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Abstract

Background: Recognition of the airway epithelium as a central mediator in the pathogenesis of asthma has
necessitated greater understanding of the aberrant cellular mechanisms of the epithelium in asthma. The architecture
of chromatin is integral to the regulation of gene expression and is determined by modifications to the surrounding
histones and DNA. The acetylation, methylation, phosphorylation, and ubiquitination of histone tail residues has the
potential to greatly alter the accessibility of DNA to the cells transcriptional machinery. DNA methylation can also
interrupt binding of transcription factors and recruit chromatin remodelers resulting in general gene silencing.
Although previous studies have found numerous irregularities in the expression of genes involved in asthma, the
contribution of epigenetic regulation of these genes is less well known. We propose that the gene expression of
epigenetic modifying enzymes is cell-specific and influenced by asthma status in tissues derived from the airways.

Methods: Airway epithelial cells (AECs) isolated by pronase digestion or endobronchial brushings and airway
fibroblasts obtained by outgrowth technique from healthy and asthmatic donors were maintained in monolayer
culture. RNA was analyzed for the expression of 82 epigenetic enzymes across 5 families of epigenetic modifying
enzymes. Western blot and immunohistochemistry were also used to examine expression of 3 genes.

Results: Between AECs and airway fibroblasts, we identified cell-specific gene expression in each of the families
of epigenetic modifying enzymes; specifically 24 of the 82 genes analyzed showed differential expression. We
found that 6 histone modifiers in AECs and one in fibroblasts were differentially expressed in cells from asthmatic
compared to healthy donors however, not all passed correction. In addition, we identified a corresponding
increase in Aurora Kinase A (AURKA) protein expression in epithelial cells from asthmatics compared to those
from non-asthmatics.

Conclusions: In summary, we have identified cell-specific variation in gene expression in each of the families of
epigenetic modifying enzymes in airway epithelial cells and airway fibroblasts. These data provide insight into the
cell-specific variation in epigenetic regulation which may be relevant to cell fate and function, and disease
susceptibility.
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Background

Asthma is a chronic inflammatory condition of the air-
ways that affects around 300 million people worldwide
[1]. The airway epithelium, derived from the endoderm,
is the first structural barrier to the inhaled environment
in the airway mucosa. In asthma, the airway epithelium
has an altered phenotype displaying altered cell cycle
kinetics and increased numbers of basal cells [2, 3]. In
addition, the lamina propria of asthmatic donors con-
tains resident fibroblasts, derived developmentally from
the mesoderm, that have been shown to exhibit an inva-
sive and synthetic phenotype [4-8]. How these alter-
ations in cellular phenotype occur in the disease is
unknown but it is clear from the many genomic studies
that asthma involves both genetic and environmental
components.

The epigenetic landscape is essential in determining cell
fate through histone modification and DNA methylation
patterns that regulate the expression of genes integral to
cellular development and differentiation [9-11]. Covalent
modifications of the histone N-terminal tails can regulate
gene expression and include acetylation, methylation,
phosphorylation, and ubiquitination [12, 13]. Histone
acetylation and phosphorylation are associated with a
more open chromatin structure and gene expression,
whereas histone methylation and ubiquitination can work
both in a gene repressive and expressive manner depend-
ing on the target residue [13-17]. The enzymes respon-
sible for the addition/removal of these modifications
include: histone acetyltransferases (HATSs)/deacetylases
(HDAC:), protein kinases/phosphatases, histone methyl-
transferases (HMTs)/demethylases (HDMs), and ubiquitin
ligases/deubiquitinating enzymes (DUBs) [13, 17]. DNA
methylation is facilitated by DNA methyltransferases
(DNMTs) that add a methyl group to cytosine bases,
forming 5-methylcytosine (5-mC) [12]. Addition of this
mark at a gene promoter is generally associated with tran-
scriptional repression and gene silencing [12, 18]. Further-
more, the epigenome is adaptable; it has the capability to
respond to and be modified by environmental factors [10].
The outcome of this interaction depends on the environ-
mental stressor and can be a normal physiological re-
sponse or deregulation of the epigenome producing an
abnormal phenotype [10, 19].

Abnormal epigenetic control of gene expression has
been identified in both fibroblasts and epithelial cells in
numerous pathologies [20-25]. However, very little is
known about the expression and regulation of epigenetic
modifying enzymes in asthma. Indeed, dysregulation of
epigenetic mechanisms in asthma has been identified in
a variety of cells but most studies have been performed
in tissues from outside of the lung [26]. While dysregula-
tion of enzymes involved in histone acetylation was
identified in the airways of asthmatics, there is still
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disagreement on the exact enzymes responsible [27-30].
We have additionally identified unique DNA methyla-
tion patterns in airway epithelial cells (AECs) from asth-
matic donors [31] yet research on the variability of the
enzymes responsible for these changes is lacking.

To further elucidate the mechanisms driving the epi-
genetic alterations observed in the asthmatic airways, a
better understanding of the gene expression profiles of
epigenetic modifying enzymes in airway tissues is re-
quired. We hypothesize that the gene expression of
epigenetic modifying enzymes is cell-specific and influ-
enced by asthma status in tissues derived from the air-
ways. Specifically, the aim of this study was to identify if
the expression profiles of epigenetic modifying enzymes
is cell- and disease-specific by profiling 82 genes across
5 families of epigenetic enzymes in AEC and fibroblasts
from healthy and asthmatic donors. We identified 24
cell-specific and 7 disease-specific  differentially
expressed genes (6 in AECs and one in fibrolasts). Al-
though not all of the disease-specific genes passed cor-
rection, we were able to identify a corresponding change
in AURKA protein expression in asthmatic compared to
healthy individuals.

Methods

Sample collection

AECs and airway fibroblasts obtained from de-identified
human lungs from asthmatic and healthy donors not
suitable for transplantation and donated for medical re-
search were obtained though the International Institute
for the Advancement of Medicine (Edison, NJ). A lung
was identified as healthy if the donor had no history of
asthma or other pulmonary disease or damage. Conduct-
ing airways down to the 5™ generation were used for
AECs isolation by pronase digestion and airway fibro-
blasts were obtained by outgrowth technique as previ-
ously described [32, 33]. Endobronchial airway brushings
from patients were also used to obtain AECs as previ-
ously described [34, 35]. AECs were grown in Bronchial
Epithelial Growth Medium (BEGM, Lonza, Walkersville,
MD) containing 100U/mL penicillin and 100ug/mL
streptomycin, whereas fibroblasts were grown in Dulbec-
co’s Modified Eagle’s medium (DMEM) (Invitrogen, Bur-
lington, ON, Canada) supplemented with 10% FBS,
2 mM L-glutamine, and 1% antibiotic/antimycotic solu-
tion. Cultures were maintained at 37 °C in a humidified
95% air/5% CO, atmosphere to passage 2. Donor demo-
graphics are provided in Table 1.

Gene expression

AECs and airway-derived fibroblasts were grown in 6-
well plates to 80% confluence, at which point RNA was
collected using RNeasy Mini Kits (Qiagen). 500 ng of
RNA was used to synthesize cDNA using the RT? First
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Table 1 Donor demographics including disease status, age, cell type, and sex

Cell type Disease status Number Cell source (W/B) Sex (M/F) Average Age® (range)
AEC Asthmatic " 7/4 5/6 18.8 (8-29)

Healthy 13 8/5 6/7 226 (11-42)
Fb Asthmatic 6 6/0 6/0 20.8 (10-36)

Healthy 6 6/0 6/0 18.2 (5-43)

Airway epithelial cells (AECs) and airway fibroblasts (Fb) were collected from healthy and asthmatic donors. Cell source is identified by whole lung (W) or brushing
(B). There were no differences for age between all groups by one-way ANOVA; p =0.69

Strand Kit (Qiagen). cDNA was then combined with 2x
RT2 SYBR Green Mastermix (Qiagen) and RNase-free
water and distributed onto a manufacturer optimized
384-well Human Epigenetic Chromatin Modification
Enzymes Focused Array (PAHS-085E-4, Qiagen) pre-
loaded with primers targeting 84 genes encoding epigen-
etic enzymes and 5 housekeeping genes as per manufac-
turer’s protocol. A complete list of the genes that were
analyzed is available in Table S1 (Additional file 1).
Additionally, to identify gene expression of CREBBP and
EP300, cDNA was combined with 2x RT2 SYBR Green
Mastermix, RNase-free water, and primers targeting
CREBBP (PPH00324F-200, Qiagen), EP300 (PPH00319A-
200, Qiagen), hypoxanthine phosphoribosyltransferase 1
(HPRT1, PPH01018C, Qiagen), ribosomal protein L13a
(RPL13A, PPHO01020B-200, Qiagen), and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH, PPHO0150F, Qia-
gen) and loaded onto 384-well reaction plates. Data clean-
ing and housekeeping gene selection is described in
Supplementary Methods (Additional file 2). Target gene
expression was calculated using the delta Ct method:
2/ (CHousekeeping Gene — C;Target Gene)*10000.

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and immunoblot

Protein was collected from AECs and airway fibroblasts
in culture and electrophoresed on a 12.5% SDS-
polyacrylamide gel. Membranes were first incubated
overnight with primary antibody (Table 2), then with
goat anti-mouse IR-800 (1:2500, Vector Laboratories) or
goat anti-rabbit Alexa 680 (1:2500, Invitrogen) secondary
antibody, and finally imaged on the LI-COR Odyssey
system. Odyssey software 1.1 was used to perform densi-
tometry (LI-COR Biotechnology, Lincoln, NE, USA).
Data for AURKA and SMYD3 were normalized to f3-

Table 2 Antibodies used in experiments

tubulin and hsp-90 respectively. A two-tailed unpaired -
test was performed, a p-value of less than 0.05 was con-
sidered significant.

Immunohistochemical staining

Airway sections were formalin fixed and paraffin embed-
ded prior to immunohistochemical staining. Sections
were deparaffinized, rehydrated, processed for antigen
retrieval and incubated overnight at 4 °C with CREBBP
antibody (Table 2). Sections were subsequently incu-
bated with a biotinylated goat anti-rabbit secondary anti-
body (1:100, Vector Laboratories, Burlingame, CA, USA)
prior to visualization with Streptavidin-HRP (Dako) and
3,3-diaminobenzidine (Dako). Slides were counterstained
with Harris Hematoxylin solution (Sigma, St. Louis,
MO, USA) and dehydrated before coverslipping with
Cytoseal 60 medium (Richard-Allan Scientific, Kalama-
z00, MI, USA).

Using the Nikon Eclipse 700 (Nikon Instruments, Mel-
ville, NY, USA) with a 60x objective and SPOT Ad-
vanced software (Diagnostic Instruments, Sterling
Heights, MI, USA), five images were obtained from each
section. These images were analyzed for positively and
negatively stained nuclei using ImagePro Plus software
(Media Cybernetics, Rockville, MD, USA).

Principal component analysis (PCA)

Principal components analysis was performed to assess
sources of variation in our gene expression dataset. Prin-
cipal components were obtained as a new set of orthog-
onal variables by extracting eigenvectors from singular
value decomposition of the expression matrix, and
ranked by the size of their respective eigenvalue, repre-
senting the component of overall variation.

Epitope Host Company Catalogue number Primary antibody dilution
SMYD3 Rabbit Abcam ab155018 1/1000

AURKA Mouse Cell Signaling 12100 1/500

Hsp90 Mouse BD Biosciences 610418 1/1000

B-tubulin Mouse Millipore 05-661 1/2000

CREBBP Rabbit Santa Cruz Biotechnology sc-369 1/50
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Co-expression analysis

Co-expression analysis was performed by calculating
Spearman correlations between genes using pairwise-
complete observations. This correlation matrix was then
used to generate heatmaps showing co-expression be-
tween genes. Using the correlation matrix, we calculated
the effective number of independent variables (ENIV) in
each data set using spectral decomposition [36]. For ana-
lyses using both AECs and airway fibroblasts, only AECs,
and only airway fibroblasts, the adjustment value was
found to be 21.38, 21.52, and 15.25 respectively.

Statistical analysis

All data were log2 transformed prior to statistical ana-
lysis. Sex was correlated with the expression of most tar-
get genes, so was included as a covariate where
applicable. Linear regression including sex and disease
status as covariates was used to test the association be-
tween gene expression and cell-type. Since the fibroblast
samples were isolated only from males, the interpret-
ation of this model can only be generalized to the male
population. Linear regression was also used to test the
association of disease in AECs adjusting for gender as a
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covariate. For fibroblasts, we did not adjust for any co-
variates and a t-test was employed to identify signifi-
cantly different gene expression. All statistical analysis
and figures were generated using the R software version
3.0.2 [37] and the ggplots2 package [38].

Results

Airway cell-specific expression of epigenetic modifying
enzymes

We profiled the expression of 82 genes across 5 families
of epigenetic modifying enzymes in AECs and airway fi-
broblasts from healthy and asthmatic donors (Fig. 1).
We observed that 53.81% of the variation across both
cell types could be accounted for by the first principal
component, PC2 accounted for 15.53% of the variation,
and PC1 and PC2 combined explained 69.34% of the
total variation in the data. Due to limitations in access to
clinical characteristics of our cohort, we could not iden-
tify the variable resulting in the greatest source of vari-
ation PC1. However, given expression differences existed
between cell types, we next proceeded to determine cell-
specific gene expression profiles.

PC2 (15.53%)

[ ]
A

Disease
A Healthy
@ Asthmatic

Sex

@ Male
O Female
Cell Type

@ AEC
Fb

in blue

0
PC1 (53.81%)

Fig. 1 Principal component analysis (PCA) of epigenetic modifier enzymes in airway epithelial cells (AECs) and airway fibroblasts. Gene expression
levels of 82 genes were used to construct the PCA plot. Healthy samples are identified with a triangle, asthmatic samples with a circle. Filled
symbols indicate male samples whereas open symbols indicate female samples. AECs are shown in black and airway fibroblasts (Fb) are shown
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Co-expression analysis within healthy donors from
AECs and fibroblasts showed that the epigenetic modi-
fier enzyme genes which we examined were heavily co-
expressed, with the majority showing positive co-
expression (Fig. 2).

Examination of differentially expressed genes between
AECs and airway fibroblasts revealed 39 genes, of which
24 passed ENIV correction (Fig. 3 and Additional file 3:
Table S3). Of the 24 genes, all showed increased expres-
sion in AECs as compared to airway fibroblasts. The dif-
ferentially expressed genes were part of the DNA
methylation (2 genes), histone methylation (6 genes), his-
tone phosphorylation (3 genes), histone ubiquitination (2
genes), and histone acetylation (11 genes) families.

Disease specific alterations in gene expression of

epigenetic modification enzymes in airway epithelial cells
To identify if asthma status influences epigenetic modi-
fying enzymes, we compared the gene expression of the
82 genes in AECs derived from healthy and asthmatic
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donors (Additional file 4: Table S4). Although only
CREBBP passed ENIV correction, linear regression iden-
tified differential expression of 6 genes: down regulation
of the acetyltransferases CREBBP and EP300 and up
regulation of the kinase AURKA, the ligases DZIP3 and
the methyltransferases EHMT2 and SUV39H1 (Fig. 4).

To confirm whether the observed changes in CREBBP
and AURKA mRNA expression in AECs correspond to
protein expression we performed immunohistochemistry
and immunoblot. Although protein expression of
CREBBP was not different between asthmatic (24.76 +
3.47) and healthy donors (26.76 + 5.46, p =0.77, Fig. 5a
and b), AURKA was significantly elevated in AECs from
asthmatic (0.025 + 0.003) as compared to healthy donors
(0.017 £ 0.002, p = 0.04, Fig. 5c and d).

Disease specific alterations in expression of epigenetic
modification enzymes in airway fibroblasts

Next, we investigated if any differences existed in the 82
genes in airway fibroblasts isolated from healthy and
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Fig. 2 Co-expression heatmap of epigenetic modifying genes. Gene expression from both AECs and fibroblast cells from healthy individuals was
used to analyze degree of co-expression of 82 genes involved in epigenetic mechanisms. Genes are listed on the x- and y-axis, blue indicates
positive co-expression and pink indicates negative co-expression of genes
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asthmatic donors. We found increased mRNA expres-
sion of the histone methyltransferase SMYD3 in airway
fibroblasts from asthmatics. However, this statistical sig-
nificance did not pass ENIV correction (p=0.02 and
0.37 after correction, Fig. 6a). When assessing protein
expression of SMYD3, we found no significant difference
in SMYD3 protein expression in airway fibroblasts iso-
lated from healthy (0.85+0.07) and asthmatic donors
(0.94 + 0.04, p = 0.23, Fig. 6b and c).

Discussion

This is the first study to evaluate the gene expression
levels of histone and DNA modifier enzymes in AECs
and airway fibroblasts derived from human lung tissue.
We found significantly higher expression for 24 of these
enzymes in AECs compared to airway fibroblasts from
healthy individuals. Further, we demonstrate that
AURKA is differentially regulated in AECs from asth-
matic compared to healthy donors. In addition, we iden-
tified a corresponding increase in AURKA protein
expression in AECs from asthmatic compared to healthy
donors, further supporting our findings. Even though
AECs and fibroblasts reside in close proximity within
the airway mucosa, the function of each cell is very dif-
ferent. These data support the notion that epigenetic
modulation of gene expression may be important for cell

type specificity, and may potentially influence suscepti-
bility to diseases such as asthma.

Multiple studies have documented differential DNA
methylation in relation to tissue and cell specificity, and
how this is altered in diseases [31, 39-41]. Yet very few
studies have focused on the global expression of en-
zymes responsible for DNA methylation expression. In
our study, DNMT3a and MBD2 were both elevated in
AECs compared to airway fibroblasts. DNMT3a is not
only integral for mammalian development but also re-
sponsible for de novo DNA methylation [42]. It is pos-
sible that the elevated DNMT3a seen in AECs may
reflect the cell’s geographical position. The airway epi-
thelium is constantly in contact with external environ-
mental factors thus must be responsive and adaptable to
incoming stimuli. Elevated DNMT3a allows the cell to
methylate genes de novo in response to these environ-
mental stimuli. The increased expression of MBD2 may
be a response to the increase in DNMT3a as MBD2 is a
transcriptional repressor which binds methylated DNA
[43]. To further support this theory, the complex which
MBD2 forms to repress gene expression is not strongly
bound to the DNA [43] suggesting a transient visit as
would be expected from a responsive reaction.

The outcome of an epigenetic change can be variable
depending on the particular modification that occurs.
Methylation of lysine and arginine residues on histone
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tails is facilitated by enzymes which are specific to both
residue and site yet the outcome can activate or repress
transcription [13]. In contrast, histone acetylation, com-
monly associated with gene expression, is regulated by
enzymes that have been described as promiscuous in
their substrate specificity [14]. We identified differential
expression of enzymes involved in both histone methyla-
tion and acetylation in AECs compared to airway fibro-
blasts. Of the 6 enzymes involved in histone methylation,
half target the activating mark H3K4me; SETD3 methyl-
ates while KDM5B and KDM1A demethylate H3K4. This
may indicate that AECs preferentially utilize H3K4 methy-
lation over others to control gene expression. A similar
observation was seen with histone acetylation as 5 HATs
and 6 HDACs were identified. Three of the HDACs that
were elevated in AECs comprise 75% of the class I HDAC
family of enzymes important in controlling proliferation,
differentiation, and tissue development programs [44].
Higher expression of the majority of the class I HDAC
family of enzymes in epithelial cells may be a reflection of
their considerable specialization as they have the capacity
to differentiate and develop into a variety of epithelial cell
types, which requires manipulation of the processes men-
tioned above.

We found elevated expression of 3 histone kinases and
2 DUBs when we compared AECs to airway fibroblasts.
Although histone phosphorylation is commonly associ-
ated with gene activation, histone ubiquitination can re-
sult in both permissive and repressive states depending

on the residue. However, all of the resulting histone
modifications from the 5 above enzymes are associated
with gene expression. This suggests there may be an im-
balance in the regulation of these activating marks in
AECs, potentially indicating lower levels of cellular tran-
scriptional activity in airway fibroblasts compared to
AECs.

Through its interaction with B-catenin, CREBBP has
recently been identified as a pivotal component of the
machinery maintaining an undifferentiated and prolifera-
tive state [45]. Inhibition of this interaction facilitates -
catenin and EP300 pairing which is thought to control
cell differentiation [45, 46]. Our findings of decreased
gene expression of CREBBP in AECs from asthmatics
may indicate a divergence away from a proliferative state
towards an initiated, but incomplete differentiation path-
way. This imbalance of proliferation/differentiation
mechanisms may contribute to the phenotypically im-
mature epithelium seen in asthmatic airways.

In the context of disease, aurora kinases have been
linked to spermatogenic arrest, chromosomal instability,
and tumorigenicity in pathologies such as infertility,
chronic inflammation, and a wide range of cancers [47—
49]. AURKA is capable of phosphorylating H3S10, a site
implicated in both gene activation and cell division [15,
50]. In a murine model of wound repair, rapid and sus-
tained phosphorylation of H3S10 was associated with
wound healing in intestinal epithelial cells [51]. Further,
although the mechanism is not fully clear,
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phosphorylation of H3S10 is a critical component of
chromatin compaction during mitosis [52]. Given that
AECs from asthmatics are mitotically dyssynchronous
[53], show defects in cell cycle regulation [54], and ex-
hibit abnormal proliferation and delayed wound repair
[55-57], our finding of increased AURKA expression
may indicate aberrant regulation of these processes in
asthma.

We identified elevated mRNA expression of the his-
tone methyltransferase SMYD3 in airway fibroblasts
from asthmatics. SMYD3 is integral to cell cycle regu-
lation through interactions with RNA polymerase II
and methylation of H3K4 [58]. In addition to gene
activation through H3K4 methylation, SMYD3 is cap-
able of gene repression through H2K20 methylation
[59], suggesting a complex role for this enzyme. How-
ever, although differences in gene expression were
seen, we were unable to replicate these findings at
the protein level possibly indicating a further level of
transcriptional control.

While we found many cell-specific and some disease
specific changes in the enzymes involved in epigenetic
modification, there are limitations to our study. We used
a cell culture model that does not necessarily represent
the complexity of cell — cell interactions known to be in-
tegral to airway mucosal homeostasis. However, a cell
culture model allowed us to identify differences in the
epigenetic modification families in relatively undifferen-
tiated epithelial cells and fibroblasts under controlled
conditions. Although we examined gene and protein ex-
pression of the epigenetic modifiers associated with
asthma, we did not assess the activity of these enzymes,
which has been shown to differ in disease. In addition,
due to the sample size, we were unable to examine sex
differences within our samples. Lastly, we did not look
at the targeted epigenentic changes as a result of the dif-
ferential expression of the epigenetic modifying enzymes
and further studies would need to be performed to solid-
ify the functional effects of the cell and disease specific
changes we described in our cohort.

Conclusions

In summary, we identified cell-specific variation in
gene expression in each of the families of epigenetic
modifying enzymes in AECs and airway fibroblasts.
These data provide insight into the cell-specific vari-
ation in epigenetic regulation which may impact the
functions of different cell types. We identified disease
specific dysregulation of the histone kinase AURKA
in AECs, which may play a role in processes import-
ant in the pathogenesis of asthma such as prolifera-
tion and inflammation. These findings provide further
evidence of the importance of the epigenome in cell
development and function.
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