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Abstract Whereas chemokines are well known for their
ability to induce cell migration, only recently it became
evident that chemokines also control a variety of other cell
functions and are versatile messengers in the interaction
between a diversity of cell types. In the central nervous
system (CNS), chemokines are generally found under both
physiological and pathological conditions. Whereas many
reports describe chemokine expression in astrocytes and
microglia and their role in the migration of leukocytes into
the CNS, only few studies describe chemokine expression
in neurons. Nevertheless, the expression of neuronal
chemokines and the corresponding chemokine receptors in
CNS cells under physiological and pathological conditions
indicates that neuronal chemokines contribute to CNS cell
interaction. In this study, we review recent studies describ-
ing neuronal chemokine expression and discuss potential
roles of neuronal chemokines in neuron—astrocyte, neuron—
microglia, and neuron—neuron interaction.
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Introduction

Chemokines are small proteins that are able to induce a
chemotactic response in cells expressing the corresponding
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chemokine receptors. Since the discovery of the first
protein with chemotactic activity [1], the chemokine family
has expanded to approximately 50 chemokines [2] and 20
receptors [3]. Chemokines have been divided into four
groups based on the position of four conserved cysteine
residues in the N-terminal region of the protein. The two
largest groups are CXC and CC. The first two cysteines in
the CXC group are separated by one amino acid residue,
whereas the first two cysteines in the CC group are adjacent
to each other [4, 5]. The two small groups are the C
chemokines, with only one cysteine in the N-terminal
region, and the CX3C chemokine, where the first two
cysteines are separated by three amino acid residues [5].
Chemokine receptors are designated according to the
chemokine group they preferentially bind. For example,
CC chemokines bind to CC receptors and so on. There has
yet only been one exception reported, namely CCL21, that,
in addition to CCR7, also binds to CXCR3 [6-8]. All
chemokine receptors belong to the family of G-protein
coupled receptors (GPCRs). In general, GPCRs can bind
many different G-proteins, allowing for a great variety of
intracellular signaling pathways (for excellent review, see
[9]). The majority of chemokine-induced responses are
inhibited by pertussis toxin (PTX), indicating that
Ggj—proteins mediate many effects [10]. Chemokine
receptors can activate intracellular targets like adenylcy-
clase, phospholipases, GTPases like Rho, Rac, and Cdc42
and pathways of major kinases like mitogen-activated
protein kinase (MAPK) and phosphatidyl inositol-3 kinase
(PI3-K) [11, 12]. This diversity of intracellular signaling
shows that chemokine receptors, in addition to pathways
involved in cell migration, also activate other pathways and
may, in that way, control a great spectrum of cellular
functions [13, 14].
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Chemokines are well-known regulators of peripheral
immune cell trafficking under both physiological and
pathological conditions (reviewed by [15-17]). In addition
to chemo-attraction of immune cells, chemokines have been
implicated in a variety of cell functions, such as early
development, formation of secondary lymphoid organs,
wound healing, angiogenesis and angiostasis, regulation of
adhesion molecule expression, development of Thl/Th2
profiles, tumor growth, and metastasis [5, 14, 18-24]. Thus,
from being molecules thought to solely orchestrate immune
cell migration, chemokines are now considered versatile
messengers with the ability to control the interaction
between a wide diversity of cell types.

In addition to their presence in the periphery, numerous
studies have demonstrated that chemokines are also
expressed in the central nervous system (CNS), where they
play a crucial role in physiological and pathological
conditions, such as development, synaptic transmission,
homeostasis, injury, and disease-associated neuroinflamma-
tion [19, 25, 26]. Although astrocytes and microglia are the
primary source of chemokines, there is evidence that
neurons express and secrete chemokines as well, indicative
of a neuronal contribution to chemokine signaling. In this
paper, we review recent studies describing neuronal chemo-
kine expression and discuss the potential roles of neuronal
chemokines in neuron—astrocyte, neuron—microglia, and
neuron—neuron interaction.

Neuronal Chemokine Expression

Approximately 60 studies describe chemokine expression
in neurons under physiological and pathological conditions
(see Table 1). These studies, of which the majority is
published in the last 3 years, are reviewed in the following
sections.

CC Chemokines
cCL2

CCL2 is currently the most extensively described neuronal
chemokine. The majority of reports describing neuronal
CCL2 expression are focused on pathological conditions.
An induction of neuronal CCL2 expression was described
upon ischemia [27-29], after axonal injury [30-34] and in
motoneurons of patients with amyotrophic lateral sclerosis
(ALS), and in mouse models for ALS [35, 36]. Interest-
ingly, neuronal CCL2 expression in response to ischemia
was detectable within 2 h, whereas CCL2 expression in
astrocytes was detected only after 2 days [27]. Although
most reports show induction of neuronal CCL2 expression
under pathological conditions, a recent study has shown

constitutive CCL2 expression in neurons throughout the rat
brain [37]. This study demonstrated that, depending on the
brain region, up to 100% of the neurons were positive for
CCL2 [37]. CCL2 was mainly detected in neuronal cell
bodies and costaining-depicted colocalization with various
neurotransmitters and neuropeptides, corroborating a popu-
lation-specific expression of CCL2 [37]. Constitutive neuro-
nal CCL2 expression was also shown in a human neuronal
cell line [38] and during human CNS development [39].

CCL3, CCL4, and CCLS5

At present, there is only one study describing neuronal
CCL3 expression in situ, depicting protein expression in
adult human brain [40]. Further, expression of CCL3,
CCL4, and CCL5 was described in cultured forebrain
neurons derived from human first trimester embryos. These
chemokines showed increased expression after exposure to
immunological stimuli [41]. CCL3 and CCL4 expression
were induced in mouse cerebellar granule neurons after
infection with Toxoplasma gondii [42], as was CCLS5
expression after viral infections [43, 44].

CCL21

In a middle cerebral artery occlusion (MCAQO) mouse
model of brain ischemia, cortical neurons rapidly expressed
CCL21 in the penumbra of the ischemic core. Because
control brain tissue did not express CCL21, CCL21 was
assumed to be specifically expressed in endangered neurons
[45]. In accordance with the in vivo findings, CCL21
expression was induced in cortical neurons in vitro within
2 h after excitotoxicity [45, 46]. The CCL21 expression in
endangered neurons was rather surprising, as CCL21 is
well known for its constitutive expression in secondary
lymphoid organs, controlling the homing of mature den-
dritic cells and naive T cells [47] and is, therefore, generally
considered a homeostatic chemokine linked to the devel-
opment and maintenance of secondary lymphoid organs
[48]. The rapid CCL21 expression in endangered neurons
after injury indicates a brain specific role of CCL21. This
assumption is corroborated by findings in transgenic mice
in which CCL21 was expressed ectopically in various
tissues. CCL21 expression in the brain induced a massive
brain inflammation that killed the animals within 3 days
after the expression onset [49], whereas CCL21 expression
in the skin induced the formation of secondary lymphoid
structures [50].

Other CC Chemokines

A single study has demonstrated a constitutive and
inducible expression of CCL20 in rat cerebellar granule
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Table 1 Neuronal chemokine expression

Chemokine Species Condition RNA Protein References
CCL2 h Brain + [39]
Spinal cord, ALS 1 [35]
Monoculture 1 + [41]
Cell line + [38]
r Brain + [37]
Brain, cranial nerve injury 1 T [30]
Brain, ischemia il il [28]
Retina, ischemia 1 [168]
Spinal cord, peripheral nerve injury i i [31-34]
Monoculture + [164]
m Brain, ischemia 1 [27, 29]
Spinal cord, ALS model 1 [36]
Monoculture, West Nile virus 1 [43]
CCL3 h Brain, AD = [40]
Monoculture 1 + [41]
r Retina, ischemia 1 [168]
Monoculture + [51]
m Monoculture 1 [42]
CCL4 h Monoculture 1 + [41]
r Retina, ischemia 1 [168]
m Monoculture 1 [42]
CCLS h Monoculture 1 + [41]
m Monoculture 1 T [43, 44]
CCL20 r Monoculture +/1 [51]
Trigeminal neuron culture ! [169]
CCL21 m Brain, ischemia 1 [45]
Monoculture 1 1 [45, 46]
Neonatal hippocampal slice culture 1 [46]
CXCL1/2/3 r Monoculture + + [51]
CXCLS8 h Monoculture + [41]
CXCL9 m Monoculture + [43]
CXCL10 h Brain, HIV 1 [54]
Mixed brain culture + [54]
mac Brain, HIV 1 [54]
r Brain, ischemia 1 [52]
m Brain, entorhinal cortex lesion i [53]
Brain, West Nile virus 1 1 [43]
Monoculture + + [43]
CXCLI11 m Monoculture + [43]
CXCL12 h Brain, HIV 1 [59]
Monoculture + [59]
r Brain + + [55, 60-62]
Monoculture + + [58, 60, 87]
m Brain, ischemia ~/| [56]
Brain, LPS injection = [56]
Mixed brain culture + [59]
CX3CL1 h Brain, MS 1 [113]
Brain, HIV 1 [170]
Spinal cord + [66]
Monoculture = ~/1/] [74, 75, 138]
Cell line = T7® [66, 75, 138]
mac Brain + [66]
r Brain and spinal cord, EAE = [63, 65, 66, 68]
Spinal cord, peripheral nerve injury = = [171, 172]
Brain, LPS injection = [67]
Brain, KA injection =~ [67]
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Table 1 (continued)

Chemokine Species Condition RNA Protein References
Monoculture = 7E [64, 65, 73, 76, 78, 118]
m Brain + + [69]
Brain, prion disease = [67]
Brain, LPS injection = [67]
Brain, KA injection = [67]
Brain, EAE = [66]
Monoculture = = [77]
Cell line = = [77]

h Human, mac macaque, r rat, m mouse, ALS amyotrophic lateral sclerosis, AD Alzheimer’s disease, H/J human immunodeficiency virus, MS
multiple sclerosis, EAE experimental autoimmune encephalomyelitis, LPS lipopolysaccharide, K4 kanaic acid; + present, ~ present without
change in mentioned conditions, 1 present with increase in mentioned conditions, | present with decrease in mentioned conditions,

#Increase in soluble CX3CL1 and decrease in membrane-bound CX3CL1

neurons in vitro, which was suggested to play a role in
neuronal apoptosis [51]. Expression of other CC chemo-
kines has not yet been observed in neurons.

CXC Chemokines
CXCLI0

CXCLI10 expression was first described in cortical neurons
in rat in response to MCAO-induced brain ischemia [52].
Remarkably, neuronal CXCL10 expression was transient
and appeared rapidly after stroke (within 3—12 h), whereas
CXCL10 expression in astrocytes was detectable later and
persisted up to 15 days after MCAO [52]. Correspondingly,
neurons also showed a rapid CXCL10 expression after
entorhinal cortex lesion [53]. Further, neuronal CXCL10
expression and release was induced after viral infection in
vitro and in vivo [43, 54].

CXCLI2

The CXCL12 gene contains three splice variants, termed
stromal cell-derived factor-1 (SDF-1) «, 3, and y. SDF-1y
was cloned from rat brain and showed constitutive neuronal
mRNA expression with almost no change in level after
peripheral nerve injury [55]. In addition, SDF-1 showed
neuronal mRNA expression with almost no change in level
after brain ischemia or intracerebral LPS injection [56]. In
contrast, SDF-1 3 mRNA expression was not detected in
neurons [56]. As little is known about the role of SDF
splice variants, and most studies did not specify the splice
variants, CXCL12 is used for all SDF splice variants
henceforth.

Like CCL2, but in contrast to most of the other neuronal
chemokines, CXCL12 is expressed constitutively in specif-
ic neuronal populations. Neuronal CXCLI12 expression in
vitro was observed in cultured cortical, hippocampal, and

cerebellar neurons from human, rat, and mouse [57-60].
Neuronal CXCL12 expression in vivo was studied in detail
in the adult rat brain, showing CXCL12 mRNA and protein
expression in cholinergic, dopaminergic, and vasopressin
containing neurons throughout the brain [61, 62].

Other CXC Chemokines

Studies describing the expression of other CXC chemo-
kines in neurons are limited. Most notably, in vitro neuronal
mRNA expression of CXCL1 [51], CXCLS8 [41], CXCL9,
and CXCLI11 [43] has been illustrated. Expression of other
CXC chemokines has not yet been described in neurons.

CX3CL1

CX3CL1 was the first chemokine shown to be expressed in
neurons [63—-66]. Because microglia were shown to express
the corresponding receptor CX3CRI1, a role of CX3CL1-
CX3CRI signaling in neuron—microglia interaction was
suggested [63—65]. CX3CL1 is constitutively expressed in
human, macaque, rat, and mouse neurons in vitro and in
vivo, with high expression in cerebral cortex, hippocampus,
caudate putamen, thalamus, and olfactory bulb [63, 65, 66,
68, 69]. CX3CL1 appears to be the only chemokine with a
higher expression level in brain than in peripheral organs
[70]. Tt is membrane bound and can be cleaved from the
cell surface by proteases of the A Disintegrin and Metal-
loprotease (ADAM) family [71, 72]. The neuronal
CX3CL1 mRNA expression remained relatively stable in
response to both neuron-damaging stimuli in vitro [73-77]
and during neuroinflammation in vivo [66], whereas in
vitro neurons released CX3CLI1 protein after glutamate-
induced damage [73, 74, 78]. Furthermore, CX3CL1
concentrations higher than 300 pg/mg were described in
aqueous extracts of the brain [79], indicating that CX3CL1
can be cleaved from the neuronal membrane and released
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into the extracellular environment. It is yet unknown which
ADAM protease cleaves CX3CL1 in neurons and whether
CX3CL1 protein expression changes during in vivo neuro-
inflammation or degeneration.

Potential Roles of Neuronal Chemokines
in Neuron—Astrocyte, Neuron—Microglia,
and Neuron—Neuron Interaction

Astrocytes, microglia, and neurons have been shown to
express chemokine receptors in vitro under physiological
and pathological conditions and in vivo. These would include
CCR2 for CCL2, CXCR3 for CCL21 and CXCL10, CXCR4
for CXCL12, and CX3CR1 for CX3CLI. Studies describing
the expression of these chemokine receptors on astrocytes,
microglia, and neurons (see Table 2) and studies indicating a
role for these chemokine—chemokine receptor pairs in CNS
cell interaction are discussed in the following sections on
neuron—astrocyte, neuron—microglia, and neuron—neuron
interaction.

Neuron—Astrocyte Interaction

Astrocytes comprise the largest group of CNS-residing cells
and are not only essential in development, homeostasis,
maintenance of the blood-brain barrier, and regulation of
central blood flow but are also involved in the immune
defense of the CNS. Furthermore, astrocytes are considered
to be involved in neuronal information processing [80].

It is becoming clear that astrocytes play an active role in
the intricate chemokine network of the CNS. Not only has
it been shown that astrocytes express a wide variety of
constitutive and inducible chemokines in vivo and in vitro,
there is also extensive evidence that they express a
repertoire of chemokine receptors under physiological and
pathological conditions (see reviews [81, 82]).

Neuronal Chemokines Induce Calcium Transients
in Astrocytes

The activation of intracellular calcium transients is a
hallmark in chemokine receptor signaling, a mechanism
that also holds true for astrocytes [57, 76, 83-86].
Activation of GPCRs, including chemokine receptors,
results in a rapid release of calcium from the endoplasmatic
reticulum (ER) through the activation of inositol-1,4,5-
triphosphate receptors on the ER membrane. One of the
first chemokines described to induce calcium transients in
astrocytes is CXCL12 [57, 85-87]. CXCL12 concentrations
ranging from 0.1 to 100 ng/ml [85, 86] or 10-100 nM [57,
87] induced calcium fluxes in in vitro human, rat, and
mouse astrocytes. In all cases, CXCL12-induced calcium

mobilization was PTX-sensitive, indicating that this process
is Goy-protein mediated. Similar results were found for
CXCL10 [84], CCL2 [83, 88], and CX3CLI [76].

In astrocytes, intracellular calcium transients not only
function as a second messenger in multiple intracellular
signaling pathways but are also implicated in astrocyte—
astrocyte signal propagation, astrocyte—neuron synaptic
transmission, and neurotransmitter release (see reviews
[80, 89]). Recent findings corroborate that chemokines
could also be involved in astrocyte-mediated neurotrans-
mitter release. CXCL12 induced calcium-dependent release
of glutamate from astrocytes in human and rat astrocyte
cultures and rat hippocampal slice cultures [90]. Moreover,
reports that investigated the effects of CXCL12 on the
electrophysiological properties of neurons in brain slice
cultures suggest that CXCL12-induced effects on neurons
at least partly depend on astrocytic glutamate release [91—
93]. Whether this astrocytic glutamate release was induced
by CXCR4 activation or via other pathways was not
investigated.

Neuronal Chemokines Induce Astrocyte Proliferation
and Migration in Vitro: Implications for Astrogliosis?

Astrocytes respond to CNS injury or neuroinflammation by
enhanced GFAP expression, proliferation, and possibly,
migration, a process known as astrogliosis (see review
[94]). In these reactive astrocytes, enhanced expression of
chemokine receptors has been described under various
pathological conditions, such as multiple sclerosis (MS),
human immunodeficiency virus (HIV) infection, ischemia,
and neoplasm [95-97]. Under these conditions, CXCR3
was mainly found in reactive astrocytes in the proximity of
the lesion sites, suggesting that induction of CXCR3
expression in astrocytes is limited to damaged areas of the
brain [95-97]. A comparable induction of CCR2 expression
was found in reactive astrocytes in MS patients [97].

Interestingly, both CCL2 and CXCL10 are implicated in
astrocyte proliferation in vitro [98, 99]. In addition,
CXCLI12 has been shown to induce astrocyte proliferation
in vitro, a process that is dependent on activation of
extracellular signal-regulated kinases ERK1 and ERK2 [87,
100-102]. Both CXCL12-induced astrocyte proliferation
and ERK1/2 activation was inhibited by PTX and wort-
mannin, suggesting that they are dependent on upstream
activation of Gg; proteins and PI3-K [87].

As chemokines are primarily known for their capacity to
induce cell migration, migration assays have been used to
determine chemokine receptor functionality in astrocytes
[103]. Accordingly, astrocyte migration was demonstrated
in vitro in response to CCL2, CXCL10, and CXCL12 [83,
84, 86, 103, 104]. Thus, reactive astrocytes express various
chemokine receptors and activation of these receptors in
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Table 2 Chemokine receptor expression in astrocytes, microglia, and neurons

Chemokine  Receptor  Cell type  Species  Condition RNA  Protein  References
CCL2 CCR2 astrocyte  h Brain, MS, HIV 1 [96, 97, 173]
Monoculture i i [83, 99, 174-176]
mac Monoculture i [175]
r Brain, EAE, LPS injection i [177, 178]
microglia h Brain, MS, HIV i [96, 173, 179]
Monoculture l + [173, 180]
Glia culture + [99]
r Brain, tumor, LPS injection, NMDA 1 [177, 181, 182]
injection
Monoculture il [88]
m Spinal cord, peripheral nerve injury i [183]
neuron h Brain, HIV + [184]
Monoculture + + [38]
Cell line + + [38]
r Brain and spinal cord + + [161, 177, 185]
Monoculture + + [161, 164]
CXCL10/ CXCR3 astrocyte  h Brain, MS, HIV 1 [95, 97, 179, 186]
CCL21 Astrocyte culture 1 1 [84, 98, 175]
Mixed glial culture + [95]
mac Monoculture + [175]
m Monoculture + [84]
microglia h Monoculture + + [7, 84, 98, 114]
Cell line i i [98]
r Cell line 11 [187]
m Brain, various infectious agents, axotomy =~/ =/t [125]
Monoculture + l [45, 84]
Cell line I [188]
neuron h Brain, AD + =~ [95, 179, 189]
Monoculture + + [38]
Cell line + + [38]
mac Brain, HIV + [54]
r Monoculture + [163]
CXCL12 CXCR4 astrocyte  h Brain, HIV T [173, 190, 191]
Monoculture i i [85, 90, 98, 99, 175,
192-196]
mac Monoculture i i [85, 175]
r Brain + [197]
Monoculture I I [57, 58, 102, 198]
m Monoculture 11 11 [86, 101, 104, 199, 200]
microglia h Brain and spinal cord, HIV + + [173, 179, 190, 191, 201,
202]
Monoculture + l [98, 99, 191, 202-205]
Cell line = [98]
bab Monoculture i [206]
r Brain + [197]
Monoculture =/t + [58, 207, 198]
m Cell line + [86]
neuron h Brain, HIV + =/t [179, 184, 191, 197, 202, 204,
208]
Monoculture + + [38, 85]
Mixed brain culture + + [202]
Cell line + + [38, 191, 209]
mac Brain + [210, 211]
Monoculture + [85]
r Brain + + [57]
Monoculture + + [64, 158]
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Table 2 (continued)

Chemokine Receptor  Cell type  Species  Condition RNA  Protein  References
CX3CL1 CX3CRI1  astrocyte h Brain, MS x [113]
Monoculture i + [113, 175]
mac Monoculture i [175]
r Monoculture ~/1 1 [76, 198, 212]
m Monoculture l l [77, 81, 200]
microglia h Brain, MS = [113]
Brain, HIV i [170]
Monoculture + + [75, 113]
r Brain, ischemia, prion disease, cranial i i [63, 67, 68, 213]
nerve injury, EAE
Brain, LPS injection, KA injection = [67]
Spinal cord, peripheral nerve injury 1 1 [171, 172]
Monoculture 11 1 [63, 65, 198, 212, 214]
Cell line l [187]
Brain, LPS injection, KA injection = [67]
m Monoculture = = [77]
neuron h Monoculture + + [75]
Cell line ~ 1 [75]
r Brain, LPS injection, KA injection = [67]
Monoculture + + [64, 139]
m Brain, prion disease l [67]
Brain, LPS injection, KA injection = [67]

h human, mac macaque, bab baboon, r rat, m mouse, MS multiple sclerosis, H/} human immunodeficiency virus, EAE experimental autoimmune
encephalomyelitis, LPS lipopolysaccharide, NMDA N-methyl-D-aspartatic acid, 4D Alzheimer’s disease, K4 kainic acid; + present, = present
without change in mentioned conditions, 1 present with increase in mentioned conditions, | present with decrease in mentioned conditions

vitro induces proliferation and migration, cellular reactions
that are generally involved in astrogliosis. Therefore, it is
tempting to speculate that chemokines are involved in the
regulation of astrogliosis upon CNS injury or neuro-
inflammation. Whether neuronal chemokines are indeed
responsible for either proliferation or migration of astro-
cytes in vivo is yet unknown.

Neuron—Microglia Interaction

Microglia in the healthy CNS are ramified cells that
continually survey their environment by moving their
processes. Upon injury, they quickly protrude their pro-
cesses toward the damaged site and subsequently transform
into amoeboid cells, reflecting a fast activation [105, 106].
Activated microglia form a first line of defense in CNS
injury through their capacity to migrate, proliferate, secrete
inflammatory and neurotrophic factors, phagocytose-
damaged cells and debris, and present antigens [82, 107].
Although activated microglia were initially considered to be
detrimental in CNS injury, recent findings indicate a
prominent neuroprotective activity as well, suggesting a
balance between neurotoxic and neuroprotective microglia
activity (see for recent review, [108]). Therefore, it is of
particular interest to gain insight into the process of
microglia activation. Until now, it is largely unknown

which environmental signals mediate microglia surveillance
and activation. Almost 10 years ago, chemokines were
indicated as promising candidates for neuron—microglia
signaling [63—65]. Because then, various studies have
described constitutive chemokine expression in neurons
and rapid changes in expression levels upon injury. Parallel
to this, corresponding chemokine receptors were described
in resting and/or activated microglia. In addition, there is
increasing evidence that neurons play an important role in
microglia activity, which is at least partly mediated by
chemokines.

Microglia Activity Upon Neuronal Damage

Upon CNS injury, activated microglia retract their protru-
sions, transforming into amoeboid cells with migratory and/
or proliferative capacities [109-111]. It is known that
damaged neurons are accompanied by prominent activated
microglia within hours after injury, suggesting that neurons
emit signals that attract microglia [111]. Several findings
support the notion that these signals are primarily chemo-
kines. Microglia express various chemokine receptors, and
cell migration is induced upon exposure to chemokines in
vitro [7, 45, 84, 112—-115]. Moreover, damaged neurons in
culture express and release chemokines like CX3CL1 [73,
74, 78], CCL21 [45, 46], and CXCLI10 [43, 54], all of
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which are able to induce microglia migration [7, 45, 46, 73,
76, 84, 113, 115]. In accordance with this, inhibition of
chemokine function diminished microglia migration in
response to supernatants from damaged neurons [73]. Thus,
in vitro results suggest a role of neuronal chemokines in
neuron—microglia activation.

The issue of chemokine-mediated neuron—microglia acti-
vation has been further investigated using genetically modi-
fied mice. Mice deficient for either CX3CRI [116] and
CX3CLI [117] have been studied in various CNS injury and
neuroinflammation models. Although CX3CRI1 deficiency
did not influence microglia activity in response to facial
nerve lesion [116], CX3CR1 deficiency was uniformly
associated with higher levels of microglia activity in LPS-
induced neuroinflammation, 1-Methyl-4-phenyl-1,2,3,
6-tetrahydropyridin-induced neurotoxicity, and in the
SOD19%"*A-model of motoneuronal death in the spinal cord
[79]. Interestingly, enhanced microglia activity in the last
three models was accompanied by increased neuronal death,
indicating that, in wild-type mice, neurotoxic microglia
activity is inhibited by CX3CL1-CX3CRI signaling [79].
These findings are corroborated by several in vitro findings.
Exposure of a neuron—microglia coculture to CX3CLI1
reduced inflammation-related neuronal death, accompanied
by suppressed nitric oxide and proinflammatory cytokine
production [118]. In conjunction with these findings,
inhibition of endogenous CX3CLI1 increased neuronal cell
death in cocultures [77]. Moreover, in vitro exposure to
CX3CLI1 supported microglia survival under basal culture
conditions and reduced Fas-ligand induced apoptosis con-
siderably [119]. Thus, exposure of microglia to CX3CL1
reduced microglia toxicity and protected microglia from
apoptosis under inflammatory conditions. In contrast to these
results, CX3CLI1 deficiency reduced the infarct volume and
mortality after transient focal cerebral ischemia [117].
However, microglia activity in CX3CL1-deficient and wild-
type mice was not compared in this study, making it difficult
to determine whether disturbed neuron—microglia signaling
was responsible for the differences [117].

Increased microglia toxicity by CXCR3 and its ligands
CXCL10 and/or CCL21 is suggested by findings derived
from the entorhinal cortex lesion (ECL) model, in which
CXCR3 deficiency was associated with reduced microglia
activity and reduced loss of secondary neurons in the
hippocampal formation [53]. An interesting aspect of chemo-
kines in neuron—microglia signaling is acknowledged in the
ECL model. In this paper, microglia activity is specifically
found within the midmolecular layer of the dentate gyrus,
which is the projection site of the transected neurons (see for
review, [120]). The microglia activity at a site distant from
the primary lesion indicates transport of the chemokine
signal. Recent data reinforced this notion, showing that
CCL2 that was induced in dorsal root ganglion (DRG)

neurons after peripheral nerve injury was transported to
afferent terminals in the spinal cord [34]. Moreover, in vitro
neuronal CCL21 was sorted into vesicles, transported into
neuronal processes, and even reached presynaptic terminals
[46]. The finding of CCL21 protein in neuronal vesicles is a
strong indication that neuronal chemokines may be the
signals responsible for microglia activity at sites distant from
the primary lesion, a phenomenon that has been observed
also in humans [121, 122].

A role of CCL2 in microglia activity after neuronal death is
suggested by a delayed microglia activity in the thalamus of
CCL2-deficient mice in response to cortical injury [123]. The
delayed microglia activity was accompanied by a transient
improvement of neuron survival in the thalamus, which may
indicate that CCL2 is involved in neurotoxic microglia
activity [123]. However, it is not yet clear if this effect is due
to disturbed neuron—microglia interaction. Damaged neurons
are capable to express CCL2, as was found after axotomy in
sympathetic ganglia [31] and facial nerve lesion [30], but
cortical injury predominantly induced CCL2 mRNA expres-
sion in astrocytes [124]. Whether interference with CCL2
signaling would affect microglia activity in the first two
models has not yet been investigated.

It is clear that the assumption that neuronal chemokines
are involved in neuron—microglia signaling is no longer
based on the finding that damaged neurons rapidly alter
chemokine expression patterns and that microglia express
the corresponding receptors [63—65]. Studies now show
that microglia activation is reduced in mice with genetically
disturbed chemokine function, indicating an important role
of chemokines in microglia activation. Recent data even
suggest that neurosupportive and neurotoxic microglia
activity are associated with chemokine receptor expression
[125]. The ultimate effects of neuronal chemokines are
likely dependent on injury type, brain region, and disrup-
tion of the blood-brain barrier [53, 79, 116]. Whereas the
exact role of neuronal chemokines in neuron—microglia
signaling remains obscure, their importance in regulating
damage responses is becoming apparent.

Neuron—Neuron Interaction

Various reports indicate that chemokines influence neuronal
development, differentiation [126, 127], survival [128—
130], electrophysiological properties [93, 131, 132], and
synaptic transmission [26, 92, 133]. Because neurons can
express numerous chemokines, autocrine and paracrine
contributions of neuronal chemokines are likely.

Neuroprotection

Neuronal cell death, the ultimate consequence of all neuro-
inflammatory conditions, has been studied extensively in vitro.
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However, there are relatively few in vitro models that can be
extrapolated to pathological conditions leading to neuronal
death in vivo. One of the most prominent models is glutamate
or NMDA-induced neurotoxicity, a model for excitotoxicity,
which is most likely involved in various neurodegenerative
diseases. [3-amyloid-induced neuronal death serves as a model
that may explain the loss of neurons in Alzheimer’s disease,
whereas exposure of neuronal cultures to HIV proteins gp120
or HIV,,; are aimed to elucidate neuronal death in HIV-
dependent neurodegeneration [134—137]. Several reports
indicate that neuronal chemokines may protect neurons from
these toxic conditions. In vitro, CX3CL1 is known to protect
neurons from glutamate-induced toxicity [78, 138], gp120-
induced neuronal death [64, 139], and death induced by
deprivation of trophic support [140].

Similar to CX3CL1, CCL2 exposure is shown to protect
neurons from glutamate- and HIV-tat-induced neurotoxicity
[141, 142]. However, CCL2 exposure was not protective in
[3-amyloid-dependent neuronal death [141]. As exposure of
neuronal cells to chemokines is known to activate the
putatively neuroprotective MEK/ERK and PI3-K/Akt sig-
naling pathways [78, 138—140], it is reasonable to argue
that chemokine-dependent protection is mediated by these
pathways. Indeed, inhibition of both pathways completely
abolished the neuroprotective effects of CX3CLI1 in gp120-
and glutamate-induced neurotoxicity in hippocampal neu-
rons [64, 78]. Interestingly, in case of glutamate-dependent
neurotoxicity, the involvement of MEK/ERK and PI3-K/
Akt signaling pathways was only evident when CX3CL1
was applied together with glutamate [78]. CX3CL1
exposure was shown to be protective even when the
chemokine was applied up to 8 h after the glutamate
stimulus. However, an inhibition of MEK/ERK and PI3-K/
Akt pathways did not affect the protective activity of
delayed CX3CLI1 exposure, indicating that CX3CL1 may
activate additional pathways in neurons that lead to neuro-
protection [78]. The effect of CXCL12 on neuronal death is
contradictory. Although several reports indicate that
CXCL12 exposure may protect neurons from gpl20-
induced neuronal death, most papers describe a toxic effect
of CXCL12 in neuronal cultures (see below) [64, 143].

Neurotoxicity

Approximately 10% of HIV-infected patients develop HIV-
1 associated dementia (HAD). It has been shown that the
viral protein gp120 itself is neurotoxic [144], indicating that
the neuronal loss in HAD is not only due to inflammation
occurring after the virus enters the brain but also because of
direct toxic effects of viral proteins (see for recent review,
[145]). It was shown in 1998 that the neurotoxic effect of
gpl120 is mediated via the chemokine receptor CXCR4
[146], findings that have been corroborated in subsequent

years by various groups [64, 102, 147, 148]. The viral
protein gpl20 binds and activates CXCR4, the main
coreceptor utilized by HIV-1 to infect T cells. CXCR4 has
subsequently become the best investigated chemokine
receptor with respect to neurotoxicity, and its involvement
in neurotoxic signaling has been demonstrated by use of the
specific CXCR4 antagonist AMD31000 [102, 147]. The
HIV-derived protein gpl120 shows agonist activity on
CXCR4, and therefore, it is not surprising that its ligand
CXCLI2 has also been described to be neurotoxic [102,
143, 146, 148, 149]. Currently, there is little information on
intracellular signaling pathways that are activated by
CXCR4 and subsequently lead to neuronal death. One
recent report indicates the involvement of Src activity in
CXCL12-induced apoptosis in a neuronal cell line, whereas
gp120-induced apoptosis in these cells was independent of
Src activity [149]. Interestingly, CXCL12 and gp120 had
different effects on ERK activation in neurons and
astrocytes [102], indicating that CXCR4 signaling exerts
both ligand and cell-type specific effects. The effect of
CXCL12 is further complicated by matrix metalloprotein-
ase-2, which was shown to remove the first four amino
acids of CXCL12, resulting in a truncated form of CXCL12
[150]. This truncated form was found to be highly
neurotoxic compared to the full-length CXCL12, which
remarkably was not mediated by CXCR4 but by a yet
unknown PTX-sensitive receptor [150]. Because MMP-2
has also been described in HIV-infected patients, it is
reasonable to assume that truncated CXCL12 may be a
neurotoxic player in HAD [151].

CXCL12 is not the only neuronal chemokine that exerts
neurotoxic effects. Neuronal cell lines and primary human
neurons respond to high concentrations of CXCL10 with
intracellular calcium transients, caspase activity, and apo-
ptosis [54, 152, 153]. The direct involvement of CXCR3
was demonstrated by the use of an antibody that prevents
the activation of CXCR3 and subsequently inhibited
CXCL10-dependent neurotoxicity [153].

Chemokinergic Effects on Synaptic Transmission

Recent data show that CXCR4 activation by either gp120
or CXCL12 significantly enhanced giant depolarizing
potentials (GDP) in rat neonatal hippocampus [154]. These
GDPs only occur in the developing hippocampus and are
involved in growth and synapse formation. These data may
explain why HIV infections have a greater impact in the
developing brain than in adults [152] and show that
neuronal chemokines may change the electrophysiological
properties of neurons, thereby corroborating earlier findings
[131, 132, 155, 156].

The electrophysiological properties of neuronal chemo-
kine receptors have predominantly been studied in cultured
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primary neurons or neuronal cell lines and brain slice
cultures [157]. Remarkably, in cultures of DRG, cerebellar
granule or Purkinje neurons, and hippocampal pyramidal
cells, chemokines induced changes in the electrophysiolog-
ical properties of only 10-20% of the neurons [64, 140,
158, 159]. In addition, several effects of chemokines in
neurons were not sensitive to PTX, in contrast to
hematopoietic cells, suggesting that chemokine receptors
in neurons, although generally accepted, are not solely
coupled to Go; proteins [128, 140, 149]. Whether these
chemokinergic PTX-insensitive effects are mediated by
neuronal G,-subunits is yet unclear [160]. Cultured cere-
bellar and DRG neurons respond to various chemokines
with intracellular calcium transients [140]. In DRG neu-
rons, exposure to CX3CL1 and CXCL12 also increased
their excitability [158]. Although chemokinergic effects of
CX3CL1, CXCL12, CCL2, and CXCL10 in neurons have
been reported to modulate the frequency of both spontane-
ous and activity-dependent neuronal firing, a direct effect
on the induction of action potentials has not yet been
described [159, 161-164]. Similar to the effects on isolated
neurons, CX3CL1, CXCL12, and CXCLI10 also affected
neuronal signaling in brain slice cultures [26, 78, 91-93,
133, 134, 165, 166]. However, the presence of glia cells
(astrocytes, microglia, and oligodendrocytes) in these slice
cultures makes it difficult to determine whether the
electrophysiological effects of chemokines are mediated
by chemokine receptors on neurons and/or on glia cells, as
glia cells may also induce electrophysiological changes in
neurons [26, 133, 156]. Whether the effects of CXCL12 in
brain slice cultures are mediated via chemokine receptors
on neurons and/or on glia cells may depend on the
concentration, as concentrations up to 1 nM caused a direct
decrease in peak and discharge frequency of evoked action
potentials in neurons and concentrations higher than 10 nM
activated an indirect GABA-mediated hyperpolarization of
neurons [92].

Future Directions

As discussed here, neuronal chemokines appear to be
versatile messengers in CNS cell interaction. However,
several important issues need to be addressed in future
studies. To begin with, neuronal CX3CR1 expression in
vivo remains controversial. Immunohistochemical analysis
revealed CX3CRI1 positive neurons in mouse brain sections
with little changes under pathological conditions [67],
whereas neuronal CX3CRI1 expression was never described
in studies using genetically modified mice in which
CX3CRI1-expressing cells are also positive for EGFP
[116]. Different microscopic techniques and models of
neurodegeneration have been explored in these mice,

demonstrating only CX3CR1 expression in resting and
activated microglia [79, 105, 106, 116]. An explanation
may be that neuronal CX3CR1 expression is at such a low
level that detection is difficult to achieve with microscopic
techniques. This may also be the case for CXCR3
expression in microglia. Although CXCR3 expression has
yet not been described in microglia in vivo, functional
evidence derived from CXCR3-deficient mice strongly
indicates that microglia do express CXCR3 in vivo [53,
115]. Therefore, it seems appropriate that future experi-
ments concerning the expression of chemokine receptors in
CNS cells in vivo also include functional analysis.

Another issue that needs to be addressed in more detail
regards cellular localization. Neurons are highly polarized
cells, as their function is largely dependent on their
morphology and contacts with other cells (e.g. synapses
with other neurons). Although neuronal signaling mole-
cules, such as neurotransmitters, neuropeptides, and neuro-
trophins, are generally found at specific sites, most reports
describing neuronal chemokine expression did not address
this issue. Interestingly, a few recent publications do
suggest a localized expression of chemokines comparable
to other neuronal signaling molecules. Our group demon-
strated that neuronal CCL21 is transported in vesicles,
reaching presynaptic terminals in cortical neurons in vitro
[46]. In subsequent studies, these vesicles appeared to be of
the large-dense core type, in which other neuronal peptides
are also found (e.g. neurotrophins; Stanulovic et al.,
manuscript in preparation). Moreover, it has been described
for several neuronal populations in vivo that CCL2 and
CXCL12 colocalize with other neurotransmitters and
neuropeptides in synaptic regions [37, 62]. Like neuronal
chemokine expression, a site-specific expression of chemo-
kine receptors may exist, as is suggested by CXCR4
redistribution in the axonal and dendritic compartment of
hippocampal neurons after prolonged CXCLI12 exposure
[167]. Because a localized expression of chemokines and
their receptors may have a consequence for their role in cell
interaction, future studies on neuronal chemokine expres-
sion may address this issue.

At last, as all reports indicating that chemokine exposure
alters the excitability of neurons used exogenous chemo-
kines, it is yet unknown whether chemokines released from
neurons have similar effects.

Conclusion

Knowledge on the spatial and temporal expression of
neuronal chemokines and their regulation under physiolog-
ical and pathological conditions is increasing rapidly. As
CNS cells can express the corresponding chemokine
receptors, contribution of these neuronal chemokines to
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CNS cell interaction is conceivable. This assumption is
corroborated by various in vitro and in vivo studies. For
example, the following effects of neuronal chemokines
were observed in vitro: in astrocytes proliferation and
migration, in microglia migration and neurotoxic and
neuroprotective activity and in neurons electrophysiological
changes, neurotoxicity, and neuroprotection. Further, the
synaptic transmission between neurons seems to be
influenced by the action of neuronal chemokines on
neurons and/or glia cells. In vivo studies support the
important role of chemokines in migration and neurotoxic
and neuroprotective activity of microglia upon CNS injury
and neuroinflammation. Further exploration of the roles of
neuronal chemokines in CNS cell interaction is needful, as
insight into the role of neuronal chemokines in CNS injury
and neuroinflammation may contribute to the development
of therapeutic strategies.
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