dataset are not
supported by a probabilistic model. It corroborates the
usual findings in evolutionary models each time reason-
ably distant species are compared, whether it is
sequence evolution [1], gene content evolution [32], or
gene order evolution [12].
There are still several limitations to this work. For the

moment the computation time is one of them, the effi-
ciency of optimization algorithms coupled with our model
allowed us to work only on a small fixed phylogeny. Theo-
retically we could even infer phylogenies, coupling a
model of sequence evolution and such a model of genome
organization evolution, but it will necessitate algorithmic
progresses. Another limit is that our current implementa-
tion only handles independent duplication events,
although we are also developing a model for joint duplica-
tions. Finally, the possible presence of many duplications

Figure 5 Ancestral adjacencies reconstruction with our method
and with DeCo. The posterior probabilities of presence of ancestral
adjacencies reconstructed with our model (in grey). In red the part
reconstructed by a parsimony method.
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yields intricate integrals difficult to solve analytically, if we
want to stick with exact solutions integrating over their
position in a branch. Numerical approximations or simpli-
fying hypotheses have to be incorporated. For the moment
families with many duplications are filtered out.

Conclusions
The present model is a proof of concept that it is possi-
ble to handle whole genomes of dozens of species,
including genes with complex histories, into a probabil-
istic model for gene organization.
We open a path that has many possible continuations:

• Handle joint duplications of two consecutive genes
as a single duplication event.
• Handle more than one gene duplication between
two gene speciations.
• Handle horizontal gene transfer (a parsimonious
framework is available [33]).
• Jointly infer probabilistic presence and absence of
genes and gene neighborhoods, using conditional
probabilities mixing two models.
• Integrate the model into an integrative probabilistic
model of genome evolution, handling both sequence
evolution and gene content evolution, like Phyldog [27].
• With this integration the model can be used to
infer species phylogenies, or at least in the current
state of computational complexity, to test among a
small number of species phylogenies. For example
we will test two different alternative drosophila spe-
cies tree topologies according to the likelihood of
our model, and according to the coherence of ances-
tral genomes (the linear organization of genes along
chromosomes).
• Use this model to detect highly variable sites by
correlating variable rates of adjacency evolution (in a
similar framework as for sequence evolution [34])
and intergene sizes, and bring a stone to the study
of fragile and solid regions [26].

These constitute our work in progress. We see the
model we present here as a decisive step.
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