organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 5-(ethoxycarbonyl)-3-(4-methoxy-phenyl)-1*H*-pyrazole-1-acetate

Wen-Liang Dong,^{a,b} Yan-Qing Ge^a and Bao-Xiang Zhao^{a*}

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bShandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China Correspondence e-mail: bxzhao@hotmail.com

Received 26 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.166; data-to-parameter ratio = 17.2.

In the title compound, $C_{17}H_{20}N_2O_5$, all bond lengths and angles show normal values. The dihedral angle between the pyrazole ring and the benzene ring is 6.98 (11)°. The molecules are linked by intermolecular $C-H \cdots \pi$ interactions.

Related literature

For related literature, see: Allen *et al.* (1987); Brough *et al.* (2005); Cheng *et al.* (2006); Dong *et al.* (2007); Sehon *et al.* (2006); Wei *et al.* (2006); Xia *et al.* (2007).

Experimental

Crystal data $C_{17}H_{20}N_2O_5$ $M_r = 332.35$ Triclinic, P1

a = 7.4267 (1) Å

b = 11.0511 (2) Å

c = 11.7139 (2) Å
$\alpha = 106.721 \ (1)^{\circ}$
$\beta = 97.898 \ (1)^{\circ}$
$\gamma = 106.796 (1)^{\circ}$
V = 855.59(3)Å ²

Z = 2
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector	13041 measured reflections
diffractometer	3806 independent reflections
Absorption correction: multi-scan	2376 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.023$
$T_{\min} = 0.846, \ T_{\max} = 0.974$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 3 restraints $wR(F^2) = 0.166$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.32 \text{ e } \text{ Å}^{-3}$ 3806 reflections $\Delta \rho_{min} = -0.16 \text{ e } \text{ Å}^{-3}$ 221 parameters $\Delta \rho_{min} = -0.16 \text{ e } \text{ Å}^{-3}$

Table 1

 $X-H\cdots\pi$ -ring interactions calculated by *PLATON* (Spek, 2003). Cg^i is a centroid of the pyrazole ring N1/N2/C8/C9/C10.

T = 296 (2) K $0.45 \times 0.39 \times 0.28 \text{ mm}$

$X - H \cdots Cg$	Х-Н	$H \cdots Cg$	$X \cdots Cg$	$X - H \cdots Cg$
$C1-H1A\cdots Cg1^{i}$	0.96	2.89	3.731 (3)	147

Symmetry code: (i) 1 + x, y, z. Cg1 is the centroid of the pyrazole ring.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This study was supported by the Natural Science Foundation of Shandong Province (grant No. Y2005B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2063).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brough, P. A., Barril, X. & Beswick, M. (2005). Bioorg. Med. Chem. Lett. 15, 5197–5201.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, H., Lundy DeMello, K. M., Li, J. & Sakya, S. M. (2006). Bioorg. Med. Chem. Lett. 16, 2076–2080.
- Dong, W.-L., Dong, W.-L., Xia, Y., Ge, Y.-Q. & Zhao, B.-X. (2007). Acta Cryst. E63, 04468.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sehon, C., McClure, K., Hack, M., Morton, M., Gomez, L. & Li, L. (2006). Bioorg. Med. Chem. Lett. 15, 1677–1680.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342–6347.
- Xia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893–6899.

Acta Cryst. (2008). E64, o64 [doi:10.1107/S1600536807057297]

Ethyl 5-(ethoxycarbonyl)-3-(4-methoxyphenyl)-1H-pyrazole-1-acetate

W.-L. Dong, Y.-Q. Ge and B.-X. Zhao

Comment

The pyrazole unit is one of the core structures in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as antagonists (Sehon *et al.*, 2006), anti-inflammatory (Cheng *et al.*, 2006), inhibitors of the Hsp90 (Brough *et al.*, 2005), antitumor (Wei *et al.*, 2006; Xia *et al.*, 2007). In our previous paper, we reported the crystal structure of ethyl 3-(4-chlorophenyl)-5-(ethoxycarbonyl)-1*H*-pyrazole-1-acetate (Dong *et al.*, 2007). We report here the crystal structure of the title compound, (I).

In compound (I) (Fig. 1), all bond lengths and angles are normal (Allen *et al.*, 1987). The dihedral angles between the rings of the pyrazole and the benzene ring is 6.98 (11)^o. The two ethyl carboxylate groups are inclined to the attached pyrazole ring by 2.16 (9)^o and 75.95 (11)^o, respectively. The molecules are linked into a network parallel by C—H··· π interactions (Table 1) involving the pyrazole ring (centroid *Cg*1). We report here the crystal structure of the title compound, (I).

Experimental

A mixture of ethyl 3-(4-methoxyphenyl)-1*H*-pyrazole-5-carboxylate (0.01 mol), ethyl chloroacetate (0.015 mol) and potassium carbonate (0.02 mol) in acetonitrile (50 ml) was heated to reflux for 15 h. The solvent was removed under reduced pressure, and the residue was dissolved in the mixture of water (50 ml) and ethyl acetate (50 ml). After separated, the water phase was extracted with ethyl acetate (25 ml), and then the organic phase was combined, dried over anhydrous magnesium sulfate and filtered. The solvent was removed under reduced pressure. The solid product was recrystallized from ethyl acetate (yield 55%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 6 d.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH₂ groups) and 0.96 Å (for CH₃ groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH₃ groups) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1. The structure of the title molecule showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Packing view of (I), shown down the a axis.

Ethyl 5-(ethoxycarbonyl)-3-(4-methoxyphenyl)-1H-pyrazole-1-acetate

Crystal data	
$C_{17}H_{20}N_2O_5$	Z = 2
$M_r = 332.35$	$F_{000} = 352$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.290 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 7.4267 (1) Å	Cell parameters from 3567 reflections
b = 11.0511 (2) Å	$\theta = 3.0-24.5^{\circ}$
c = 11.7139 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 106.721 \ (1)^{\circ}$	T = 296 (2) K
$\beta = 97.898 \ (1)^{\circ}$	Prism, colourless
$\gamma = 106.796 \ (1)^{\circ}$	$0.45 \times 0.39 \times 0.28 \text{ mm}$
$V = 855.59 (3) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	3806 independent reflections
Radiation source: fine-focus sealed tube	2376 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 296(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.846, T_{\max} = 0.974$	$k = -14 \rightarrow 14$
13041 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.166$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0775P)^2 + 0.1127P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3806 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
221 parameters	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.016 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.7281 (3)	0.0919 (3)	0.9802 (3)	0.1071 (8)
H1A	-0.7815	0.0997	0.9043	0.161*
H1B	-0.8148	0.0990	1.0334	0.161*
H1C	-0.7110	0.0062	0.9639	0.161*
C2	-0.4043 (3)	0.2015 (2)	0.9716 (2)	0.0792 (5)
C3	-0.2328 (3)	0.3033 (2)	1.0311 (2)	0.0871 (6)
Н3	-0.2183	0.3626	1.1091	0.104*
C4	-0.0829 (3)	0.3176 (2)	0.9754 (2)	0.0815 (6)
H4	0.0339	0.3872	1.0170	0.098*
C5	-0.0974 (3)	0.23132 (17)	0.85765 (17)	0.0676 (5)
C6	-0.2716 (3)	0.1283 (2)	0.7993 (2)	0.0783 (6)
H6	-0.2865	0.0685	0.7214	0.094*
C7	-0.4285 (3)	0.1127 (2)	0.8567 (2)	0.0823 (6)
H7	-0.5462	0.0432	0.8171	0.099*
C8	0.0682 (3)	0.25088 (16)	0.80054 (16)	0.0645 (5)
C9	0.0946 (3)	0.17110 (17)	0.69185 (17)	0.0674 (5)
Н9	0.0062	0.0898	0.6365	0.081*
C10	0.2765 (3)	0.23673 (16)	0.68338 (16)	0.0640 (5)
C11	0.5351 (3)	0.46068 (18)	0.81994 (17)	0.0722 (5)
H11A	0.6397	0.4248	0.8165	0.087*
H11B	0.5551	0.5187	0.9038	0.087*
C12	0.5401 (3)	0.54247 (18)	0.73607 (18)	0.0744 (5)
C13	0.7510 (4)	0.7109 (3)	0.6817 (3)	0.1111 (9)
H13A	0.6755	0.7696	0.6977	0.133*

H13B	0.7114	0.6574	0.5949	0.133*
C14	0.9606 (5)	0.7918 (3)	0.7167 (3)	0.1405 (13)
H14A	0.9996	0.8409	0.8034	0.211*
H14B	0.9843	0.8539	0.6730	0.211*
H14C	1.0335	0.7330	0.6963	0.211*
C15	0.3773 (3)	0.19420 (18)	0.58813 (18)	0.0714 (5)
C16	0.6729 (3)	0.2462 (3)	0.5236 (2)	0.0952 (7)
H16A	0.6079	0.2275	0.4395	0.114*
H16B	0.7006	0.1670	0.5287	0.114*
C17	0.8560 (4)	0.3647 (3)	0.5629 (3)	0.1128 (9)
H17A	0.8293	0.4383	0.5452	0.169*
H17B	0.9483	0.3412	0.5193	0.169*
H17C	0.9080	0.3909	0.6496	0.169*
N1	0.2268 (2)	0.36044 (14)	0.85650 (14)	0.0697 (4)
N2	0.3521 (2)	0.35071 (14)	0.78541 (14)	0.0664 (4)
01	-0.5490 (2)	0.19486 (17)	1.03670 (16)	0.1040 (5)
02	0.4038 (2)	0.53626 (15)	0.66541 (16)	0.1015 (5)
03	0.7201 (2)	0.62366 (14)	0.75458 (13)	0.0866 (5)
O4	0.3061 (2)	0.08992 (16)	0.50282 (15)	0.1068 (6)
O5	0.55182 (19)	0.28057 (13)	0.60626 (13)	0.0793 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0884 (16)	0.0961 (16)	0.127 (2)	0.0173 (13)	0.0019 (14)	0.0497 (15)
C2	0.0858 (13)	0.0741 (12)	0.0800 (12)	0.0337 (11)	0.0114 (10)	0.0275 (9)
C3	0.0879 (15)	0.0757 (13)	0.0808 (14)	0.0253 (11)	0.0101 (12)	0.0105 (10)
C4	0.0789 (13)	0.0690 (12)	0.0812 (14)	0.0205 (10)	0.0088 (11)	0.0137 (10)
C5	0.0714 (11)	0.0561 (9)	0.0686 (11)	0.0195 (8)	0.0012 (9)	0.0217 (8)
C6	0.0816 (13)	0.0689 (11)	0.0720 (12)	0.0169 (10)	0.0042 (10)	0.0220 (9)
C7	0.0760 (12)	0.0665 (11)	0.0860 (13)	0.0112 (9)	-0.0028 (10)	0.0234 (9)
C8	0.0682 (11)	0.0522 (9)	0.0622 (10)	0.0151 (8)	-0.0010 (8)	0.0176 (8)
С9	0.0697 (11)	0.0500 (9)	0.0656 (11)	0.0123 (8)	-0.0031 (9)	0.0129 (8)
C10	0.0688 (11)	0.0497 (8)	0.0575 (10)	0.0127 (8)	-0.0034 (8)	0.0119 (7)
C11	0.0730 (11)	0.0625 (10)	0.0548 (10)	0.0035 (8)	-0.0051 (8)	0.0118 (8)
C12	0.0791 (12)	0.0573 (10)	0.0655 (11)	0.0093 (9)	-0.0017 (10)	0.0136 (8)
C13	0.129 (2)	0.0820 (15)	0.1059 (19)	0.0067 (14)	0.0078 (16)	0.0480 (14)
C14	0.146 (3)	0.106 (2)	0.127 (2)	-0.0186 (19)	0.021 (2)	0.0466 (18)
C15	0.0744 (12)	0.0624 (10)	0.0650 (11)	0.0193 (9)	0.0023 (9)	0.0152 (9)
C16	0.0941 (16)	0.1076 (17)	0.0903 (16)	0.0433 (14)	0.0266 (13)	0.0332 (13)
C17	0.0953 (17)	0.1129 (19)	0.150 (3)	0.0370 (15)	0.0466 (17)	0.0653 (19)
N1	0.0757 (10)	0.0590 (8)	0.0591 (9)	0.0129 (7)	0.0038 (8)	0.0144 (7)
N2	0.0691 (9)	0.0556 (8)	0.0563 (8)	0.0093 (7)	-0.0014 (7)	0.0127 (6)
01	0.0940 (11)	0.0954 (11)	0.1023 (12)	0.0215 (9)	0.0206 (9)	0.0175 (9)
O2	0.0943 (10)	0.0906 (10)	0.1036 (12)	0.0156 (8)	-0.0142 (9)	0.0441 (9)
03	0.0868 (9)	0.0727 (8)	0.0778 (9)	0.0016 (7)	0.0001 (7)	0.0287 (7)
O4	0.0975 (11)	0.0835 (10)	0.0917 (11)	0.0104 (8)	0.0154 (9)	-0.0146 (8)
O5	0.0756 (8)	0.0742 (8)	0.0753 (9)	0.0172 (7)	0.0137 (7)	0.0178 (7)

Geometric parameters (Å, °)

C1—01	1.397 (3)	C11—C12	1.512 (3)
C1—H1A	0.9600	C11—H11A	0.9700
C1—H1B	0.9600	C11—H11B	0.9700
C1—H1C	0.9600	C12—O2	1.188 (2)
C2—C3	1.360 (3)	C12—O3	1.325 (2)
C2—C7	1.370 (3)	C13—O3	1.452 (3)
C2—O1	1.398 (3)	C13—C14	1.483 (4)
C3—C4	1.359 (3)	С13—Н13А	0.9700
С3—Н3	0.9300	C13—H13B	0.9700
C4—C5	1.402 (3)	C14—H14A	0.9600
C4—H4	0.9300	C14—H14B	0.9600
C5—C6	1.377 (2)	C14—H14C	0.9600
C5—C8	1.470 (3)	C15—O4	1.203 (2)
C6—C7	1.417 (3)	C15—O5	1.315 (2)
С6—Н6	0.9300	C16—O5	1.455 (3)
С7—Н7	0.9300	C16—C17	1.492 (3)
C8—N1	1.338 (2)	C16—H16A	0.9700
C8—C9	1.400 (3)	C16—H16B	0.9700
C9—C10	1.369 (3)	С17—Н17А	0.9600
С9—Н9	0.9300	C17—H17B	0.9600
C10—N2	1.368 (2)	С17—Н17С	0.9600
C10—C15	1.469 (3)	N1—N2	1.338 (2)
C11—N2	1.449 (2)		
O1—C1—H1A	109.5	H11A—C11—H11B	108.0
O1—C1—H1B	109.5	O2—C12—O3	125.12 (19)
H1A—C1—H1B	109.5	O2-C12-C11	125.49 (19)
01—C1—H1C	109.5	O3—C12—C11	109.39 (16)
H1A—C1—H1C	109.5	O3—C13—C14	107.6 (2)
H1B—C1—H1C	109.5	O3—C13—H13A	110.2
C3—C2—C7	121.2 (2)	C14—C13—H13A	110.2
C3—C2—O1	115.1 (2)	O3—C13—H13B	110.2
C7—C2—O1	123.7 (2)	C14—C13—H13B	110.2
C4—C3—C2	119.4 (2)	H13A—C13—H13B	108.5
С4—С3—Н3	120.3	C13—C14—H14A	109.5
С2—С3—Н3	120.3	C13—C14—H14B	109.5
C3—C4—C5	122.6 (2)	H14A—C14—H14B	109.5
C3—C4—H4	118.7	C13—C14—H14C	109.5
C5—C4—H4	118.7	H14A—C14—H14C	109.5
C6—C5—C4	117.2 (2)	H14B—C14—H14C	109.5
C6—C5—C8	122.06 (18)	O4—C15—O5	123.9 (2)
C4—C5—C8	120.78 (17)	O4—C15—C10	122.73 (19)
C5—C6—C7	120.6 (2)	O5-C15-C10	113.38 (15)
С5—С6—Н6	119.7	O5—C16—C17	106.8 (2)
С7—С6—Н6	119.7	O5-C16-H16A	110.4
C2—C7—C6	119.0 (2)	C17—C16—H16A	110.4
С2—С7—Н7	120.5	O5—C16—H16B	110.4

120.5	C17—C16—H16B	110.4
110.03 (17)	H16A—C16—H16B	108.6
119.14 (17)	C16—C17—H17A	109.5
130.83 (16)	С16—С17—Н17В	109.5
106.19 (15)	H17A—C17—H17B	109.5
126.9	C16—C17—H17C	109.5
126.9	H17A—C17—H17C	109.5
106.01 (17)	H17B—C17—H17C	109.5
125.70 (17)	C8—N1—N2	105.97 (15)
128.25 (16)	N1—N2—C10	111.79 (15)
111.51 (14)	N1—N2—C11	118.33 (14)
109.3	C10—N2—C11	129.73 (18)
109.3	C1—O1—C2	117.6 (2)
109.3	C12—O3—C13	116.71 (17)
109.3	C15—O5—C16	118.99 (16)
0.2 (3)	C9—C10—C15—O4	-0.7 (3)
179.65 (19)	N2-C10-C15-O5	-2.6 (3)
0.3 (3)	C9—C10—C15—O5	179.77 (16)
-0.7 (3)	C9—C8—N1—N2	-0.21 (18)
179.64 (18)	C5—C8—N1—N2	179.32 (14)
0.6 (3)	C8—N1—N2—C10	0.48 (19)
-179.75 (16)	C8—N1—N2—C11	176.47 (14)
-0.3 (3)	C9—C10—N2—N1	-0.56 (19)
-179.68 (18)	C15—C10—N2—N1	-178.58 (15)
-0.1 (3)	C9-C10-N2-C11	-175.96 (16)
173.34 (16)	C15-C10-N2-C11	6.0 (3)
-7.0 (2)	C12-C11-N2-N1	-106.75 (19)
-7.2 (3)	C12-C11-N2-C10	68.4 (2)
172.38 (18)	C3—C2—O1—C1	-179.77 (19)
-0.12 (19)	C7—C2—O1—C1	-0.4 (3)
-179.58 (16)	O2—C12—O3—C13	-0.3 (3)
0.40 (18)	C11—C12—O3—C13	-179.51 (19)
178.35 (16)	C14—C13—O3—C12	-179.8 (2)
13.2 (3)	O4—C15—O5—C16	-4.0 (3)
-167.54 (16)	C10-C15-O5-C16	175.57 (16)
176.88 (19)	C17—C16—O5—C15	177.34 (17)
	120.5 110.03 (17) 119.14 (17) 130.83 (16) 106.19 (15) 126.9 126.9 106.01 (17) 128.25 (16) 111.51 (14) 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 179.65 (19) 0.3 (3) -0.7 (3) 179.64 (18) 0.6 (3) -179.75 (16) -0.3 (3) -179.68 (18) -0.1 (3) 172.38 (18) -0.12 (19) -179.58 (16) 13.2 (3) -167.54 (16) 176.88 (19)	120.5 $C17C16H16B$ 110.03 (17) $H16AC16H16B$ 119.14 (17) $C16C17H17A$ 130.83 (16) $C16C17H17B$ 106.19 (15) $H17AC17H17B$ 126.9 $C16C17H17C$ 126.9 $H17AC17H17C$ 126.9 $H17AC17H17C$ 126.9 $H17AC17H17C$ 125.70 (17) $C8N1N2$ 128.25 (16) $N1N2C10$ 111.51 (14) $N1N2C11$ 109.3 $C1O1C2$ 109.3 $C1O1C2$ 109.3 $C15O5C16$ 0.2 (3) $C9C10C15O4$ 179.65 (19) $N2C10C15O5$ 0.3 (3) $C9C10C15O5$ -0.7 (3) $C9C8N1N2$ 179.64 (18) $C5C8N1N2$ 0.6 (3) $C8N1-N2C11$ -179.75 (16) $C8N1-N2C11$ -179.75 (16) $C8N1-N2C11$ -179.68 (18) $C15C10N2N1$ -1.1 (3) $C9C10-N2N1$ -7.2 (3) $C12C11N2C10$ 172.38 (18) $C3C2O1C1$ -179.58 (16) $O2C12-O3C13$ 0.40 (18) $C11C12O3C13$ 178.35 (16) $C14C13-O3C12$ 13.2 (3) $O4C15O5C16$ -167.54 (16) $C10C15O5C16$ -167.54 (16) $C10C15O5C16$

 $X - H - \pi$ -ring interactions calculated by PLATON (Spek, 2003). Cg^i is a centroid of the pyrazole ring N1/N2/C8/C9/C10.

<i>Х</i> —Н··· <i>Cg</i>	Х—Н	$H \cdots Cg$	X···Cg	<i>X</i> —H··· <i>Cg</i>
C1—H1A…Cg1 ⁱ	0.96	2.89	3.731 (3)	147
Symmetry code: (i) 1	+x,y,z.			

