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Abstract
Understanding the molecular pathways by which oncogenes drive cancerous cell growth,

and how dependence on such pathways varies between tumors could be highly valuable

for the design of anti-cancer treatment strategies. In this work we study how dependence

upon the canonical PI3K and MAPK cascades varies across HER2+ cancers, and define

biomarkers predictive of pathway dependencies. A panel of 18 HER2+ (ERBB2-amplified)

cell lines representing a variety of indications was used to characterize the functional and

molecular diversity within this oncogene-defined cancer. PI3K and MAPK-pathway depen-

dencies were quantified by measuring in vitro cell growth responses to combinations of

AKT (MK2206) and MEK (GSK1120212; trametinib) inhibitors, in the presence and absence

of the ERBB3 ligand heregulin (NRG1). A combination of three protein measurements com-

prising the receptors EGFR, ERBB3 (HER3), and the cyclin-dependent kinase inhibitor p27

(CDKN1B) was found to accurately predict dependence on PI3K/AKT vs. MAPK/ERK sig-

naling axes. Notably, this multivariate classifier outperformed the more intuitive and clini-

cally employed metrics, such as expression of phospho-AKT and phospho-ERK, and PI3K

pathway mutations (PIK3CA, PTEN, and PIK3R1). In both cell lines and primary patient

samples, we observed consistent expression patterns of these biomarkers varies by cancer

indication, such that ERBB3 and CDKN1B expression are relatively high in breast tumors

while EGFR expression is relatively high in other indications. The predictability of the three

protein biomarkers for differentiating PI3K/AKT vs. MAPK dependence in HER2+ cancers

was confirmed using external datasets (Project Achilles and GDSC), again out-performing

clinically used genetic markers. Measurement of this minimal set of three protein biomark-

ers could thus inform treatment, and predict mechanisms of drug resistance in HER2+ can-

cers. More generally, our results show a single oncogenic transformation can have differing

effects on cell signaling and growth, contingent upon the molecular and cellular context.
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Author Summary

Biomarkers capable of accurately predicting patient responses to alternate therapies are
critical to realizing the vision of precision medicine. Identifying such biomarkers is, how-
ever, challenging due to the inherent complexity of biological networks. Here we sought to
identify molecular features that predict how a genetically defined subset of cancers (HER2
+) differentially depend on two oncogenic signaling pathways, the PI3K/AKT and MAPK/
ERK cascades. We find that combined measurement of three non-intuitive proteins
(EGFR, ERBB3, and CDKN1B) accurately predicts cellular dependence on these signaling
pathways, and responsiveness to drugs targeting their constituents. Notably, this three-
biomarker model outperformed both biological intuition (phosho-AKT and phospho-
ERK) and current clinical practice (PIK3CA mutations). More broadly, this exemplifies
how the functional consequences of a single oncogenic driver (HER2) can depend upon
molecular and cellular context. Expression of these markers also varies by indication, such
that breast cancers are biased toward PI3K-dependnece, while non-breast indications
(lung, ovarian, and gastric) are particularly MAPK-dependent, and thus may respond dif-
ferently to therapeutic strategies developed for breast cancer. Together, we believe that our
results will aid the design of novel, stratified treatment strategies for HER2+ disease.

Introduction
The elevated rate of proliferation and apoptotic-resistance characteristic of cancer cells
depends on the activation of oncogenic signaling pathways. Such oncogenic pathway depen-
dence creates molecular vulnerabilities, which can be exploited by targeted therapies. The effec-
tiveness of such drugs however requires prospectively identifying which specific pathway(s)
among many possibilities a given tumor is dependent on. This is a non-trivial task given the
molecular and genetic heterogeneity of the disease, and the complexity of cell signaling net-
works. As a result, the majority of patients treated with targeted anti-cancer drugs fail to
respond, and those that do often develop resistance over time [1].

The receptor tyrosine kinase HER2 is prototypic of oncogene addiction and a target for per-
sonalized anti-cancer therapy [2]. Overexpression of the receptor via amplification of the gene
ERBB2 results in ligand-independent homo-dimerization and constitutive signaling [3] pri-
marily through the phosphoinositide 3-kinase (PI3K) cascade [4,5]. The monoclonal antibody
trastuzumab (Herceptin; Genentech) is standard of care therapy for HER2+ disease. While its
use has significantly reduced mortality from HER2+ breast cancer since approval in 1998 [6],
many patients do not respond to treatment, particularly those with metastatic disease [7].
While subsequent HER2-targeted agents lapatinib, pertuzumab, and ado-trastuzumab-emtan-
sine (T-DM1) have improved survival as components of combination regimens, patients still
progress on these therapies [8]. Mutational activation of the PI3K pathway (via PIK3CA point
mutations or PTEN deletions) is known to mediate resistance to HER2-targeted therapies in
both pre-clinical models and through retrospective analysis of clinical data [9]. Consequently,
many small molecules targeting components of the PI3K cascades, including PI3K, AKT, and
mTOR inhibitors, are currently undergoing clinical trials in combination with HER2 therapy
[10].

The mitogen activated protein kinase (MAPK) signaling cascade is another pathway hyper-
activated in a large number of cancers, and many small molecule inhibitors targeting its path-
way components such as BRAF [11] and MEK [12] are approved or in clinical development.
While critical for transducing signals emanating from oncogenes such as KRAS [13] and other
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receptor tyrosine kinases including ErbB-family receptors [14], the pathway is not known to
play a critical role in HER2-amplified cancers. On the other hand, the dual inhibition of PI3K
and MAPK cascades can result in synergistic effects on cell proliferation and apoptosis in mul-
tiple cancer models [15], including HER2+ breast cancer [16,17], suggesting a potential role of
MAPK signaling in the growth and survival of HER2+ cancers.

Many combinations of targeted therapies are currently undergoing clinical evaluation for
treating trastuzumab-refractory HER2+ disease, including small molecule inhibitors of HER2,
histone deacetylases (HDAC), heat shock proteins (HSP), insulin-line growth factor-1 receptor
(IGF-1R), and the HER2 binding partner ERBB3 [8]. However, the molecular and genetic
determinants of sensitivity to these agents, let alone their combinations, remain largely
obscure. Rational strategies to functionally classify tumors by dependence on oncogenic signal-
ing pathways using minimal sets of biomarkers would thus be highly valuable in designing
improved treatment strategies. The goal of this study was to characterize the dependence of
HER2+ cancers on two such pathways, the canonical PI3K and MAPK cascades. Further, we
explored whether such dependence can be predicted from phenotypic, proteomic, or genomic
biomarkers that could ultimately be used to stratify patients and inform treatment strategies.

Results

PI3K vs. MAPK Pathway Bias varies across HER2+ cells and is affected
by HRG stimulation
Amplified HER2 is known to signal predominantly through the PI3K/AKT pathway in breast
cancers [4]. However, it is unclear whether different indications with this genomic alteration
are wired similarly downstream of the receptor. Also, it is well established that the HER3 ligand
heregulin (HRG) stimulates PI3K signaling through induction of HER2/HER3 hetero-dimer-
ization [14]. Yet the degree to which this ligand affects MAPK signaling downstream of the
ErbB receptors in different cellular contexts is unclear. To answer these questions, we examined
whether dependence on the PI3K and MAPK signaling cascades varies across HER2+ cancers,
both in the presence and absence of heregulin. Specifically, a panel of 18 HER2+, but otherwise
diverse cell lines was assembled, including breast, lung, gastric/esophageal, and ovarian cancer
models. To characterize pathway dependence, each cell line was treated with a full 5x6 dose
combination matrix of AKT and MEK inhibitors MK-2206 and GSK-1120212 (trametinib). In
vitro cell proliferation was then quantified via video microscopy over 96 hours. All cell lines
tested displayed some sensitivity to at least one of the inhibitors used.

To characterize the shapes of these response surfaces, quantitative logic-based models of cell
growth kinetics were parameterized for each cell line. These phenomenological models charac-
terize the balance of cell proliferation vs. cell death as functions of drug concentration (and by
extension, pathway dependence) using combinations of quantitative logic gates. While nine
alternate model variations were assessed (S1 Table), a logical OR-Gate regulating cell survival
as a function of active (phosphorylated) AKT and ERK was found to perform optimally across
the panel (S1–S3 Figs, S4 Fig). With only six parameters, it has the additional benefit of easy
interpretation for comparison between cells. The six model parameters characterizing each cell
consist of the maximal proliferation rate and cell death rates (µMAX, δMAX), EC50 and Hill coef-
ficients characterizing inhibitor dose-responses (τ, k), and empirical weights toward PI3K and
MAPK dependence (wAKT, wERK) (see Materials and Methods and S2 Table). To develop a sin-
gle metric of relative PI3K vs. MAPK pathway dependence, we define Pathway Bias as the nor-
malized difference of the weighting parameters, where a value of 1 signifies complete PI3K-
dependence (wAKT >> wERK), 0 dual-dependence (wAKT ~ wERK), and -1 complete MAPK-
dependence (wAKT << wERK).

Three Biomarkers Determine Dependence of HER2+ Cancer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004827 April 1, 2016 3 / 23



As shown in Fig 1A, 5/18 cell lines are classified as PI3K-dependent, 9/18 as MAPK-depen-
dent, and unexpectedly 4/18 switch from PI3K to MAPK-dependence upon HRG stimulation.
Error bars shown represent 95% confidence intervals (2 standard deviations) from 100 parame-
ter estimation runs. The Bias estimates are very well constrained, with a median coefficient of
variation of 3.7% (S5 Fig, part B). Only the SKOV3 cells would be considered undetermined
(95% CI cross the axis), a result of the uniquely profound synergistic response of these cells to
dual pathway inhibition (S2 Fig). Our models implicitly assume the PI3K/AKT and MAPK
pathways function independently (i.e. no “cross-talk”), a shortcoming revealed by this specific
case. Our primary motivation with the models were for data compression; reducing a 30-point
response surface to three intuitive parameters (rates of cell proliferation, cell death, and path-
way bias). While complexities could be added to the current models to better capture this phe-
nomenon with SKOV3 cells, this is beyond our primary motivation. Representative surface
responses for each class are shown below in Fig 1B. Heregulin stimulation reduced the sensitiv-
ity of all cells to AKT inhibition, and correspondingly increased relative sensitivity to MEK
inhibition, though the effect was much more pronounced in the switching class (S5 Fig). Here-
gulin is known to desensitize cells to PI3K inhibitors [18], however the converse increased rela-
tive sensitivity to MEK inhibition was unexpected.

Overlaying information on basal proliferation, mutational status of three PI3K pathway key
genes, and tissue source reveals some interesting patterns. First, consistent with the canonical
classification of the MAPK pathway as mitogenic [14], we observed that proliferation rate
(population doubling; PD) correlates with MAPK-dependence. Mutational status of the PI3K
pathway, while correlated with PI3K-dependence, is not a predictive classifier. That is, while
PI3K-biased cells are enriched for PIK3CA, PIK3R1, and PTENmutations, some MAPK-
dependent cells harbor PIK3CAmutations. These genetic metrics alone (HER2 amplification
and PI3K pathway mutations) are thus insufficient for determining dependence of the tumor
cells on PI3K vs. MAPK signaling. Most interestingly, our results show that, whereas breast
cancers cover all three functional classes, all of the non-breast indications are MAPK-depen-
dent. These are clinically significant findings, suggesting that current use of PI3K/AKT inhibi-
tors in either unselected HER2+ cancer patients, or based on PIK3CA and PTENmutations
may be sub-optimal [8], and some HER2+ patients may benefit from treatment MEK
inhibitors.

Expression patterns of EGFR, ERBB3, and CDKN1B proteins are
predictive of Pathway Bias
To better define the HER2+ patient sub-populations that could respond to PI3K/AKT or MEK
inhibitors, we sought to identify molecular features of the cells that are predictive of depen-
dency on the PI3K/AKT and MAPK signaling. Applying a targeted proteomics approach, the
same panel of cell lines was profiled for ErbB receptor expression, total and phosphorylated
forms of ERK and AKT, and the cell cycle regulator CDKN1B (P27) using quantitative Lumi-
nex assays (S6 Fig; raw data provided in S1 Data). The relationships between protein expres-
sion and cellular functional properties were then analyzed by computing Spearman’s rank
correlation coefficients between protein measurements and the characteristic model parame-
ters across the panel of cell lines (Fig 2A). Some of the protein species were quantified with
more than one detection antibody (annotated a, b, c) as a quality control check. The effect of
heregulin stimulation was accounted for solely by its effect on cell signaling, as each cell line
+/- heregulin was treated as two independent samples. For our analysis of the proteomic and
cellular response data, we treated the same cell line +/- heregulin treatment as independent
samples, thus producing 36 (18x2) samples. Functional relationships are revealed from these
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Fig 1. HER2+ cancer models vary by their dependence on PI3K vs. MAPK pathways and cellular properties. (A) Relative PI3K/AKT vs. MAPK/ERK
dependence (Pathway Bias) across 18 HER2+ cell lines in the presence and absence of exogenous Heregulin (HRG) stimulation. Error bars represent 95%
CI. Tissue, genetic status of PI3K-pathway components, and in vitro proliferation rates (96 hr population doublings; PD) are indicated below for each cell line.
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correlations; highly proliferative cells express increased levels of EGFR and are MAPK-signal-
ing dependent, while slowly proliferating cells have higher levels of ERBB3, CDKN1B (p27),
and are PI3K-dependent. This is consistent with the canonical association of PI3K and MAPK
pathways with regulating cell survival and proliferation, respectively [14], but to our knowledge
the first instance of this functional partition revealed in a purely data-driven manner. To

(B) Representative surface responses to AKT and MEK inhibitor combinations in the absence (top) and presence (below) of exogenous HRG for PI3K-
dependent, MAPK-dependent, and switching class cells.

doi:10.1371/journal.pcbi.1004827.g001

Fig 2. Multivariate protein biomarkers predict pathway dependence. (A) Rank correlation coefficients
between protein expression and four model parameters, hierarchically clustered by Pearson correlations. (B)
Accuracy of Pathway Bias predictions from Logistic regression models built on all input features (FULL), all
protein measurements (PROT), PI3K pathway genetic status (GENE), cellular phenotype (tissue source and
proliferation rate; PHEN), or 3 protein biomarkers EGFR, ERBB3, and CDKN1B (3BM). Results (filled circles)
are overlaid on cumulative distributions from 10,000 randomized models (lines), thus relating predictive
accuracies to statistical significance. (C) Normalized regression coefficients (BETA × median signal) for the
three protein biomarker model. (D)Model-predicted Pathway Bias using the three protein biomarkers,
separated by PI3K, SWITCH, and MAPK sub-groups.

doi:10.1371/journal.pcbi.1004827.g002
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further explore this relationship, we created a tenth model variant (M10) which explicitly
encodes proliferation and cell survival as separately regulated by MAPK and PI3K/AKT signal-
ing, respectively (see Methods). The model parameters were estimated from the surface
response data as with the previous nine, and parameter estimates, simulations, and goodness of
fit metrics (MSE and AIC values) are shown in S1 Data for all. In comparison to the chosen
model (M4), this variant produced a better fit to the data in the majority (21/36) of samples,
with average MSE slightly reduced by 0.5%. This further supports the observed relationship
between cell proliferation and MAPK signaling, and cell survival with PI3K/AKT signaling. It
is notable that neither the phosphorylated or total amounts of AKT or ERK proteins correlated
with pathway dependence, confounding our naïve expectations. This non-intuitive finding is
nevertheless consistent with previous studies examining biomarkers of PI3K/AKT and MEK
inhibitor sensitivity in different cancer models [19–21].

To assess whether these molecular correlations were predictive, logistic regression models
were parameterized to classify cells as PI3K vs. MAPK-dependent using different sets of input
features (protein expression, PI3K pathway mutational status, the phenotypic properties of
proliferation rate and tissue origin [breast vs. non-breast], or all features combined). Models
were evaluated for predictive accuracy via leave-one-out cross validation (LOOCV), and com-
pared against 10,000 random permutations to assess statistical significance (Fig 2B). Consis-
tent with the correlation analyses, the most intuitive biomarkers, pAKT and pERK, were in fact
no better predictors of Pathway Bias than random chance (Accuracy = 50%, P = 0.75). Accu-
racy of the “full”model (containing all molecular, genetic, and phenotypic features), the pro-
tein-based model, and the genetic model were quite poor (67%, 72%, and 72% corresponding
to P-values of 0.45, 0.18, and 0.055). In contrast, model predictions based solely on “pheno-
type” (tissue and proliferation rate) were quite accurate (81%, P = 0.006).

To assess whether a subset of the protein measurements could provide a molecular explana-
tion for this result, a model was built using the 3 proteins best correlated with pathway bias:
EGFR, ERBB3, and CDKN1B. The accuracy of this 3-biomarker model matched the pheno-
type-based predictions (81%, P = 0.0002), and was statistically superior to all alternatives
assessed (S7 Fig). Combining the 3 protein biomarkers and phenotypic features did not
improve accuracy, demonstrating redundancy between these measurements. That is, the
observed association between tissue, proliferation rate, and pathway dependence can be
explained solely by differential expression of these three proteins. Relative importance of the
three protein features can be inferred from the normalized regression coefficients (Fig 2C; raw
data provided in S3 Table and S4 Table), in order of descending importance EGFR, ERBB3,
and CDKN1B.

The ability of heregulin to shift pathway dependence from PI3K to MAPK is an unexpected
observation, given that this growth factor is commonly associated with PI3K signaling. Consis-
tent with this established role, pAKT (pS473 and pT308) was induced in the majority of cells
treated with the ligand (S8 Fig). And while pAKT induction was greater in the PI3K-depden-
dent cells, this nor any other single protein change consistently correlated with pathway depen-
dence switching. Including heregulin treatment as an additional discrete feature (1/0) in
addition to the three protein biomarkers did not improve model accuracy (78%, P = 0.001).
The context-dependent Bias of the four cell lines which switch dependence was poorly pre-
dicted (Fig 2D). In fact, the majority of the error in model (4 of 7 misclassifications) is attribut-
able to its inability to predict the switching behavior as the AU565, HCC419, and ZR751 cell
lines are classified as PI3K-depdendent, and SKBR3 as MAPK-dependent, regardless of here-
gulin. The 3 protein biomarkers are thus able to accurately predict intrinsic dependence on
PI3K/AKT vs. MAPK signaling. However, the shift in dependence induced by heregulin
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stimulation may occur through alternative mechanisms not accounted for in our panel of pro-
tein measurements.

Biomarker expression patterns in clinical tumor samples
We observed that all non-breast cell lines are MAPK-dependent, and this is explained by
expression of the three protein biomarkers (Fig 3A). Thus, if cell lines are representative of the
derivative disease, one would expect to see higher levels of EGFR and lower levels of ERBB3
and CDKN1B in non-breast indications vs. breast tumors. To test this hypothesis, we next que-
ried available clinical gene expression data from The Cancer Genome Atlas (TCGA) for expres-
sion of EGFR, ERBB3, and CDKN1B by indication. RNAseq profiling data (V2 RSEM) was
extracted for all indications available, and classified as HER2+ vs. HER2- sub-classes for analy-
ses based on ERBB2 gene expression (S9 Fig). Consistent with molecular profiles of the cell
lines, in all 10 indications with significant numbers of HER2+ samples, EGFR expression was
relatively higher and/or ERBB3 and CDKN1B lower in in comparison to breast cancers (Fig
3B), and these patterns hold for both the HER2+ and HER2- subsets. The expression patterns

Fig 3. TCGAAnalysis of biomarker expression in HER2+ cancers. (A) Protein expression of CDKN1B,
ERBB3, and EGFR across the 18 cell lines +/- heregulin treatments, scaled by row and organized as in Fig 1,
categorized as breast vs. non-breast. (B) mRNA Expression of the same three biomarkers (EGFR, ERBB3,
andCDKN1B) in 10 HER2+ cancer indications as compared to breast cancer, expressed as signed P-values
(rank-sum test).

doi:10.1371/journal.pcbi.1004827.g003
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observed in our panel of immortalized cell lines are thus consistent with their derivative indica-
tions, suggesting that non-breast HER2+ cancers are likely to be dependent on MAPK rather
than PI3K signaling. We speculate this may arise though differential hetero-dimerization, with
ERBB2-EGFR complexes preferentially activating MAPK signaling, and ERBB2-ERBB3 PI3K/
AKT signaling.

EGFR, ERBB3, and CDKN1B expression predict sensitivity to genetic
knockdown and chemical inhibition of PI3K and MAPK pathways in
independent datasets
To validate the functional utility of the three protein biomarkers (EGFR, ERBB3, and
CDKN1B), we assessed whether they could predict pathway dependence using data from inde-
pendent experiments.

First, we sought to determine whether protein expression of EGFR, ERBB3 and CDKN1B,
could be used to predict differential sensitivity to anti-cancer drugs in HER2+ cancers. An
ELISA-based protein profiling dataset across 90 cancer cell lines [22] was intersected with the
Genomics of Drug Sensitivity in Cancer database (GDSC; 714 cell lines screened for sensitivity
to 138 cancer drugs [23]). While CDKN1B measurements were not available, the relevance of
EGFR, ERBB3, pAKT, and pERK as predictive biomarkers were evaluated by focusing on the
eight PI3K/AKT/MTOR inhibitors and four MEK inhibitors in the GDSC database (S6 Table).
Within the HER2hi population (the 67th percentile, corresponding to 22 intersecting cell
lines), differential sensitivity (IC50s) to each of the agents was evaluated between the bio-
marker-high vs. low group, defined by median cuts and statistical threshold of P< 0.1 (rank-
sum test). Consistent with the logistic model, EGFR was the best single marker, identifying 1 of
8 PI3K/AKT/MTOR and 2 of 4 MEK inhibitors. While neither pAKT nor pERK expression
predicted differential sensitivity to any of the drugs (S6 Table), examining combinations of the
biomarkers, comparing EGFRloERBB3hi (PI3K-bias) vs. EGFRhi (MAPK-bias) yielded 2 of 8
PI3K/AKT/MTOR and 2 of 4 MEK inhibitors as differentially sensitive between the two groups
(Fig 4A).

Based on this EGFRloERBB3hi (PI3K-bias) vs. EGFRhi (MAPK-bias) classification scheme,
thirteen drugs were found to display differential sensitivities between the groups (Fig 4A). This
includes the AKT inhibitor used in our studies (MK2206), and the MEK inhibitors CI1040 and
RDEA119. The PI3K-predicted subset was also increasingly sensitive to AZD8055, an agent
targeting MTOR, a canonical downstream effector of this pathway.

Examining properties of the cell lines in each cohort, it is notable that the PI3K-predicted
subset was relatively enriched in breast cancers (55% vs. 0%), and PI3K pathway mutations
(PIK3CA, PTEN, or PIK3R1; 64% vs. 44%) as compared to the MAPK-predicted subset (Fig
4B), consistent with the characteristics of our internal 18 cell line panel.

It was however unclear as to why only a subset of the AKT and MEK inhibitors came up in
this analysis. To explore the reason for this discrepancy, we examined patterns of sensitivity to
the drugs across all 714 cell lines in the database by computing pair-wise Spearman correlation
coefficients between their IC50 values. As depicted in the correlation matrix in S11 Fig, sensi-
tivity to inhibitors of the same pathway, and even the same target across cell lines are often
poorly correlated. For example, correlation coefficients between the AKT inhibitor we
employed (MK-2206) and the two other AKT inhibitors in the dataset (AKT Inhibitor VIII
and A-443654) are 0.22 and 0.08. Correlations between sensitivity to MK-2206 and the four
PI3K inhibitors vary between 0.23 (AZD6482) and 0.55 (GDC0941), and the four MTOR
inhibitors from 0.16 (Rapamycin) to 0.42 (AZD8055). Correlations between the four MEK
inhibitors are significantly better (0.61 to 0.75) but still not nearly as tight as would be expected
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for inhibitors of the same target. These discrepancies may be attributable to different mecha-
nisms of action, off-target specificities between the alternate inhibitors, or other technical

Fig 4. Differential signaling networks, cellular features, and drug responsiveness between PI3K andMAPK-biomarker stratified HER2+ cancer cell
lines. (A) Differences in drug sensitivity (log10(IC50)) between PI3K vs. MAPK biomarker-enriched cell lines, based on protein measurements of EGFR and
ERBB3, and filtered by Rank-sum P-value < 0.1. Bars are color-coded accordingly by predicted PI3K (blue) vs. MAPK (red) dependence. (B) Frequency of
PI3K mutations (PIK3CA, PIK3R1,and PTEN) and tissue source (Breast vs. Non-breast cancers) in the two groups of cell lines. (C)Genes identified as
differentially sensitive between the biomarker-defined cell line subsets (EGFRHIERBB3LOCDKNIBLO vs. EGFRLOERBB3HICDKNIBHI) were mapped onto
oncogenic signaling networks in NCI-PID and color-coded by differential association.

doi:10.1371/journal.pcbi.1004827.g004
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issues. Regardless of the underlying reason, this could explain why our biomarker stratification
scheme only identified a subset of the MEK and PI3K/AKT/MTOR inhibitors.

We next sought to validate our predictions using functional genomics data. Here, we uti-
lized two cancer cell line data repositories; mRNA expression profiles from the Cell Line Ency-
clopedia (CCLE; [24]), and functional genomics data from Project Achilles, which catalogues
vulnerabilities of cancer cell lines to shRNA or Cas9/sgRNA-mediated gene silencing [25]. We
first assessed whether mRNA expression of the biomarkers could substitute for protein. EGFR,
ERBB2, and CDKN1B gene expression correlated well with protein levels across the 18 HER2+
cell line panel (Spearman ρ = 0.84, 0.67, 0.77) but ERBB3 less so (Spearman ρ = 0.50; S10 Fig,
part A). The poorer correlation between ERBB3 mRNA transcript and protein may be attribut-
able to the multiple feedback circuits regulating expression of this receptor [26]. Also consis-
tent with protein expression patterns, CDKN1B transcript expression is positively correlated
with ERBB3 and anti-correlated with EGFR (Spearman ρ = 0.27 and -0.23 respectively; S10
Fig, part A).

Using the CCLE mRNA expression data, we classified cell lines in the dataset as HER2+ and
HER2- based on the 80th percentile of ERBB2 expression, and examined differences in sensi-
tivities to gene knockdowns between cell lines based on expression of EGFR, ERBB3, and
CDKN1B mRNAs. Among the 43 HER2+ cell lines found in the Achilles portal, 11 were pre-
dicted to be PI3K-dependent (EGFRloERBB3hiCDKN1Bhi) and 9 to be MAPK-dependent
(EGFRhiERBB3loCDKN1Blo) based on median cuts of the 3 biomarkers. Of the 5711 genes
tested for growth dependence, 781 showed differential sensitivity between the two sets of cell
lines (P< 0.05, rank-sum test). This is almost 3-fold more than expected by chance, suggesting
real biological differences between the biomarker-defined subsets. The PI3K-predicted cells
were significantly more sensitive towards silencing of three canonical PI3K/AKT signaling
nodes, PIK3CA, AKT1 and MTOR. Within the MAPK-predicted set, while MEK1 (MAP2K1)
did not come up as a differentially sensitive target, the main MAPK effector ERK2 (MAPK1)
did. A full list of the genes and associated statistics is provided in S1 Data, both for the com-
bined three biomarker results, and each biomarker in isolation.

To evaluate the relative utility of this three-gene classifier, we performed the same analysis
using PIK3CAmutation status as a predictor of PI3K pathway dependence. This is the most
widely used clinical biomarker associated with the use of PI3K/AKT inhibitors, and thus could
be considered the gold standard comparator, despite being a poor predictor of clinical activity
in actuality [27]. PIK3CA-mutant cells are indeed significantly more sensitive to knock-down
of PIK3CA itself, as well asMTOR within the HER2+ population. However, AKT1 dependence
was not associated with PIK3CAmutants, nor was either of the two MAPK targets (MAP2K1
andMAPK1) associated with the PIK3CA-wildtype cells (Table 1). Applying the same analyses
to HER2- cells reveals that the relationship between expression of the three genes and pathway
dependence is specific to HER2+ cancers; only AKT1 comes up as differentially sensitive target
using the three biomarker combination, while PIK3CA,MTOR andMAPK1 do not, as in the
HER2+ population. The predictive utility of PIK3CAmutations however appears independent
of HER2 status, as the same target (PIK3CA) comes up in both HER2+ and HER2- groups. The
identification of 4/5 canonical gene targets (PIK3CA, AKT1, MTOR, MAP2K1, and MAPK1)
as differentially sensitive using the three biomarker enrichment strategy in HER2+ cells is
highly unlikely to be due to chance alone (P = 1.5 × 10−3, Hyper-Geometric test), much more
so than the 2/5 targets uncovered using PIK3CAmutational status. The three-biomarker set
thus appears a better differentiator of PI3K/AKT vs. MAPK/ERK pathway dependence in
HER2+ cells as compared to commonly used genetic marker PIK3CA.

To interrogate the molecular mechanisms underlying this relationship, we mapped the dif-
ferentially sensitive genes on to the NCI pathway interaction database (NCI-PID), a curated
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resource of cancer-associated signaling pathways [28]. To limit the network size and enrich for
biologically meaningful components, we further filtered for genes with median differential
effects (ATARiS scores [29])> 0.75 and with at least one interaction annotated in the NCI
database, and included EGFR, ERBB3, CDKN1B, and MAP2K1. The resulting network, con-
sisting of 41 nodes and 56 edges, is represented in Fig 4C. Besides direct protein-protein inter-
actions, an edge in the network could represent transcriptional and translational regulation, as
well as a macroprocess whose internal composition is not included [28]. Many core compo-
nents of PI3K/AKT signaling and downstream effectors are connected (i.e. E1F4E, RHEB,
FOXA1, MAX, CCND1, AKT2, TSC1) in a giant component associated with PI3K-pathway
dependence, while the MAPK-predicted genes are more diffuse, and cover diverse signaling
pathways and mechanisms (such as components of the WNT signaling pathway). The three
biomarkers (EGFR, ERBB3, and CDKN1B) are connected with each other, both directly and
through the intermediary network hub AKT1. These connections suggest that the three bio-
markers are functionally linked to AKT and MAPK signaling, and their relative expression lev-
els thus could induce differential dependence on the two signaling cascades.

Together, these results support our initial finding that that EGFR, ERBB3 and CDKN1B
expression predict differential dependence on PI3K/AKT and MAPK signaling in HER2+ can-
cer cells.

Discussion
Our finding that many HER2+ cancer cell lines are dependent on MAPK signaling contrasts
with canonical view of HER2 signaling predominantly through the PI3K pathway [4,5]. We
believe this novelty is due to our profiling of a larger and more diverse panel of HER2+ cell
lines than any previous study to our knowledge, and the fact that MEK inhibitors are typically
not examined in these cells as a result of this established dogma. The finding is however not
completely unprecedented; a recent study describing the construction of Boolean network
models using proteomic data from HER2+ cell lines revealed that the cell lines varied in their
intrinsic bias toward PI3K vs. MAPK signaling [30]. If results translate beyond in vitro cell cul-
ture, this finding has implications for the design of treatment strategies in HER2+ cancers, as
multiple PI3K/AKT/MTOR inhibitors are being tested in HER2+ cancers, and MEK inhibitors
are being tested in a variety of other tumor types [12]. Combined measurement of these three
proteins in tumor biopsies could thus inform the use of PI3K/AKT or MEK inhibitor

Table 1. Canonical PI3K/AKT and MAPK/ERK signaling nodes and their statistical association with biomarker-defined cell line subsets repre-
sented in Project Achilles.

3BM (HER2+) 3BM (HER2-) PIK3CA (HER2+) PIK3CA (HER2-)

Rank-Sum P-VAL PVAL PVAL PVAL

AKT1 3.9×10−3 6.9×10−3 5.2×10−1 6.6×10−1

PIK3CA 9.8×10−3 1.8×10−1 2.8×10−2 6.1×10−3

MTOR 3.9×10−3 1.9×10−1 4.6×10−2 9.1×10−2

MAP2K1 4.0×10−1 4.2×10−1 6.4×10−1 3.9×10−2

MAPK1 4.8×10−2 8.8×10−1 6.6×10−1 3.8×10−1

N (total Genes) 5711 5711 5711 5711

n (P < 0.05) 781 1495 344 322

r (hits/5) 4 1 2 2

Hyper-geometric

P-VAL 1.5x10-3 7.8x10-1 3.2x10-2 2.8x10-2

doi:10.1371/journal.pcbi.1004827.t001
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treatments. It is worth noting that mutations in any of these three genes may affect their pre-
dictive utility in this context, however this rarely occurs in HER2+ cancers (less than 10%
harbor mutations in EGFR, ERBB3, or CDKN1B [31]). Our results predict that MAPK path-
way-activating mutations (such as KRASG12V) may be genetic mechanisms of resistance to
HER2-direted therapy in indications outside of breast cancer, with higher EGFR and lower
ERBB3 and CDKN1B expression [32]. While clinical data supporting this prediction are lack-
ing, mechanistic model simulations are consistent with the role of KRASmutations as domi-
nant mechanisms of resistance in MAPK-dependent HER2+ cancers [33].

As with all molecularly targeted agents, predictive biomarkers are needed to realize the util-
ity of PI3K/AKT and MEK inhibitors. Our results highlight the difficulty in identifying such
predictive markers, as the most intuitive protein (pAKT and pERK), and genetic (PIK3CA)
candidates turned out to be largely uninformative and surpassed by a fairly non-intuitive mul-
tivariate classifier. These findings are consistent with clinical experience to date with PI3K/
AKT/MTOR inhibitors [34] and MEK inhibitors [12], in that mechanistically intuitive genetic
markers have proven poor predictors of activity. Results from large cell line-based functional
genomics projects [35,36] more broadly support this finding. Despite substantial efforts to find
robust genetic predictors of drug sensitivity, these have proven largely disappointing [37]. We
believe the root of this challenge lies in two related sources. First, cellular dependence on a
given signaling pathway may arise through multiple mechanisms, such as expression patterns
of regulatory ligands, receptors and downstream effectors, in addition to mutations in core sig-
naling nodes. Predictors of sensitivity to pathway targeted inhibitors are thus expected to be
necessarily multivariate, and often non-genetic, which would favor the use of proteomic tech-
nologies for predictive biomarker discovery [38]. Second, the very properties of oncogenic sig-
naling networks that confer robustness to therapeutic intervention (adaptive feedback circuits
and redundancies) also obscure predictors of responsiveness to such interventions. In addition
to our data, recent functional proteomic studies support these conclusions. Phospho-kinase
expression has been proven a poor predictor of cellular sensitivity to inhibitors targeting those
kinases and the cascades in which they are embedded, including pAKT and pERK in relation
to PI3K/AKT and MEK inhibitors [20,39]. Similarly in line with our results, PI3K inhibitor
sensitivity across a panel of breast cancer cell lines was predicted by responsiveness to the
ERBB3 ligand heregulin much better than by pAKT expression level or PIK3CAmutations
[19].

We speculate that differential HER2-heterodoimerization accounts for the association
between ERBB3 vs. EGFR receptor expression and PI3K vs. MAPK pathway dependence. The
EGFR cytoplasmic domain contains multiple binding sites for the adaptor proteins Growth-
factor-Receptor-Bound 2 (GRB2) and Src-homology-2-containing (SHC) which activate the
MAPK cascade, while ERBB3 has six binding sites for PI3K and only one SHC site [40]. Com-
petition for binding to HER2 between the receptors could thus shift receptor complex forma-
tion to favor one pathway over the other. CDKN1B (p27) is likely a functional surrogate of
pathway activity, rather than a causal regulator. As a negative regulator of cell cycle progres-
sion, its expression level may be indicative of the intensity of pro-proliferative MAPK signal
flux. These results also demonstrate that the functional effect of an oncogene can be context-
dependent. In this case, ERBB2-amplification can result in either PI3K or MAPK-signaling-
dependent cell growth, depending on molecular context. Consistent with the “ERBB network
theory” [14,41], signal output depends upon the composition of surface receptors and presence
of extracellular ligands. Whether such context-dependent signaling effects are confined to the
ErbB-family, or shared by other oncogenes is an open question. It is however clear that cancers
harboring the same oncogenic driver can respond very differently to targeted inhibitors based
on their tissue of origin, the most notable example being vemurafenib responses in BRAFV600E-
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mutant melanoma vs. colorectal cancers [42]. Context-dependent signaling differences may
play a role in such cases.

The finding that PI3K vs. MAPK pathway dependence is not genetically hardwired into
cells, and can be affected by exposure to the ligand heregulin was somewhat unexpected. How-
ever, there is precedent for observations of cellular plasticity with respect to reliance on onco-
genic signals. Growth factor stimulation is known to mediate resistance to many kinase
inhibitors through the activation of alternate but functionally redundant pathways [43,44].
PI3K/AKT inhibitors and MEK inhibitors themselves can also induce compensatory signaling
though alternative pathways via the relief of negative feedback regulatory controls on cell sur-
face receptors [16,45–47]. Many cancer cells are thus endowed with the capacity for using alter-
nate pathways in response to environmental changes. While we have focused solely on the role
of the ERBB3 ligand heregulin, other growth factors and cytokines may have similar effects.
This is important to consider when interpreting biomarker-response relationships. If both
molecular profiles and drug response patterns are fluid, such relationships would be amenable
to shift under different experimental [48], and possibly pathophysiological conditions. In light
of all the aforementioned challenges, it is perhaps unsurprising that despite all the resources
and efforts committed date, a very limited number of predictive biomarkers have proven clini-
cal utility [49]. Though counter-intuitive, strong relationships between inhibitor sensitivity and
target expression appear to be the exception rather than the norm.

We were able to support our initial findings from the 18-cell line panel using both chemical
genomic and functional genomic data from independent sources. Besides expected hits in the
PI3K/AKT and MAPK/ERK signaling pathways, our three biomarker stratification scheme
revealed differential sensitivity towards additional small molecules and shRNAs. It is likely that
some of these are false positives. However, there appear to be mechanistic connections between
the targets of these compounds and shRNAs, the three biomarkers, and PI3K/AKT and MAPK
signaling. For example as shown in Fig 4A, cells predicted to be PI3K or MAPK dependent are
also differentially sensitive towards an AMPK inhibitor (AICAR), consistent with known bio-
logical functions of PI3K/AKT signaling in metabolism [50]. In addition, histone deacetylase
(HDAC) inhibitors are known to mediate at least part of their effects through suppression of
PI3K/AKT signaling [51]. Elesclomol induces apoptosis through disruption of mitochondria
metabolism and in cancer cells upregulates AKT signaling to promote survival [52].
BMS708163 targets presenillin1 as a NOTCH-sparing gamma-secretase inhibitor [53] and reg-
ulates 4ICD release upon NRG1 binding to ERBB4 [54]. While the exact mechanistic connec-
tions between these small molecules and EGFR/ERBB3 expression are unclear, these results are
likely to be biological meaningful and not merely random. In addition, we performed a GO
enrichment analysis [55,56]on biological processes for the genes from the Achilles’ analysis
using genes tested in this dataset as background. We found that the shRNA targets are enriched
for regulators of mRNA transcription, mRNA transport, translation, and mitotic progression.
Consistently, the small molecules that we found in addition to direct inhibitors of PI3K/AKT/
MTOR and MEK target components of the transcriptional, translational and cell cycle machin-
ery. For example, vorinostat is known to cause abnormal mitosis through inhibition of HDAC
[57]. Vinblastine has been shown to block mitosis through inhibiting microtubule dynamics
indirectly or directly [58]. We also observed differential proliferation rates between AKT and
MAPK-dependent cell lines experimentally (Fig 1A), consistent with differential sensitivity to
knockdowns of cell cycle regulators. These results suggest that the hits from both analyses are
likely to be mechanistically connected and biologically meaningful.

In summary, we have demonstrated that PI3K vs. MAPK pathway dependence varies across
HER2+ cancer cells. This dependence varies by indication, and can be predicted using a set of
three non-intuitive protein measurements. These results might help stratify HER2+ patients
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for treatment with targeted therapeutics. More generally, our findings reveal that oncogenic
signaling can be context dependent. A single genetic transformation, in this case ERBB2 ampli-
fication, can have differing effects on cell signaling and growth, contingent upon on the molec-
ular and cellular background. Together, we believe that our results and approach will enable
the design of more effective cancer treatment strategies for HER2+ cancer patients.

Materials and Methods

Cell lines and reagents
AU565, HCC1419, NCI-H2170, HCC202, HCC1954, NCI-N87, ZR75-1, SKOV3, ZR75-30,
MDAMB175VII, CALU3, MDAMB453, MDAMB361, JIMT1, SKBR3 and HCC2218 cells
were obtained from ATCC. OE19 and OE33 were obtained from ECCC; COLO-678 was
obtained from DSMZ, and KYSE-410 from Sigma-Aldrich. BT-474-M3 cells (hereafter simply
referred to as BT-474) were obtained from Hermes biosciences. All cell lines were maintained
in RPMI supplemented with 10% FBS, penicillin, and streptomycin. GSK-1120212 and MK-
2206 were purchased from Selleckchem. Recombinant human HRG-β1 (EGF domain) was
from R&D Systems.

In vitro cell growth assays: AKT &MEK inhibitor responses
Cells were seeded at 600 cells per 384-well plate in 4% FBS cell growth medium, stimulated (or
not) with 2 nM HRG-b1 for 4 hours, and then treated with individual or combinations of the
AKT and MEK inhibitors. Treatments consisted of 5x6 dose combination matrices covering a
3-fold dilution series from 1 μM (MK-2206) and 10μM (GSK-1120212). Cell confluency was
then monitored over 5 days in culture by video microscopy (IncuCyte, Essen BioScience), and
data normalized to density measured at initiation of treatment (S1 Data).

Cellular protein lysate preparation
Cell lines were seeded at 7,500 cells per well in 384-well culture plates in RPMI containing 4%
FBS. 48-hour post plating, cells were stimulated (or not) with 2 nM HRG-β1 for four hours. At
harvest, cells were placed on ice, and 70 μl RIPA lysis buffer (Sigma-Aldrich) supplemented
protease inhibitor and phosphatase inhibitor tablets (Roche) was added to each well. The plates
were stored at -80°C until analysis. On the first day of protein profiling, the lysates were thawed
at 4°C and centrifuged at 4000 rpm for 10 minutes. The supernatant was used for further analy-
sis with multiplex Luminex protein assays as described below.

Multiplex (Luminex) protein assays
Twenty micrograms of antibodies was conjugated to 100 μl (~1.25×106 beads) of MagPlex
beads (Luminex Corp.) according to the manufacturer’s instructions. Conjugated beads were
then mixed and diluted 1000-fold in phosphate buffered saline (PBS)–1% bovine serum albu-
min (BSA) (Sigma). Diluted beads were transferred into 384-well assay plates (Corning) at
30 μl per well and then washed three times with PBS–1% BSA. Washed beads were incubated
with 20 μl of total protein lysates overnight with shaking at 4°C. The beads were then washed
with PBS–1% BSA. Detection antibodies (see S3 Table) were added and incubated at 4°C over-
night with shaking. After washing with PBS–1% BSA, streptavidin-conjugated phycoerythrin
(Invitrogen) was added at 2 μg/ml and incubated at room temperature for 30 min. Finally, the
beads were washed with PBS–1% BSA, and data were acquired with a FlexMap3D instrument
(Luminex Corp.) according to the manufacturer’s instructions. Raw signals were normalized
by background subtraction to signals from control lysates prepared from non-human
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cells. Antibodies are listed in S3 Table, and background-subtracted data is provided in
S1 Data.

Logic-based models of cell growth regulation
Observed changes in cell density over time are determined by the balance of cell proliferation
vs. death within the culture. Both cell proliferation and survival are regulated by PI3K/AKT
and MAPK/ERK signaling cascades, which assuming an exponential growth can be expressed
as:

dX
dt

¼ mMAX � f1ðpAKT; pERKÞ � dMAX � f2ðpAKT; pERKÞ

Where X = number of cells (assumed proportional to surface area), μMAX = maximum rate
of proliferation, δMAX = maximal rate of cell death, and f1 and f2 are functions integrating
pAKT and pERK signaling.

We implemented a quantitative logic-based formalism [59] to describe changes in cell
density as function of PI3K/AKT and MAPK/ERK pathway activation. AKT and MEK
inhibitor concentrations (μM) were used as surrogates for pathway activities, assuming
monotonic dose-response relationships. As the logic by which cells integrate and interpret
these signals remains obscure, we initially assessed 9 alternate growth regulatory functions
combining null (K), OR, and AND-type logic gates as proliferation and survival functions
(f1 and f2):

K ¼ 1

OR ¼ ðwakt � AKT þ werk � ERKÞk
tþ ðwakt � AKT þ werk � ERKÞk

AND ¼ AKTk akt

takt þ AKTk akt

� �
� ERKk erk

terk þ ERKk erk

� �

Parameters for each of the 9 models (S1 Table) were estimated for each cell line using a Par-
ticle Swarm Optimization algorithm [60] minimizing the mean squared error between experi-
mental measurements (fold cell expansion over 96 hours) and model simulations. Relative
model performance was assessed using the Akakie Information Criterion (AIC):

AIC ¼ 2 � P þ N � log10ðMSEÞ

Where P = number of parameters (2–10), N = number of experimental measurements (30),
andMSE = mean squared error.

The fourth model structure assessed (M4), consisting of an OR-Gate regulating cell survival,
was found to be optimal (lowest AIC) for the largest number of cell lines tested. The final for-
mulation of the cell growth regulatory model used in subsequent analyses was thus:

dX
dt

¼ mMAX � dMAX

ðwakt � AKTiþ werk �MEKiÞk
tþ ðwakt � AKTiþ werk �MEKiÞk

 !

Pathway Bias was then defined as the normalize differential between the parameters wakt

and werk:
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Bias ¼ ðwakt � werkÞ
ðwakt þ werkÞ

Based on our finding that PI3K/AKT dependence correlated with the cell death rate (δMAX),
and MAPK-dependence with proliferation (μMAX), we created a tenth model (M10) which sep-
arates the regulatory terms accordingly:

dX
dt

¼ mMAX 1� MEKik erk

terk þ MEKik erk

� �
� dMAX

AKTik akt

takt þ AKTik akt

� �

The raw cell growth data, model parameters associated with each of the ten models
(M1-M10), goodness-of-fit metrics (MSE and AIC) and simulations are provided in S1 Data.
Parameter estimates across alternate models are quite consistent, indicating our results are
robust regardless of the model chosen.

Logistic regression models of Pathway Bias
The Pathway Bias measurement for each cell was first discretized into MAPK vs. PI3K-depen-
dence (Bias = -1 vs. +1), a reasonable simplification given the observed bimodal distribution of
this metric. The probability of MAPK-dependence (PMAPK) vs. PI3K-dependence (PPI3K = 1 –
PMAPK) was then modelled as a function of input features using a logistic regression equation:

ln
PMAPK

PPI3K

� �
¼ b0 þ

XN
i¼1

bi � Xi

Where N = number of features (Xi) and βi = regression coefficients. The βi parameters were
estimated by maximum likelihood estimation, and predictive power of the model assessed
using leave-one-out cross validation (LOOCV) procedure. Model-predicted Bias was then
back-calculated using the probabilities as:

Predicted Bias ¼ �1 � PMAPK þ 1 � PPI3K

Statistical significance of model predictions was assessed by computing LOOCV accuracy,
Pearson correlations, and mean squared error (MSE) from 10,000 randomized permutations of
the cellular properties: Bias mapping.

TCGA analysis
RNAseq was downloaded from the GDAC Firehose portal in June, 2014 (http://gdac.
broadinstitute.org/). HER2+/- classifications were based on ERBB2 expression. Using BRCA,
LUAD, and OV samples as controls, setting ERBB2 RNAseq count thresholds at 14,000
resulted in HER2+ frequencies consistent with known ERBB2-amplification frequencies of
13%, 2.5%, and 1.5%. This threshold was then applied across all indications, though results
were insensitive to the specific value chosen.

Cell line data sources and analysis
mRNA expression data was downloaded from CCLE (www.broadinstitute.org/ccle/home) and
gene knockdown sensitivity from Project Achilles (www.broadinstitute.org/achilles). Signaling
networks were defined in NCI-PID (http://pid.nci.nih.gov/index.shtml) and accessed via the
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Pathway Commons portal (www.pathwaycommons.org), and visualized using Cytoscape
(www.cytoscape.org).

All analysis and simulations were carried out in MATLAB R2013b.

Supporting Information
S1 Fig. Cell surface response plots of cell population doubling (PD) 96-hour following
treatment with AKT (MK2206) and MEK (GSK1120212) inhibitor matrices. Cell surface
responses from AU565, BT474-M3, CALU3, HCC202, HCC1419, HCC1954, JIMT1 and
MDAMB175VII are depicted in individual boxes. Top panels show data from FBS-supple-
mented media, and bottom panels with 2nM heregulin ligand (HRG) addition. Left plots are
the raw data, middle column the OR-gate model (“M4”) used in our analysis, and right plots
the optimal logic model, as determined by MSE minimization.
(PPTX)

S2 Fig. Cell surface response plots of cell population doubling (PD) 96-hour following
treatment with AKT (MK2206) and MEK (GSK1120212) inhibitor matrices. Cell surface
responses fromMDAMB361, MDAMB453, NCI-N87, NCI-H2170, OE19, OE33, SKBR3 and
SKOV3 are depicted in individual boxes. Top panels show data from FBS-supplemented
media, and bottom panels with 2nM heregulin ligand (HRG) addition. Left plots are the raw
data, middle column the OR-gate model (“M4”) used in our analysis, and right plots the opti-
mal logic model, as determined by MSE minimization.
(PPTX)

S3 Fig. Cell surface response plots of cell population doubling (PD) 96-hour following
treatment with AKT (MK2206) and MEK (GSK1120212) inhibitor matrices. Cell surface
responses from ZR75-1 and ZR75-30 are depicted in individual boxes. Top panels show data
from FBS-supplemented media, and bottom panels with 2nM heregulin ligand (HRG) addi-
tion. Left plots are the raw data, middle column the OR-gate model (“M4”) used in our analy-
sis, and right plots the optimal logic model, as determined by MSE minimization.
(PPTX)

S4 Fig. Quantitative logic-based models of cell growth regulation by ERK and AKT signals.
(A) Generic logic model; combinations of OR, AND, or null (K) gates can be combined to
describe signal-response relationships. (B) Quantitative comparison of 9 alternate model forms
across all cell lines, based on Akaike Information Criterion (AIC) minimization. (C)Weighted
sum of squared residual (WSSR; the objective function) for each cell line, shown for the Best,
worst, and M4 (OR gate) functions. (D) Pearson correlation coefficients between model vs. raw
data for all 18 cell lines using the “M4” OR-gate function.
(PPTX)

S5 Fig. Select model parameter estimates and precision for each cell line +/- heregulin
(HRG) stimulation. AKT and ERK weights for each cell line +/- HRG are shown in (A, B). (C)
Median coefficient of variation (CV) +/- 1 standard deviation across the cell line panel for each
of the four model parameters, the relations (Pathway Bais, and umax/dmax) as well as the fitting
metrics AIC and MSE.
(PPTX)

S6 Fig. Basal protein expression (column normalized) for the 18 cell lines +/- heregulin
(HRG). Data is represented using a hierarchical clustered heatmap, and PI3K, MAPK, and
SWITCH classification scheme color-coded for each cell.
(PPTX)
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S7 Fig. Heregulin-induced changes in protein expression across cell lines. Data is repre-
sented as z-scores (heregulin-stimulated vs. FBS), and cell lines classified into PI3K, MAPK,
and SWITCH categories
(PPTX)

S8 Fig. Multivariate logistic model-based classification of Pathway Bias. Comparison of
logistic model accuracy built using alternate sets of input features. Predictions from alternate
models were evaluated via Pearson correlation coefficients, Mean Squared Error (MSE), and
accuracy as compared to randomized data.
(PPTX)

S9 Fig. Rank correlation coefficients between expressions of protein and mRNA (A) and
mRNA-mRNA (B).mRNA expression is taken from the CCLE database (RMA values), and
protein expression from two sources; our 18-cell line Luminex profile (18 HER2+) and an
internal ELISA-based profile (MBASE) segregated into HER2+ and all cells.
(PPTX)

S10 Fig. Expression of ERBB3, EGFR, and CDKN1B across multiple HER2+ cancer indica-
tions represented in TCGA. (A) Raw RNAseq counts are displayed for all indications, and
HER2+ defined as samples with greater than 15,000 counts. (B) Differential expression for
each gene compared to breast cancers, separated by HER2+ and HER2- populations.
(PPTX)

S11 Fig. Spearman’s Rank Correlation coefficients between sensitivities to select pathway
inhibitors across all cell lines in the GDSC database. Asterisks indicate drugs identified as
differentially sensitive between predicted PI3K (blue) and MAPK (red) cell subsets.
(PPTX)

S1 Table. Summary of logic-based cell growth models evaluated.
(DOCX)

S2 Table. “M4”Model Parameters and associated error.
(DOCX)

S3 Table. A) Capture antibodies used in Luminex assays. B) Detection antibodies used in
Luminex assays.
(DOCX)

S4 Table. Logistic model parameters, wherein median values and standard deviations are
taken from the 36 LOOCV estimates.
(DOCX)

S5 Table. Raw Protein Signals, and Logistic Model Predictions of Pathway Bias.
(DOCX)

S6 Table. Evaluation of EGFR, ERBB3, pAKT, and pERK protein expression as predictive
biomarkers for HDACi, PI3K/AKT/MTORi, and MEKi sensitivity in HER2+ cell repre-
sented in the GDSC Database.
(DOCX)

S1 Data. Excel spreadsheet containing mean cell growth response data, Luminex protein
signals, logic model parameter estimates and simulations.
(XLSX)
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