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Abstract: Knowledge on the mechanisms of acid and base secretion in airways has progressed re-
cently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL)
pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the in-
terstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as
cystic fibrosis. Basolateral bicarbonate (HCO3

−) entry occurs via the electrogenic, coupled transport
of sodium (Na+) and HCO3

−, and, together with carbonic anhydrase enzymatic activity, provides
HCO3

− for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate ex-
changer pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain
its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving
H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient.
Paracellular HCO3

− transport, the direction of which depends on the ASL pH value, acts as an ASL
protective buffering mechanism. How the transepithelial transport of H+ and HCO3

− is coordinated
to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.

Keywords: pH; CFTR; SLC26A4; ATP12A; lung

The airway epithelium is central to the defenses of the lung. It constitutes an interface
between the internal milieu and the external environment, acting as a barrier against
particles deposited in the larger airways, and inactivating infectious microorganisms in
the lower airways [1]. The luminal side of airway epithelia is lined by a thin layer of
fluid called airway surface liquid (ASL) [2,3]. ASL arises mainly from submucosal gland
secretions and transepithelial hydro-osmotic movements. Its composition is finely tuned,
more specifically its pH. Increasing data have provided evidence that normal ASL is slightly
acidic relative to the interstitium, and that defects in its pH regulation are associated with
various respiratory diseases [4]. Research on the mechanisms of acid and base secretion in
airways has progressed significantly recently. The aim of this review was to summarize the
known mechanisms of ASL pH regulation in airway physiology and their implication in
lung diseases, as well as to highlight gaps in knowledge.

1. Methods

A literature review was performed according to PRISMA guidelines [5]. An exhaustive
systematic review was performed based on the following keywords: airway surface liquid
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pH, bicarbonate, CFTR, SLC26A4, SLC26A9, shunt pathway, SLC4A4, ATP12A, carbonic
anhydrase, SLC9A1, and V-ATPase. Experimental models and methods of pH assessment
were specifically considered. The flow diagram of the studies we selected is shown in
Figure 1.

Figure 1. PRISMA flow diagram.

2. Surface Liquid of the Airway Bronchial Epithelium, an Important Player in Airway
Physiology

The airway bronchial epithelium is composed of a variety of cell types, described in
Figure 2 [1,6].

In the large airways, the ciliated, goblet, and basal cells are predominant, whereas in
the small airways, the secretory cells are found more frequently. Ciliated cells account for
at least 50% of all epithelial cells within human airways, and are terminally differentiated.
They express up to 300 cilia per cell, whose coordinated beating enables mucous clearance
out of the airways. Goblet cells contain acidic-mucin granules. They can self-renew, as well
as transdifferentiate into ciliated cells. Secretory (clara/club) cells secrete surfactants
and specific antiproteases. Basal cells display stem cell-like properties and give rise to
secretory and ciliated cells in response to epithelial injury. Ionocytes are a rare cell type,
recently identified in the adult murine and human trachea, and in human proximal bronchi;
they express cystic fibrosis transmembrane regulator (CFTR) protein at high levels [6,7].
Pulmonary neuroendocrine cells (PNEC) are ubiquitous in human adult airway epithelium,
and located between epithelial cells adjacent to the basement membrane. Submucosal
glands build invaginations throughout the cartilaginous airways in the trachea and large
human airways. They are only present in the uppermost part of the mouse trachea. They
are composed of mucous cells, serous cells, and myoepithelial cells. Thus, luminal mucus
originates from both mucous and goblet cells. The two main mucins in human airways
are MUC5AC, mainly produced in the goblet cells of the surface epithelium, and MUC5B,
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mainly produced in the mucous cells of the submucosal glands. MUC5AC is thought to be
secreted as an acute response to environmental insults, while MUC5B is involved in the
response to chronic infection and inflammation.

Figure 2. Pseudo-stratified airway epithelium and physiological role of main cells.

Regulation of ASL composition and mucociliary clearance is critical for normal airway
function. The ASL is a ~10 µm bilayer made up of a periciliary liquid (PCL) and a mucus
layer (MCL). The PCL is a watery layer which bathes the cilia, and is in direct contact
with the epithelial cells. The MCL is a gel-like layer sitting over the tips of the cilia.
The PCL allows the cilia to beat and strike at the underside of the MCL. Whereas the PCL
is composed of 96% water, 1% salts, 1% lipids, 1% proteins, and 1% mucus [2,8], the MCL
layer is a heterogeneous mixture of polypeptides and cellular debris tethered together on
the PCL surface by MUC5AC and MUC5B complexes [9–11]. It is thought that the mucous
layer acts as a fluid reservoir to maintain ASL hydration [12].

The ASL pH and bicarbonate (HCO3
−) concentration are critical for several key

functions of the airway epithelium.
At the cellular level, pH is involved in the regulation of ion transporters, and therefore

in trans- and para-cellular salt and water movement and ASL homoeostasis. Indeed,
the equilibrium between different redundant pathways for net chloride (Cl−) secretion and
net sodium (Na+) absorption ensures the extremely precise regulation of ASL volume [13].
Chloride secretion mainly involves the cystic fibrosis transmembrane regulator protein
(CFTR), both directly and indirectly, because CFTR also promotes the activity of other
Cl− transporters, including Cl−/HCO3

− exchangers and ANO1 (a Ca2+ activated Cl−

channel) [14]. Importantly, the luminal concentration of HCO3
− directly modulates the

level of CFTR expression by stimulating soluble adenylate cyclase (sAC) and cAMP cellular
production, leading to nuclear accumulation of the CREB transcription factor [15]. Similarly,
ASL pH affects the membrane expression of ENaC, the main pathway for Na+ reabsorption,
by regulating the activity of short palate lung and nasal epithelial clone 1 (SPLUNC1)
antimicrobial peptide. This protein binds to αβγ-ENaC and causes the internalization of αγ-
ENaC, thus preventing activation of the channel by serine proteases [16–18]. Importantly,
this peptide fails to function at pH values below 7.0 due to pH-sensitive salt bridges,
resulting in abnormal Na+ and water absorption [16,17].

At the epithelial level, pH and HCO3
− are crucial regulators of innate airway de-

fense [19,20]. This is due, at least partially, to a reduction in the killing properties of
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antimicrobial peptides, such as LL-37, because their cationic electric charge is modified at
pH values below 7 [21]. The physiological relevance of this observation has been demon-
strated in vivo by showing that lowering the pH of lung porcine epithelium ASL from 7.58
to 6.35 decreased its bacterial killing capacity [22]. This combines with the intrinsic effects of
HCO3

− on bacterial growth, airway colonization, and biofilm formation inhibition [23–28].
Finally, at the organ level, ASL pH modulates mucociliary and cough clearance, a pro-

cess that enables continuous drainage of the airways, and thus proper air conduction.
Mucociliary clearance is a complex phenomenon involving different factors: the mucus
which traps exogenous particles and pathogens, the cilia whose beating moves up secre-
tions, and the periciliary fluid which protects the epithelium against dehydration and
bathes the cilia [29]. Mucus rheology and the viscoelastic properties of ASL are finely
regulated by HCO3

−. Indeed, mucins are condensed by calcium in secretory granules due
to their acidic groups [30]. When they are secreted, they undergo expansion by as much as
1000-fold [30,31], triggered by the chelation of calcium by HCO3

− [32–34]. Additionally,
pH values below 7.0 decrease ciliary beating in vitro (50% at pH = 5.5 and almost 100%
at pH = 3.5) [35]. This is due to the fact that sAC activity is decreased at low intracellular
HCO3

− concentrations (≤10 mM), thus decreasing local cAMP concentration necessary for
cilia beating [36,37]. As a whole, defective ciliary beating and increased mucus viscosity
combine to decrease mucociliary clearance (MCC) at acidic pH.

3. ASL pH in Physiology and Disease
3.1. Methods of Measurements

There are two classes of methods for measuring pH values.
Optical methods use the pH-dependent color changes of organic dye molecules (indi-

cators) that are weak bases or acids. For the purpose of ASL pH measurements, the dextran-
coupled (cell impermeant) pH fluorescent dyes BCECF, Fluorescein, HCC, or HPTS are
employed, by adding them to the ASL directly [16,22,38–41].

The potentiometric methods measure the electrical voltage between a reference elec-
trode and a pH electrode. Ionophore-filled home-made microelectrodes or commercial
miniaturized pH electrodes have been used for determination of ASL pH in samples from
human bronchial epithelial (HBE) cells [16,42,43]. However, these measurements in small
samples are subjected to multiple confounding factors, including the immersion depth
of the measuring electrode, placement of the reference electrode, disturbance of the ep-
ithelial layer, change in hygrometry, carbon dioxide concentration, and temperature in the
vicinity of the measurement. Rapid developments in the field of sensors have enabled
pH measurements in vivo, using mobidium pH probes [44–46], monocrystalline antimony
catheters, or in-gold combined pH-glass electrodes [47]. More recently, Schultz et al. used
a pH-sensitive luminescent dye-based fiber-optic probe. The dye was embedded in a
hydrogel matrix, which limits interactions between the dye and ASL proteins that could
potentially alter the measured pH values, and provides a high signal-to-noise ratio allowing
for accurate measurements [48].

3.2. ASL pH Values in Physiological Conditions

The studies listed in Tables 1–4 have shown that ASL pH in normal airways ranges
in vivo between 5.6 and 6.7 in the nasal mucosa, and is around 7.0 in bronchia. Indeed,
studies by McShane et al. showed that ASL pH was more alkaline in lower airways
(7.1 ± 0.1) than in upper airways (6.6 ± 0.1) [47]. Similar ranges of values were observed in
murine and porcine animal models. Such a wide range of ASL pH values may be explained
by technical limitations. For example, obtaining stable recordings in vivo is challenging
because of CO2 variations during breathing, which can skew pH measurements [48–50].
Moreover, applying an electrode to the epithelium immediately changes the transport
equilibrium and therefore alters ASL pH.
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Table 1. Airway surface liquid (ASL) pH in animal models.

Sample/Model
pH Value

Method Reference
WT CF

Mouse

6.95 ± 0.03 6.84 ± 0.07 BCECF-dextran [51]
7.14 ± 0.01 (in vivo) BCECF-dextran [52]

6.98 ± 0.16 pH electrode [50]
7.28 BCECF-dextran [8]

Rat 7.25 ± 0.05 6.42 ± 0.12 Not specified [53]

Ferret 6.84 ± 0.03 pH electrode [54]

Rabbit * 6.92 ± 0.01 pH electrode [55]

Cow
6.81 ± 0.04 (25 mM bicarbonate) BCECF-dextran [52]

6.98 ± 0.05 (no bicarbonate) BCECF-dextran [52]

Pig 7.14 ± 0.04 6.94 ± 0.05 Optode (in vivo) [22]

Primary Bronchial epithelia
7.37 ± 0.05 7.05 ± 0.03 SNARF pH indicator [22]
6.93 ± 0.04 pH electrode [56]

~7.1 7.2 pH electrode [50]

Gland fluid 6.9 ± 0.06 BCECF-dextran [57]

* alveolar subphase; WT: Wild Type; CF: Cystic Fibrosis.

Table 2. ASL pH in vitro measurements of human samples.

Sample/Model
pH Value

Method Reference
WT CF

Cell lines

CFBE41σ
7.42 ± 0.02 * 7.15 ± 0.01 * pH electrode [58]

7.24 ** X Ray
microanalysis [59]

16HBE14 σ
7.14 ± 0.02 pH electrode [60]

7.16 ** pH electrode [59]

Calu3
~7.2 BCECF-dextran [61]

7.55 ± 0.04 7.28 ± 0.02 pH electrode [62]

NuLi-1/CuFi-1 7.52 ± 0.07 6.88 ± 0.02 SNARF pH
indicator [63]

C38/IB3-1/ 7.32 ± 0.08 7.02 ± 0.04 pH electrode [64]

Primary cells (bronchi)

6.81 ± 0.20 BCECF-dextran [65]

6.6 ± 0.1 SNARF-1 [66]

∆pH = −0.096 ± 0.029 * ∆pH = −0.146 ± 0.011 * pH electrode [42]

~7.4 ~7.1 BCECF-dextran [67]

7.77 7.31 pH electrode [68]

7.35 ± 0.09 pH electrode [43]

7.43 ± 0.06 * 7.26 ± 0.02 * pH electrode [58]

7.35 ± 0.05 6.70 ± 0.03 pH electrode [69]

Submucosal gland
secretions

7.18 ± 0.06 6.57 ± 0.09 BCECF-dextran [70]

6.97 ± 0.06 BCECF-dextran [65]

* after 6 h Ringer incubation; ** after 3 h Ringer incubation; WT: Wild Type; CF: Cystic Fibrosis.
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Table 3. ASL pH in vivo measurements of human samples in healthy controls and patients with cystic fibrosis.

Sample/Model
pH Value

Method Reference
WT CF

Nose

Edge of nostril/adults 5.5 ± 0.1 5.6 ± 0.1 Monocrystalline
antimony catheter [47]

4 cm from nares/adults
6.7 ± 0.13 6.2 ± 0.1 Monocrystalline

antimony catheter [47]

6.6 ± 0.1 6.8 ± 0.10 Gold probe [47]
5 to 7.2 * Mobidium pH probe [44]

Neonates 6.4 ± 0.2 5.2 ± 0.3 (4.5–6.9) Mobidium pH probe [44,45]

Lower airway/children

7.1 ± 0.1 7.1 ± 0.2 Gold probe [47]
7.00 ± 0.12 6.98 ± 0.15 Fiberoptic probe [48]

*: different genotypes; WT: Wild Type; CF: Cystic Fibrosis.

Table 4. ASL pH in vivo measurements of human samples in patients with diseases other than cystic fibrosis.

pH Value Method Reference

Pneumonia
6.62 ± 0.07 pH electrode [71]

6.72 pH electrode [72]

Chronic lung diseases 6.64 ± 0.08 pH electrode [71]

COPD 6.21 ± 0.37 pH test strip [73]

Acute exacerbation of COPD (AECOPD) 6.89 ± 0.53 pH test strip [73]

Chronic rhinosinusitis 6.7 ± 0.6 pH electrode [74]

Pulmonary tuberculosis (sputum) 7.00 (range 5.50–8.37) pH electrode [75]

Chronic bronchitis 7.59 (mucoid) pH electrode [76]
7.83 (purulent) pH electrode [76]

Rhinitis 7.2–8.3 pH electrode [77]

COPD: Chronic Obstructive Broncho Pulmonary Disease.

To avoid problems with in vivo measurements, ASL pH may be measured in vitro.
Most studies focused on HCO3

− transport have been performed in monolayers of Calu3,
a cell line derived from a bronchial adenocarcinoma. Even though Calu3 cells are represen-
tative of submucosal cells, they are often considered to be a convenient model for epithelial
airway cells, because they display strong cAMP-stimulated HCO3

− transport and they
express CFTR. They are clearly different from other ciliated epithelial cell lines or native
tissue cells (as listed in Table 2), since they display characteristics of both serous and mucus
cells [78]. Fewer studies have been performed in ciliated epithelial cell lines or primary
airway 2D cultures using fluorescent indicators or ion selective electrodes under controlled
conditions (temperature, pCO2, and humidity) [58,68]. Interestingly, these studies show an
ASL pH close to 7.4 in human bronchial primary cells. Whether these in vitro observations
can translate to in vivo physiology is still unknown [22,50,58]. In vitro studies in primary
bronchial cells also have a number of limitations, including the fact that the relative pro-
portion of different cells may differ according to the samples, and transporter expression
levels according to the culture medium, as recently pointed out by Saint Cricq et al. [79].
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3.3. ASL pH Values in Disease

In 1930, Hilding et al. reported “acidic” nasal secretions (i.e., below the blood pH
of 7.4) in inflammatory acute lung diseases, and “alkaline” pH in the common cold [80].
It was thus hypothesized that airway pH may be an indicator of airway disease, either
as a cause or a consequence. Since then, various studies have shown changes in ASL
pH in specific diseases. Inflammation and infection seem to raise pH above the values
observed in healthy airways, including pneumonia (7.2–7.4) [81], rhinitis (7.2–8.3) [77],
and chronic bronchitis (7.6–7.8) [76], with the exception of one study on active bacterial
infection (5.6–6.2) [49].

Many studies have suggested decreased pH in the airways of asthmatic [82–84] and
Chronic Obstructive Broncho Pulmonary Disease (COPD) patients [85,86]. This is mainly
based on the observed reductions in the pH value of exhaled breath “condensate” compared
to healthy controls. This may reflect more intense airways inflammation, but obviously
cannot be extrapolated to ASL pH values [84,86].

The main relevant studies are summarized in Tables 1–4. In vitro studies have shown
that ASL pH is decreased in the context of CFTR mutations, as compared to epithelia
carrying WT CFTR [8,22,42,43,50–70]. The majority of studies focused on the most frequent
CFTR mutation, p. Phe508delCFTR (F508del). In 2011, Cho et al. observed that the rate of
cAMP-dependent base secretion in CF nasal tissues was significantly lower than that in WT
cells (11.8 ± 2.4 nmol min−1 cm−2, versus 57.2 ± 9.2 nmol min−1 cm−2) [87]. Interestingly,
Coakley et al. showed in F508del cell lines exposed to a luminal acid challenge that the
lack of HCO3

− secretion resulted in a defective re-alkalinization of ASL [42].
Few groups have focused on submucosal glands. Jayaraman et al. found that submu-

cosal gland secretions in CF patients exhibited a pH of 6.97 ± 0.06 but high viscosity [51].
In contrast, Song et al. reported a pH that was 0.6 pH units higher in healthy subjects than
in CF patients, corresponding to a three-fold increase in HCO3

− concentration [70]. This
observation suggests that submucosal glands might contribute to ASL pH homeostasis.

In vivo data are discordant. Lower pH values were observed within the nasal ep-
ithelium of CF patients in comparison to healthy controls [44,47], while other studies did
not report differences [48]. To date, the debate on ASL pH values in the context of CFTR
mutations has not been resolved. If proved true, this abnormally low pH, or at least the
defective buffering of acidic load, could explain a number of physiopathological aspects
in lung disease, such as increased mucus thickness, defective innate defense, bacterial
colonization, and the inflammation observed in CF epithelium [88,89].

The ASL pH value is the result of transepithelial acid and base transport and buffering
power. The studies describing the main transporters involved in these processes are
reported below.

4. Bicarbonate Transport in Airway Cells

Several important findings on the mechanisms underpinning HCO3
− transmembrane

transport were obtained by Devor et al. in 1999 [90]. Measurements of short-circuit
current and labeled fluxes in Calu3 cell lines provided convincing functional evidence that
basolateral HCO3

− entry involves the electrogenic, coupled transport of Na+ and HCO3
−,

and that apical HCO3
− secretion involves CFTR and other transporters.

4.1. Apical HCO3
− Transport

4.1.1. CFTR

CFTR is a channel that belongs to the ATP binding cassette (ABC) superfamily.
The channel is gated by ATP binding/hydrolysis at its two transmembrane domains
and by the phosphorylation of its large intracellular regulatory (R) domain. R phospho-
rylation is mostly achieved by the cAMP/PKA pathway (and less efficiently by the PKC
phosphorylation pathway) [91]. Patch-clamp experiments in transfected cells have shown
that CFTR exhibits a high anionic selectivity (PNa/PCl ~0.03) and a small linear conduc-
tance (~10 pS) [92]. Various anions may flow across the activated channel, down their
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favorable transmembrane electrochemical potential gradients [93]. Chloride is the favorite
substrate among halide ions, as both its transmembrane electrochemical gradient and its
permeability are the most favorable (the halide permeability sequence is Br− > Cl− > I− >
F−). Many other anions can be transported by CFTR, among them glutathione and HCO3

−

(PCl/PHCO3 ~ 4) [94,95]. This supports the role of CFTR, not only in Cl− transport, but also
in pH regulation.

CFTR is expressed at the apical membrane of airway ciliated epithelial cells, in submu-
cosal glands, and in the recently described ionocytes [7,96,97]. Even though ionocyte-type
cells are rare (1–2% of epithelial cells), single-cell RNA sequencing and Ussing chamber
experiments in human bronchial epithelial cells (HBECs) demonstrated that they express
50% of CFTR transcripts, causing 60% of CFTR-mediated current, whereas the common
ciliated epithelial cells, thought to be the major location of CFTR, express only 1.5% of CFTR
transcripts and mediate 4% of the mean channel current [97]. However, the precise role
of ionocytes in Cl− secretion (and a fortiori in HCO3

− secretion) in the native epithelium
remains unclear. Secretory cells might also play a predominant role in the expression and
function of CFTR in the lungs, as recently reported [98].

At least three points increase the complexity of understanding Cl− vs. HCO3
− trans-

port by CFTR. First, CFTR is not only an anionic channel but also a regulator of other
transport systems, including HCO3

− transporters [99–101]. Physical and/or functional
interactions between CFTR and several transporters from the SLC26 family (A3, A6, A8,
A9 . . . ) have been well documented [102–104]. It has been proposed that CFTR itself
can act as a Cl−/HCO3

− exchanger [105], but this hypothesis is debated [106]. Second,
the respective selectivity of the CFTR channel for Cl− and HCO3

− appears to be dynam-
ically regulated. The transport of Cl− increases at intracellular pH (pHi) values of 6.6
and 6.3, whereas alkaline pHi inhibits Cl− flow [107]. Moreover, the amount of CFTR is
rate-limiting for HCO3

− transport in contrast to Cl− secretion, which nearly reaches the
WT level in CFTR+/F508del pig epithelia [28]. In addition, a low intracellular Cl− con-
centration may switch CFTR from a predominant Cl− channel to a predominant HCO3

−

channel, by activating intracellular Cl−-sensitive kinases (with-no-lysine kinase WNK1,
oxidative stress-responsive kinase 1, OSR1, and sterile 20/SPS1-related proline/alanine-
rich kinase, SPAK) [108,109]. Although this has been shown in pancreatic cells, this may
be a mechanism that is also in place in the lung, as WNK1 and OSR1 are largely present
in the lung [110]. Interestingly some CFTR mutations located in transmembrane domains
selectively decrease the transport of HCO3

− by hindering the physical association between
CFTR and WNK1 [109,111,112]. Third, HCO3

− transport is often assessed indirectly, i.e.,
by measuring pH changes in experimental protocols. It is in this context very difficult to
differentiate between the effects of CFTR on pH values, and those of other transporters,
which renders the interpretation of results difficult [113].

All these observations indicate the importance of CFTR-mediated HCO3
− transport

in the pulmonary epithelium. This is reinforced by the recent observation that correctors of
defective CFTR increase the permeability of the mutated channel to HCO3

− more than to
halide ions [114].

4.1.2. ANO1

Studies in HEK293 cells have shown that the Cl− channel ANO1 becomes highly
permeable to HCO3

− at high intracellular [Ca2+] [100]. Interestingly, in epithelial ciliated
cells, a cross-activation between CFTR and ANO1 (TMEM16A) has been demonstrated,
involving compartmentalized Ca2+ and cAMP crosstalk in specific plasma membrane
domains containing GPCRs, CFTR, and TMEM16A [115].

4.1.3. Apical Cl−/HCO3
− Exchangers

SLC26A4 and A9 belong to the solute carriers SLC26 transporter family, which is
composed of a N-terminal transmembrane domain (TMD) connected to a C-terminal sulfate
transporter anti-sigma factor antagonist (STAS) domain [116]. Multiple studies have shown



Int. J. Mol. Sci. 2021, 22, 3384 9 of 24

physical, biochemical, and functional interactions between SLC26 anion exchangers and
CFTR, leading to reciprocal activation [101,102,117]. This has especially been described for
SLC26A3 and A6 [102,118], and more recently for SLC26A9 [103]. Interestingly, mutations
in the STAS domain abolished this functional activation [102,103,119], suggesting a physical
interaction between the STAS domain of the SLC26 transporters and the R domain of
CFTR [102,117].

4.1.4. SLC26A4 (Pendrin/PDS)

Pendrin is expressed preferentially in goblet cells, and at low levels in ciliated epithelial
cells, but not in ionocytes [120]. Its expression at the apical membrane is increased by
the pro-inflammatory cytokines IL-4, IL-13, and IL-17A [121,122]. The role of SLC26A4 in
HCO3

− transport is still a matter of debate.
Garnett et al. showed that in Calu3 cells, increases in pendrin activity by cAMP/PKA

can induce ASL alkalinization up to pH 7.9 (corresponding to a final concentration of 75 mM
HCO3

−) [101]. Pendrin remained active after the addition of GlyH-101 (a CFTR inhibitor)
and basolateral DIDS (a Cl− channel blocker), which suggests a mechanism independent
of CFTR-mediated HCO3

− secretion. This might not be, however, physiological, as lower
pH values are more frequently reported (Table 2).

Indeed, Shan et al. [62] reported lower HCO3
− concentrations in forskolin-stimulated

fluid secretions (up to pH 7.55, corresponding to a final concentration of 31 mM), and a
reduced HCO3

− flux after inhibition of CFTR, similarly to cells that do not express CFTR.
These observations are consistent with electroneutral Cl−/HCO3

− exchange by pen-
drin working in parallel with electrogenic Cl− secretion mediated by CFTR [101,123]. In this
model, the coupled Cl−/HCO3

− transport is mediated by the cAMP signaling pathway via
protein phosphatase 1 (PP1), which inhibits HCO3

−/Cl− exchange by basolateral AE2 and
activates CFTR, thereby enhancing the electrogenic efflux of Cl−, which is further recycled
by SLC26A4, leading ultimately to HCO3

− secretion [101]. According to this model, CFTR
acts mainly as a Cl− transporter that fuels SLC26A4 to transport HCO3

− into the ASL.
A similar mechanism has been described in pancreatic ductular cells between SLC26A6
and CFTR [101,124].

Several studies have supported the hypothesis of CFTR-pendrin coupling. In primary
cultures of differentiated human airway epithelia, and in secretory cells where both proteins
were co-expressed, Rehman et al. observed that the combination of TNFα+IL-17 increased
CFTR and pendrin expression. This was associated with elevated ASL pH stemming from
increased HCO3

− secretion [120]. Simonin et al. [58] found that inhibition of pendrin by
a specific inhibitor decreased ASL pH. However, this is in contrast to Haggie et al. [67],
who observed no effect on ASL pH. A possible explanation for these contradictory results
is that pendrin expression may vary according to inflammation and culture conditions.

Indeed upregulation of pendrin transcription has been shown in chronic rhinosinusitis
and in rodent models of inflammatory lung diseases [125–127]. More recently, Bajko
et al. [128] showed that stimulation with interleukins IL-4, IL-13, or IL-17a increased
pendrin levels in human bronchial epithelial cells from CF patients (CF HBECs) and
non-CF donors (HBECs) [121,129]. Indeed, modulation of pendrin expression/activity
by inflammation may represent a protective mechanism for re-alkalinization of ASL and
epithelium defense during disease.

4.1.5. SLC26A9

SLC26A9 is widely expressed in the luminal membranes of HBE cells, where it con-
tributes to constitutive Cl− secretion [130,131]. Patch clamp studies, on both cell lines and
transfected HEK cells, showed that SLC26A9 is a highly selective Cl− channel with linear
current-voltage characteristics and minimal HCO3

− permeability [99,132]. Additionally,
electrophysiological studies on different models (HEK, Xenopuslaevis oocytes, and animal
models) showed that SLC26A9 may act as a Cl−/HCO3

− exchanger working in tandem
with an apical Cl− transporter, such as CFTR [133,134]. More speculatively, the channel
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might also switch its permeability from Cl− to HCO3
−, similarly to CFTR [108,135,136].

To date, the contribution of SLC26A9 to HCO3
− transport in airways remains unknown,

and may be cell/tissue dependent.

4.2. Basolateral HCO3
− Transport

4.2.1. Cl−/HCO3
− Exchanger (AE2)

The anion exchanger type 2 (AE2, or SLC4A2) is expressed at the basolateral membrane
of airway epithelium and thought to participate in fluid secretion [137]. AE2 performs the
reversible electroneutral exchange of Cl− for HCO3

−, as directed by the electrochemical
potential gradients, and is in part responsible for the regulation of cytosolic pH and cell
volume [138]. Its activity is downregulated by cAMP agonists, via a PKA-independent
mechanism involving Ca2+, calmodulin, and the protein kinase CK2. This mechanism was
confirmed in primary human nasal epithelia, where CK2 inhibition abolished the activity of
AE2. In Calu3 cells, the involvement of AE2 in anion secretion [139,140] entails the coupled
inhibition of AE2 and the activation of CFTR and pendrin by cAMP agonists, as described
above [101].

4.2.2. Electrogenic Na-Coupled Bicarbonate Co-Transport (NBCe, SLC4A4)

Na+-coupled bicarbonate symports belong to the large SLC4 family (see for re-
view [141]). Among them, NBCe are electrogenic transporters, mediating the co-transport
of 1 Na+ with 2 or 3 HCO3

−, consequently transporting a net negative electrical charge.
NBCe1-B and NBCe2 (aka pNBC1 and NBC4) were identified at the basolateral cell mem-
brane of Calu3 cells [142], confirming an earlier conclusion that an electrogenic, inwardly
directed coupled transport of Na+ and HCO3

− was the basolateral step of transcellular base
secretion, intimately related to Cl− and HCO3

− apical secretion [90]. It is noteworthy that
the regulation of NBCe1-B is finely coupled to that of CFTR [143,144]. First, NBCe1-B has a
consensus phosphorylation site for PKA located in the N-terminus and is stimulated by
cAMP. This is in line with the forskolin-induced stimulation of net transepithelial HCO3

−

transport in Calu3 cells [90]. Second, phosphorylated IRBIT (Inositol-1,4,5-trisphosphate
receptor-binding protein released with IP3), a known activator of CFTR, also stimulates the
activity of NBCe1-B [145], and antagonizes the inhibition of both NBCe1-B and CFTR by
the WNK-SPAK pathway [108,146]. Finally, in transfected HeLa cells, NBCe1-B is sensitive
to the intracellular Cl− concentration [147]. Further studies are needed to confirm the
above regulations in other cell models.

4.2.3. Carbonic Anhydrases (CA)

Carbonic anhydrases (cytosolic, mitochondrial, or membrane-bound CAs) catalyze
the hydration of CO2 and H2O into carbonic acid (H2CO3), which immediately equilibrates
with HCO3

− and H+, thereby leading to a quasi-immediate equilibrium between CO2 and
HCO3

−. In the lungs, CA activity was demonstrated thanks to the effect of acetazolamide
on the conversion of H14CO3

− to 14CO2 [148]. The two fastest CAs, i.e., the cytosolic CAII
and the membrane-bound CAIV (which may also contribute to cytosolic CA activity) [149],
are expressed in the lung. It has been proposed that the association of CAII and CA IV
to various acid–base transporters (AE1, NHE1, NBCe1) forms a metabolon that greatly
accelerates the transcellular transport of acid equivalents [150–153]. Such a functional
complex in Calu3 cells is supported by the acetazolamide-induced decrease in HCO3

−

secretion [90,154], which suggests that some fraction of the transported HCO3
− results

from metabolic cell production. At the ASL interface, if CA catalyzes the immediate
equilibrium of CO2 with HCO3

− and H+, large and rapid pH variations should be observed
at each inspiration/expiration [155]. However, only slow and acetazolamide-insensitive
pH variations were measured, indicating minimal CA activity in ASL, thus preventing large
and rapid changes of ASL pH upon CO2 variations during inspiration/expiration [156].
This means that a disequilibrium pH (i.e., a discrepancy between the measured pH, and the
pH value if CO2-HCO3

−-H+ reactions were at equilibrium) may prevail in the ASL. This
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implies that one can infer HCO3
− concentrations from measured pH values only in steady-

state conditions, an important matter of concern during laboratory experiments, and most
importantly, in vivo.

Several arguments suggest that CA expression/function plays a role in CF. First,
CA IV targeting may be altered in CF cells [157]. Second, the genetic loss of CA XII
function is associated with CF-like features [158]. Third, in co-cultured Calu3 cells/WT
murine lymphocytes, CAII and IV are up-regulated, and HCO3

− secretion is enhanced,
whereas this defense mechanism against infection is impaired in Calu3/CF lymphocytes
co-culture [159].

4.3. Paracellular HCO3
− Transport

The paracellular pathway has mostly been explored to assess the transport of medic-
inal drugs and various molecules (such as cytokines or allergens) in the pulmonary ep-
ithelium [160,161]. Few studies have focused on the ionic permeation properties of the
shunt barrier, which depend largely on the expressed claudins [162]. In human airway
primary cultures, a preferential cationic selectivity was evidenced by measurements of
dilution potentials under open circuit conditions [163]. Recent studies confirmed this
selectivity, and showed that the permeabilities of the shunt pathway to Cl− and HCO3

− are
equal, but that their conductances differ due to their different luminal concentrations [164].
According to the authors’ calculations, the paracellular HCO3

− flux is secretory under
basal conditions (ASL pH < basolateral pH), but it reverses to absorption when ASL pH is
>7.0, a condition reached when transcellular HCO3

− secretion is enhanced by the presence
of pro-inflammatory cytokines [120,164].

5. Acid Transport in Airway Cells

Different observations point to H+ secretion into ASL. Even though both transcellular
and paracellular routes across the airway epithelium are permeable to HCO3

−, normal
steady-state ASL pH has been found to be below blood pH. Moreover, ASL pH re-acidifies
at an initial rate of ~0.2 pH/hour after mild alkalinization, which is equivalent to a net
acid secretion of 3.5 nmol h−1 cm−2 (as per the calculation of Fisher et al. in a ASL of
volume 2.5 µL cm−2 and buffer capacity of 7 mM/UpH) [165]. We describe below the main
transporters involved in acid transport.

5.1. Basolateral Secretion: Na+/H+ Exchangers

Na+/H+ exchangers form a family of transporters that regulate pH homeostasis, with
nine known members: NHE1–9 (SLC9A1 to A9). NHEs mediate the entry into the cell of
extracellular Na+ in exchange for cytosolic H+, with a 1:1 stoichiometry, as dictated by the
chemical gradients of Na+ and H+ [166]. Al-Bazzaz et al. showed by transcript expression
that NHE1 is expressed along the entire human respiratory tract. In particular, the relative
abundance of NHE1 mRNA was found to be higher in the trachea and distal airways in
humans [167].

At the functional level, Paradiso et al. observed a Na+-dependent re-alkalization upon
cytosolic acidification (NH4Cl prepulse method); the pHi recovery was blocked by serosal
but not mucosal amiloride in human nasal epithelial cell monolayers [168]. This suggests a
basolateral localization of NHE1.

Other studies, however, have suggested the potential localization of a Na+/H+ ex-
changer isoform at the apical membrane, based on decreased acid secretion after treatment
with mucosal amiloride in primary human airway epithelia, intact distal airways from pigs,
and tracheal tubes from sheep [56,169–171]. This potential NHE-mediated H+ secretion into
the ASL might explain the association between SLC9A3 variants and the susceptibility to
airway infections in CF patients, but this hypothesis needs experimental support [172–175].
As a whole, the localization of NHEs, their role in regulating ASL pH, and their clinical
relevance need to be further investigated.
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5.2. Apical Secretion
5.2.1. H+/K+ ATPase

HKA2 (ATP12A) belongs to the P2-type ATPase family and shares sequence homolo-
gies with both the gastric H,K-ATPase (ATP4A) and the Na,K-ATPase (ATP1A). HKA2
mediates the electroneutral exchange of H+ for potassium (K+) but may also function in a
Na+/K+ exchange mode [176–178]. HKA2 is inhibited by ouabain (previously thought to
be specific to the Na,K-ATPase) but its sensitivity to SCH28080 (a potent inhibitor of the
gastric H,K-ATPase) is debated. HKA2 is located on the apical side of respiratory epithelia,
particularly in the goblet cells [68,179]. Its trafficking to the apical cell membrane is trig-
gered by its association with the β subunit of Na,K-ATPase, ATP1B1, which is increased in
inflammatory conditions, whereas the Na,K-ATPase (composed of a αcatalytic subunit asso-
ciated with ATP1B1) remains strictly located to the basolateral cell membrane [68]. Of note,
HKA2 expression is low in murine airways, and this may partly explain the very mild
pulmonary CF phenotype in this species [40]. In human primary cell cultures and fresh
tissue, the contribution of ATP12A to ASL pH was thoroughly investigated by Coakley
et al. [42]. They measured a K+-dependent, ouabain-sensitive, SCH28080-insensitive ASL
acidification, a result that supports an acidifying process mediated by HKA2. However,
even though ASL pH was lower in CF cultures than in WT cultures, the acidification rate
was not different. The authors concluded that HCO3

− secretion mediated by CFTR buffers
HKA2-mediated H+ secretion, but that the activity of this pump is the same in CF and WT
cells. This thus would explain the “hyper acidity” of the CF ASL [42]. Interestingly, similar
to CFTR, HKA2 is upregulated by an increase in intracellular cAMP [180]. Supporting
the role of HKA2 in the lower ASL pH observed in CF airway epithelia, Simonin et al.
showed that using ouabain to inhibit HKA2 restored the pH value of CF ASL to that
of WT [58]. The deleterious involvement of HKA2-induced acidification of ASL during
infectious episodes was demonstrated by Shah et al. in pigs and humans. Shah et al.
concluded that in non-CF epithelia, HCO3

− secretion by CFTR balanced H+ secretion by
HKA2, but that in CF epithelia, unbalanced proton secretion occurs, and impairs the host
defenses against bacteria [28]. This observation is reinforced by the upregulation of HKA2
by several interleukins in the context of inflammation [68]. Inhibition of HKA2 in lungs is
therefore expected to be beneficial during CF, as it might increase ASL pH. Up to now, only
ouabain has been proven to inhibit HKA2, but its toxicity precludes its use for therapy.

5.2.2. Hydrogen Voltage-Gated Channel 1 (HVCN1)

The fundamental function of voltage-gated H+ channels is acid extrusion from the cells.
Their open probability depends only on pH or membrane depolarization [181]. H+ channels
were found in airway epithelia, both in primary and immortalized cell lines, and their
activity was localized to the apical membrane [171,182,183]. Ivovannisci et al. demonstrated
that the HVCN1 channel contributes to ASL pH by opening its transmembrane pore when
extracellular pH exceeds 7.0 [184]. Since the membrane potential of airway epithelia is
stable, H+ channel gating must be primarily regulated by the pH gradient across the
apical membrane (increased extracellular pH rather than decreased intracellular pH).
This gradient may be enhanced by DUOX oxidase (nicotinamide adenine dinucleotide
phosphate-oxidase) [182] and/or mitochondria tightly packed at the apical membrane
of airways [185], which can contribute to intracellular H+ production. Fischer proposed
a model with a passive feedback system controlling ASL pH, which combines CFTR
alkalizing the ASL by secreting HCO3

− and voltage-gated H+ channels secreting H+ [186].
It might be disrupted in CF, as suggested by a recent study showing that HVCN1 protein
levels in lysates of nasal cells were significantly lower in CF patients than in healthy
subjects [187].

5.2.3. Vacuolar H+-ATPase

Vacuolar (V-type) H+-ATPases play an important role in regulating pH, by pumping
H+ across membranes against the pH gradient, using the energy from ATP hydrolysis [188].
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The contribution of V-ATPase to ASL pH remains unclear. Whereas some groups observed
that bafilomycin, a specific V-ATPase blocker, raises ASL pH in Calu3 cells and in distal
pig bronchi [56,62,189], others found that bafilomycin has minimal or no effects in human,
pig, and cow airway epithelia [70,171,182,190]. Of note, a study on primary nasal epithelial
cells and cultured lung showed that Pseudomonas aeruginosa inactivates V-ATPase, thereby
reducing the expression and trafficking of CFTR [191].

6. Proposed Model

Altogether, the studies described above indicate that the airways constitutively secrete
both acid and base at substantial rates, which concur to tightly regulate ASL pH. The model
shown in Figure 3 recapitulates our current understanding of acid–base transport across
airway epithelia. Apical HCO3

− secretion is mediated by CFTR, pendrin, and possibly
ANO1, and may be facilitated by the coupling between Cl− secretion via CFTR (and possi-
bly other Cl− channels) and Cl− recycling through Cl−/HCO3

− exchangers. Apical H+

secretion is mediated by ATP-driven H+ transporters, such as ATP12A and V-ATPase, that
carry H+ against the electrochemical potential gradient. In contrast, HVCN1-mediated H+

secretion is passive, and can only occur when the electrochemical potential H+ gradient
is reversed.

Figure 3. Distribution of the currently known acid and base transporters of airway epithelial cells.

Basolateral NBC activity coupled with CA-mediated HCO3
− formation provide

HCO3
− for apical secretion. The protons that are concomitantly formed are reabsorbed

by basolateral NHE1, or secreted into the ASL. In the basal state, AE2, acting in concert
with Na+-HCO3

− cotransporters, enables basolateral Cl− loading and HCO3
− recycling,

which reduces the electrochemical driving force for HCO3
− transport across the apical

membrane. Under cAMP-stimulated conditions, AE2 is inhibited whereas NBCe1 is acti-
vated, both of which enhance the driving force for apical HCO3

− secretion. Paracellular
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HCO3
− transport, the direction of which depends on the ASL pH value, acts as an ASL

protective buffering mechanism.

7. Current Gaps in Knowledge

Many aspects of the model proposed above remain to be elucidated, including the con-
tribution of each epithelial cell type, the role of specific transporters, and regulatory pathways.

Airway secretion is a very complex biofluid, containing ASL, as well as mucins, cell
micro-organisms, and their byproducts.

Mucins are acidic with a low isoelectric point, and should therefore contribute to low
pH buffering, an additional protective factor in inflammatory disease, where their amount
is greatly increased. Indeed, mucins have an excellent acid buffer capacity. This has been
well documented in the intestine [192]. In the lung, Holma et al. studied induced sputum
from smokers, and determined a pH of 6.8 with a buffering capacity by around 7 µM/pH
unit of sputum; they also found that the patients whose sputum contained less mucin
were more prone to pollution induced lung damage [193,194]. A more recent study on
sub mucosal gland (SMG) secretions from the Verkman laboratory yielded a relatively
acidic pH of 7.0–7.2 [65]. Finally, Song, et al. reported in human gland secretions induced
by pilocarpine a buffer capacity of 12 mM/pH unit, decreasing to ~3.7 mM/pH unit,
in HCO3

− free conditions, thereby confirming that HCO3
− is a substantial contributor to

mucus pH [70].
Those observations are of the utmost importance. Indeed, in vitro measurements in ex-

cised porcine bronchi suggested that airway fluid originates primarily from the SMGs [195].
Moreover, in vitro optical studies from individual SMGs from pigs and ferrets showed that
cAMP agonists induced a combination of Cl− and HCO3

− secretion in SMG fluid/mucus
secretion [196]. This process was reduced in CF ferrets and pigs [197]. This is consistent
with the known high level of CFTR expression in SMG serous cells [198] and the fact that
CFTR-Inh 172 inhibits pilocarpine- and forskolin-induced airway SMG secretion in WT,
but not CF pigs and humans [57]. The relative contribution of SMGs, goblet cells, and ep-
ithelial ciliated cells to ASL pH buffering at basal state and during acid load is still unclear.
This is, at least partly, because most of the mechanistic studies were done on specific cell
lines and not on full tissue explant, which would allow better dissecting of the different
pathways of H+ and HCO3

− secretion, and better understanding the physiopathology of
diseases that alter ASL pH. The pH of ASL is also intimately related to its cellular and
bacterial content. Pulmonary diseases can cause accumulation of inflammatory cells, which
in turn release reactive oxygen species and other byproducts of aerobic metabolism that
cause damage to lipids, proteins, and DNA, and modify the buffering capacity of airway
secretions. Pulmonary diseases also induce microbiota dysbiosis, as well as alterations
of the structure of the airways and the formation of niches, that favor the growth and
increase of common commensal bacteria. The relationship between microbiota and pH
is complex. Indeed, Ratske et al. [199] showed that, bacteria can change the pH of the
microenvironment by producing metabolites, namely indoles and organic acids. Organic
acids lower lung mucus pH, which in turn favors anaerobic fermentation and the pro-
duction of propionic acid. In the lung, this could contribute to a further decrease in the
buffering capacity of airway secretions and low sputum pH [200].

Our understanding of the function of each cell type remains very limited. Which cells
contribute significantly to HCO3

− and/or H+ secretion? Do ciliated cells play a role in the
process of pH homeostasis? What is the role of secretory cells? Does this change along the
airways? Is substantial acid and base secretion made possible by large H+ and HCO3

−

fluxes across a small number of cells, or by small fluxes across a large number of cells?
The respective roles of the different transporters, and how their action is coordinated

are still unclear. The following issues can be highlighted.
Regarding HCO3

− transport, the relative contribution of CFTR and pendrin to apical
HCO3

− secretion remains unclear. Some investigators have reported that CFTR is the main,
if not the only, apical HCO3

− transporter in Calu3 and native airway epithelial cells [62,201].
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However, several recent studies have suggested that pendrin-mediated HCO3
− secretion

plays a more important role than CFTR-mediated HCO3
− secretion in regulating ASL pH,

as observed in porcine airway epithelial cells [50], human nasal, and bronchial epithelial
cells pre-treated with IL-4 [129], and cAMP-activated Calu3 cells [101]. Recently, SNPs in
the SLC26A9 gene were found to be associated with CF-related disease onset, suggesting
that SLC26A9 acts as a CFTR regulator [202], and may be involved in the response to
CFTR-directed therapeutics [172,203]. Whether this might involve modification of pH ASL
is unknown.

The mechanisms underlying basolateral HCO3
− transport have not been fully deci-

phered. NBCe1-B and NBCe2 have been identified on the basolateral side of the pulmonary
epithelium. Both are electrogenic, but whether they operate as a 1Na+:2HCO3

−, 1Na+:3
HCO3

−, or 1Na+:1HCO3
−:1CO3

2− cotransporter is not yet established [141,204]. Aside
from a heuristic viewpoint, the stoichiometry of these symports has physiological rele-
vance. Depending on the value of the basolateral membrane potential and their respective
reversal potential, the direction of the NBC-mediated transport may reverse, switching
from basolateral HCO3

− influx into the cell, to efflux out of the cell.
Regarding H+ transport, the physiological role of HKA2 and its therapeutic target

potential remain to be clarified. Whether apical K+ recycling via K+ channels acts to enhance
H+ secretion by HKA2 is unknown. Indeed, upregulation of the K+ channel KCNMB4a by
IL-4 has been shown by microarray analysis in bronchial epithelial cells (BE37), but this was
not characterized at the protein level [179]. Interestingly, Coakley et al. showed that the K+

channel blocker barium did not alter ASL acidification rates, arguing against a significant
K+ conductance on the apical cell membrane [42]. Moreover, several studies indicate
that HKA2 might switch from a H+/K+-ATPase to a Na+/K+-ATPase [176,178]. In the
native renal collecting duct, this mode leads to luminal Na+ secretion [205]. Interestingly,
a recent study showed that the Na+/K+ exchange mode of HKA2 is induced by increases
in intracellular cGMP [206], and thus indirectly related to NO, whose level is decreased
in CF epithelial cells. Importantly, there have been conflicting findings regarding the
sensitivity of HKA2 to the inhibitors of the gastric H/K-ATPase (see for review [207]).
These discrepancies are possibly explained by a tissue- (or species-) dependence of HKA2
sensitivity. The search for non-toxic HKA2 inhibitors is under active investigation.

Finally, as described above, the binding of CAII and CAIV to acid–base transporters
may form a “metabolon” [150,151,153]. As reviewed by Pushkin and Kurtz, this functional
complex would greatly enhance transcellular HCO3

− fluxes across transporters from
the SLC4 family [152], but this remains a matter of debate [208]. Further studies on the
physical/functional link between CA and acid–base transporters in the different cell types
in normal and in CF conditions are necessary, and may identify novel therapeutic targets.

8. Conclusions

There is increasing evidence that ASL pH is linked to airway function, and that the
tight regulation of ASL pH is crucial to airway homeostasis. Recent progress has led to
a better understanding of acid and base transporters in airway epithelium. However,
knowledge on how the transepithelial transport of H+ and HCO3

− is coordinated to tightly
regulate ASL pH is clearly limited. This should be the focus of new studies to improve our
understanding of physiology and disease, and identify therapeutic targets.
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