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Non-invasive single-cell morphometry in living
bacterial biofilms
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Andreas Gahlmann 1,3✉

Fluorescence microscopy enables spatial and temporal measurements of live cells and cel-

lular communities. However, this potential has not yet been fully realized for investigations of

individual cell behaviors and phenotypic changes in dense, three-dimensional (3D) bacterial

biofilms. Accurate cell detection and cellular shape measurement in densely packed biofilms

are challenging because of the limited resolution and low signal to background ratios (SBRs)

in fluorescence microscopy images. In this work, we present Bacterial Cell Morphometry 3D

(BCM3D), an image analysis workflow that combines deep learning with mathematical image

analysis to accurately segment and classify single bacterial cells in 3D fluorescence images. In

BCM3D, deep convolutional neural networks (CNNs) are trained using simulated biofilm

images with experimentally realistic SBRs, cell densities, labeling methods, and cell shapes.

We systematically evaluate the segmentation accuracy of BCM3D using both simulated and

experimental images. Compared to state-of-the-art bacterial cell segmentation approaches,

BCM3D consistently achieves higher segmentation accuracy and further enables automated

morphometric cell classifications in multi-population biofilms.
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B iofilms are multicellular communities of microorganisms
that grow on biotic or abiotic surfaces1–4. In addition to
cellular biomass, biofilms also contain an extracellular

matrix (ECM), which is composed of polysaccharides, DNA, and
proteins. Individual cells in biofilms interact with other cells, the
ECM, or with the substrate surface, and the sum total of these
interactions provide bacterial biofilms with emergent functional
capabilities beyond those of individual cells. For example, bio-
films are orders of magnitude more tolerant toward physical,
chemical, and biological stressors, including antibiotic treatments
and immune system clearance1,2,5–8. Understanding how such
capabilities emerge from the coordination of individual cell
behaviors requires imaging technologies capable of resolving and
simultaneous tracking of individual bacterial cells in 3D biofilms.

Live-cell-compatible imaging technologies, such as optical
microscopy, can reveal the spatial and temporal context that
affects cellular behaviors. However, conventional imaging mod-
alities are not able to resolve individual cells within thick 3D
biofilms over extended periods of time. For example, the
diffraction-limited lateral x,y-resolution (~230 nm) of a confocal
fluorescence microscope is barely sufficient to resolve bacterial
cells positioned next to each other on flat glass coverslips. Even
worse, the diffraction-limited axial z-resolution (570 nm) is
comparable to the size of a single bacterial cell, so that densely
packed cells become unresolvable in the axial z-dimension9,10.
Notable exceptions include loose biofilms (low cell density),
spherical cell shapes11,12, and mutant Vibrio cholera biofilms, in
which cell–cell spacing is increased through the overproduction
of ECM materials13–15. While single-cell-resolved images have
been obtained in such special situations, conventional optical
microscopy modalities are not generally capable to accurately
resolve and quantitatively track individual cells in dense 3D
biofilms.

While super-resolution derivatives of confocal microscopy,
known as image scanning microscopy16, can improve spatial
resolution, a perhaps more important limitation for long-term
live-cell imaging is photodamage to the specimen (phototoxicity)
and to the fluorophores used for labeling (photobleaching)17–19.
In confocal microscopy-based approaches, undesired out-of-focus
fluorescence emission is filtered out by confocal pinholes to yield
optically sectioned images with high contrast, i.e., high signal-to-
background ratios (SBRs). However, repeated illumination of out-
of-focus regions during laser scanning and high light intensities at
the focal volume result in rapid photobleaching of fluorophores
and unacceptable phototoxicity for light sensitive specimens17–19.
In fact, confocal fluorescence microscopy (as well as its super-
resolution derivatives) uses illumination light intensities that are
two to three orders of magnitude higher than the light intensities
under which life has evolved18. The high rates of phototoxicity
and photobleaching make confocal-based microscopy unsuitable
for high frame-rate time-lapse imaging of living specimens over
many hours and days14,15,17,20,21.

In recent years, light sheet-based fluorescence excitation and
imaging approaches have been developed to overcome the draw-
backs of confocal microscopy. Among these, lattice light sheet
microscopy (LLSM)18,19 and field synthesis variants thereof22, axi-
ally swept light sheet microscopy23,24, dual-view light sheet
microscopy25,26, and single-objective oblique plane light sheet
microscopy27–31 now combine excellent 3D spatial resolution with
fast temporal resolution and low phototoxicity at levels that cannot
be matched by confocal microscopy. Specifically, light sheet-based
microscopy approaches can operate at illumination intensities that
are below the levels of cellular phototoxicity, even for notoriously
light sensitive specimens, and reduce fluorophore photobleaching
by 20–50 times compared to confocal microscopy, while main-
taining comparable spatial resolution and contrast/SBR18,28.

An additional challenge in high-resolution biofilm imaging is
data quantification. Even if sufficient resolution and high SBRs
can be achieved to visually discern, i.e., qualitatively resolve
individual cells, robust computational algorithms are still needed
for automated cell segmentation and quantitative cell tracking.
Toward this goal, image processing approaches based on the
watershed technique and intensity thresholding have been
developed over the years for single-cell segmentation in bacterial
biofilms13–15,21. The broad applicability of watershed- and
threshold-based image processing algorithms is however limited,
because these algorithms require manual optimization of many
user-selected parameters. Even with optimal parameters, water-
shed- and threshold-based image processing methods often
produce suboptimal segmentation results, especially when cell
densities are high, when SBRs are low, and when cellular fluor-
escence intensities are not uniform across the cytosol or the cell
surface. To overcome the drawbacks of traditional mathematical
image processing approaches, automated solutions based on
supervised training of deep convolutional neural networks
(CNNs) have been used in recent years with great success for a
wide range of problems in biomedical image analysis32.

Here, we present Bacterial Cell Morphometry 3D (BCM3D)33,
a generally applicable workflow for single-cell segmentation and
shape determination in high-resolution 3D images of bacterial
biofilms. BCM3D uses CNNs, in silico-trained with computa-
tionally simulated biofilm images, in combination with mathe-
matical image analysis to achieve accurate single-cell
segmentation in 3D. The CNNs employed in BCM3D are based
on the 3D U-Net architecture and training strategy, which has
achieved excellent performance in biomedical data analysis
benchmark tests32. The mathematical image analysis modules of
BCM3D enable post-processing of the CNN results to further
improve the segmentation accuracy. We establish that experi-
mental bacterial biofilms images, acquired by LLSM, can be
successfully segmented using CNNs trained with computationally
simulated biofilm images, for which the ground truth voxel-level
annotation maps are known accurately and precisely. By sys-
tematically evaluating the performance of BCM3D for a range of
SBRs, cell densities, and cell shapes, we find that voxel-level
segmentation accuracies of >80%, as well as cell counting
accuracies of >90%, can be robustly achieved. BCM3D con-
sistently outperforms previously reported image segmentation
approaches that rely exclusively on conventional image proces-
sing approaches. BCM3D also achieves higher segmentation
accuracy on experimental 3D biofilm data than Cellpose34, a
state-of-the-art, CNN-based, generalist algorithm for cell seg-
mentation, and the algorithm used by Hartmann et al.15, a spe-
cialized algorithm designed for bacterial cell segmentation based
on traditional mathematical image processing. We expect that
BCM3D, and CNN-based single-cell segmentation approaches in
general, combined with noninvasive light sheet-based fluores-
cence microscopy will enable accurate cell tracking over time in
dense 3D biofilms. This capability will launch a new era for
bacterial biofilm research, in which the emergent properties of
microbial populations can be studied in terms of the fully
resolved behavioral phenotypes of individual cells.

Results
Cell segmentation by thresholding CNN confidence maps.
CNNs have been shown to perform well on pixel-level classifi-
cation tasks for both 2D and 3D data35,36. Bacterial biofilms,
however, present a unique challenge in this context. The cell
shapes to be segmented are densely packed and barely resolvable
even with the highest resolution optical microscopes. In addition,
living biofilms in fluorescence microscopes can only be imaged
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with low laser intensities to ameliorate phototoxicity and pho-
tobleaching concerns. Unfortunately, low-intensity fluorescence
excitation also reduces the SBR in the acquired images. So far, it
remains unclear to what extent single-cell segmentation approa-
ches can accurately identify and delineate cell shapes in bacterial
biofilm images obtained under low-intensity illumination condi-
tions. To address this question, we implemented an in silico CNN
training strategy and systematically evaluated its voxel-level
classification (cell morphometry) and cell counting accuracies,
using simulated biofilm images with cell densities and SBRs
similar to those encountered in experimental data (see “Methods”
section).

We compared two commonly used cell labeling approaches,
namely genetic labeling through the expression of cell-internal
fluorescent proteins and staining of the cell membranes using
fluorescent dyes (Fig. 1). For both labeling approaches, voxel-level
segmentation and cell counting accuracies, obtained by thresh-
olding CNN confidence maps (see “Methods” section), depend
mostly on cell density, whereas the SBR plays a less important
role (Fig. 2a–f). For cell-internal labeling, SBRs of >1.7 and cell
densities of <60% consistently produce voxel-level classification
accuracies of >80% and cell counting accuracies of >95%. On the
other hand, SBRs of <1.7 and cell densities of >60% lead to lower
segmentation accuracies. While lower segmentation accuracies
are expected for higher cell densities and lower SBRs, the sharp
drop-offs observed here may indicate a fundamental performance
limitation of the CNNs employed. Still, the voxel-level classifica-
tion and cell counting accuracies consistently surpass previous
approaches for bacterial cell segmentation for commonly
encountered cell densities and SBRs. Specifically, the cell counting
accuracies obtained by Hartmann et al.15, Seg3D37, and Yan
et al.13 quickly drop to zero as a function of increasing

Intersection-over-Union (IoU) matching threshold (a quantita-
tive measure of cell shape similarity relative to the ground truth,
see “Methods” section), indicating that cell shapes are not
accurately estimated by conventional image processing
approaches (Fig. 2g–i). We also evaluated the segmentation
accuracy of Cellpose, a recently developed, CNN-based cellular
segmentation algorithm34. The segmentation accuracy of Cellpose
is comparable or superior to the best-performing conventional
image processing approaches—a considerable achievement given
that Cellpose was trained primarily on images of eukaryotic cells.
However, being a pretrained generalist model, the segmentation
accuracy of Cellpose is lower than the accuracy achieved by the
specialist in silico-trained CNNs of BCM3D, which were trained
specifically for 3D bacterial biofilm segmentation. Overall, the cell
counting accuracies obtained by BCM3D are higher than other
methods and remain higher even for IoU matching thresholds
larger than 0.5, indicating that cell shapes are more accurately
estimated by the in silico-trained CNNs.

The accuracies of single-cell shape estimation and cell counting
are predominantly affected by cell density. The variation is more
prominent for membrane-stained cells, because intercellular
fluorescence intensity minima are less pronounced, when cell
membranes are labeled and cells physically contact each other
(red arrow in Fig. 2c, f). By contrast, intracellular fluorophores
produce the highest intensities at the cell center, so that the gaps
between cells are more readily resolvable. Also noteworthy is the
sharp drop-off in segmentation accuracies for SBRs of <1.7 for all
cases. In such low SBR regimes, fluorescence signals of the cells
become too difficult to be distinguished from the background. As
a result, the CNNs falsely identify random noisy patterns in the
background as cells. In addition, thresholding of the CNN
confidence maps often yields connected voxel clusters that
contain multiple bacterial cells. False identification and incom-
plete delineation of cells cause the pronounced decrease in
segmentation accuracy for SBRs of <1.7.

Post-processing of CNN confidence maps. To better identify
individual cells in low SBR and high cell density datasets, we
developed a graph-based post-processing module (see “Methods”
section) that takes advantage of the fact that bacterial cell shapes
are highly conserved for a given species. Briefly, we transformed
the CNN cell interior confidence maps into 3D point cloud data
that trace out the central axes of individual cells. This transfor-
mation was achieved by medial axis extraction using size-
constrained inscribed spheres38 (Supplementary Fig. S1a–c).
Single-cell axes are then identified as linearly clustered data points
by linear cuts (LCuts)—a graph-based data clustering method
designed to detect linearly oriented groups of points39. The so-
identified single-cell axes are then mapped back onto the original
segmentation volumes to obtain estimates of the 3D positions,
shapes, and orientations of the now separated cells (Supplemen-
tary Fig. S1d).

Post-processing with LCuts takes advantage of a priori
knowledge about expected bacterial cell sizes by removing
erroneously segmented volumes that are significantly smaller
than the expected value and by splitting incompletely
segmented volumes representing fused cells. Improvements in
cell counting accuracy of up to 15% and 36% are observed for
cells labeled with cytosolic fluorophores (Fig. 3a–c and
Supplementary Fig. S2) and membrane-localized fluorophores
(Fig. 3d–f), respectively. The more substantial improvement for
membrane-stained cells is due to fact that CNNs trained on
membrane-stained cells are more prone to erroneously
identifying speckled background noise as fluorescence signals
in low SBR images. In addition, membrane-intercalating

dc

2 µµm

a b

Fig. 1 Simulation of fluorescent biofilms images and annotation maps
used for CNN training. a Representative cell arrangements obtained by
CellModeller. Due to the stochastic nature of biofilm growth, different cell
arrangements are obtained in each new simulation. However, cell density is
reproducible for each new simulated biofilm (typically N= 10 different
biofilm simulations are used for CNN training, see “Methods” section).
b Simulated 3D fluorescence image based on the cell arrangements in a.
c XY slice through the 3D simulated fluorescence image in b (upper panel
shows cells expressing cytosolic fluorescent proteins, lower panel shows
cells stained with membrane-intercalating dyes). d Ground truth cell
arrangements giving rise to the image shown in c. Voxels are displayed as
black (background), or in different colors (indicating different cells).
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fluorophores of two adjacent cells are in close proximity,
making it difficult to resolve fluorescence signals from two
separate cells due to spatial signal overlap (see the red arrow,
Fig. 2c, f). LCuts thus provides an important benefit in
improving the cell counting accuracy to an extent not achieved
by currently available thresholding- or watershed-based post-
processing algorithms (Supplementary Fig. S3).

Segmentation of experimental biofilm images. To test the per-
formance of BCM3D on experimentally acquired biofilm images,
we acquired time-lapse images of GFP expressing E. coli biofilms
every 30 min for 10 h (see “Methods” section). We then manually
annotated one 2D slice in the 3D images at the t= 300, 360, and
600-min time points (see “Methods”). When referenced to these
manual segmentation results, the LCuts-processed CNN outputs
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Fig. 2 Performance of BCM3D using in silico-trained CNNs only on previously unseen simulated biofilm images. a The voxel-level segmentation
accuracy quantifies whether each voxel has been assigned to the correct class (“cell interior”, “cell boundary”, or “background”). Solid circles represent the
maximum local density and average SBRs encountered in experimental datasets (red, orange, and blue: E. coli expressing GFP). b The cell counting accuracy
(using an IoU matching threshold of 0.5 for each segmented object, see “Methods” section) averaged over N= 10 replicate datasets for cells labeled with
cytosolic fluorophores. c Example image of cells labeled with cytosolic fluorophores (cell density= 60.0%, SBR= 1.34, indicated by white rectangle in
a and b. Similar images were generated N= 10 times with different cell arrangements). d Voxel-level segmentation accuracy and e cell counting accuracy
averaged over N= 10 replicate datasets for cells labeled with membrane-localized fluorophores. f Example image of cells labeled with membrane-localized
fluorophores (cell density= 60.0%, SBR= 1.34, indicated by white rectangles in d and e. Similar images were generated N= 10 times with different cell
arrangements). The red arrows indicate a close cell-to-cell contact point. g–i Comparison of segmentation accuracies achieved by conventional
segmentation approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D (only using in silico-trained CNNs). Three simulated datasets
(cytosolic fluorophores) with different SBRs and cell densities are shown. Segmentation accuracy is parameterized in terms of cell counting accuracy
(y-axis) and IoU matching threshold (x-axis, a measure of cell shape estimation accuracy). Each data point is the average of N= 10 independent biofilm
images. Data are presented as mean values ± one standard deviation indicated by error bars. Curves approaching the upper right-hand corner indicate
higher overall segmentation accuracy, as indicated by the dashed arrows. Source data are provided as a Source data file for Fig. 2g, h, i.
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consistently achieved better cell counting accuracies than con-
ventional segmentation methods (Fig. 4 and Supplementary
Fig. S4). Initially, Cellpose and the Hartmann et al. algorithm
outperform the in silico-trained CNNs on two out of three of the
test images (t= 360 and 600 min), for which our in silico-trained
CNNs struggle with undersegmentation problems. However,
mathematical post-processing of the CNN outputs by LCuts
corrects some of these errors, so that the integrated BCM3D
workflow achieves improved results compared to Cellpose and
Hartmann et al. at each of the indicated time points. Visual
inspection of the segmentation results is also informative. Cell-
pose accurately segments individual cells in low density regions,
but suffers from oversegmentation errors in high density biofilm
regions (Supplementary Fig. S4e). The Hartmann et al. algorithm
provides reasonable estimates of cell positions in low and high
density biofilm regions, but again struggles with cell shape esti-
mation (Supplementary Fig. S4d and see also Fig. 2g–i). On the
other hand, the integrated BCM3D workflow (CNN+ LCuts)
produces biologically reasonable cell shapes regardless of cell
density (Fig. 4).

We attribute the more rapid drop-off of the cell counting
accuracy as a function of increasing IoU matching threshold in
Fig. 4 to the following factors. First, human annotation of
experimentally acquired biofilm images differs from the ground
truth segmentation masks that are available for simulated data
(Supplementary Fig. S5). The shape mismatches between
algorithm segmented and manually annotated cell shapes
(Supplementary Figs. S5 and S6) lead to a global lowering of
voxel-level segmentation accuracy, and thus a more rapid drop-
off of the cell counting accuracy as a function of increasing IoU
matching threshold. Because bacterial cell shapes are not

accurately captured by manual annotation (Supplementary
Fig. S5), cell counting accuracies referenced to manual annota-
tions should be compared only at low IoU matching thresholds
(0.1–0.3, shaded grey in Fig. 4a–c), as also pointed out
previously40. We also note that bacterial cells in experimental
images appear motion-blurred if they are only partially
immobilized, and therefore wiggle during image acquisition.
Furthermore, optical aberrations and scattering effects were not
included in training data simulations, which may decrease the
performance of the CNNs on experimental data. Still, at IoU
matching threshold <0.3, the cell counting accuracy of BCM3D
remains above 75%, while also producing biologically reasonable
cell shapes. Thus, the bacterial cell segmentation results of
BCM3D represent a substantial improvement over other
approaches (Fig. 4 and Supplementary Fig. S4).

To demonstrate that BCM3D can achieve similarly high
segmentation accuracies for membrane-stained cells in different
cellular arrangements, we analyzed a small patch of a Myxococcus
xanthus biofilm, which was stained with the membrane-
intercalating dye FM4-64 (Fig. 5a). In contrast to E. coli biofilms,
the submerged M. xanthus biofilm imaged here features cells in a
mesh-like arrangement with close cell-to-cell contacts, which
presents a unique challenge for 3D single-cell segmentation. To
obtain reference data for 3D segmentation accuracy determina-
tion, we manually annotated each xy, xz, and yz slice of an entire
3D image stack (Fig. 5b). When referenced to this 3D manual
segmentation result, BCM3D (Fig. 5c) produced cell counting
accuracies above 70% at low (0.1–0.3) IoU matching thresholds,
whereas segmentation results obtained by conventional image
processing (Hartmann et al.) and by generalist CNN-processing
(Cellpose) produced cell counting accuracies <50% in the same

Cell counting accuracy(%)

28.05 27.47 29.56 30.65 34.90

68.88 63.42 65.90 69.21 78.00

76.01 73.38 80.07 87.09 96.78

75.50 73.09 78.63 86.34 96.67

77.53 72.58 79.70 86.63 97.18

77.38 72.78 79.51 86.91 97.23

77.43 72.82 79.41 87.14 97.14

77.57 73.30 79.18 86.89 97.06

77.65 73.07 79.53 86.94 97.15

77.47 72.97 79.33 86.90 97.14

Cell counting accuracy improvement(%)

17.38 16.57 17.74 18.33 20.64

17.93 17.00 17.82 26.58 36.60

13.10 10.64 10.37 7.80 2.76

12.58 10.71 9.50 7.38 2.86

12.37 10.20 9.07 7.82 2.65

12.26 10.06 8.45 7.32 2.71

12.08 9.93 8.50 6.61 2.37

12.24 10.04 8.67 7.17 2.32

12.32 9.77 8.88 7.06 2.29

12.37 9.76 8.76 7.11 2.35

Voxel-level segmentation accuracy

0.272 0.267 0.292 0.305 0.355

0.636 0.591 0.615 0.638 0.704

0.680 0.657 0.703 0.747 0.804

0.679 0.653 0.699 0.744 0.804

0.691 0.654 0.704 0.746 0.805

0.691 0.656 0.704 0.748 0.804

0.692 0.656 0.704 0.748 0.804

0.692 0.659 0.702 0.747 0.803

0.692 0.656 0.704 0.746 0.804

0.692 0.658 0.702 0.745 0.803

Density(%)

1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

)
Cell counting accuracy(%)

46.80 55.56 60.29 64.56 66.63

74.45 87.56 91.27 92.73 92.58

70.91 97.28 99.29 99.87 99.97

70.77 97.57 99.56 99.80 100.00

68.71 97.73 99.68 99.80 100.00

67.38 97.80 99.57 99.80 99.94

66.24 98.23 99.59 99.85 99.94

65.01 98.10 99.59 99.85 99.94

64.99 97.85 99.59 99.85 99.94

64.68 97.94 99.59 99.76 99.94

Cell counting accuracy improvement(%)

9.37 10.41 11.66 12.82 15.49

13.83 8.63 3.96 2.12 1.14

9.02 6.20 1.53 0.26 0.00

7.84 5.24 0.70 0.11 0.00

6.77 4.00 0.63 0.02 0.00

6.33 3.77 0.44 0.02 0.00

6.06 3.84 0.51 0.00 0.00

5.50 3.56 0.51 0.00 0.00

5.71 3.23 0.51 0.00 0.00

5.65 3.32 0.51 0.00 0.00

63.2 60.0 57.0 54.5 49.2 63.2 60.0 57.0 54.5 49.2 63.2 60.0 57.0 54.5 49.2

Density(%) Density(%)

Voxel-level segmentation accuracy

0.475 0.547 0.588 0.620 0.640

0.646 0.742 0.770 0.780 0.779

0.622 0.817 0.837 0.844 0.848

0.618 0.821 0.843 0.849 0.854

0.607 0.820 0.845 0.851 0.857

0.598 0.825 0.845 0.851 0.857

0.592 0.827 0.845 0.851 0.858

0.585 0.826 0.845 0.851 0.858

0.586 0.825 0.845 0.851 0.858

0.584 0.825 0.845 0.851 0.858

Density(%)
63.2 60.0 57.0 54.5 49.2 63.2 60.0 57.0 54.5 49.2 63.2 60.0 57.0 54.5 49.2

Density(%) Density(%)

0.2

0.3

0.4

0.5

0.6

0.75

0.85

0.1

0.4

0.5

0.6

0.7

0.75

0.8

0.86
0.83

1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

) 1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

)

1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

)

30

60

80

90

96
100

20

40

60

70

80

90

100

0

1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

)

1.19

1.34

1.71

1.87

2.23

2.56

3.08

3.53

4.51

5.27S
ig

n
al

 t
o

 b
ac

kg
ro

u
n

d
 r

at
io

 (
S

B
R

)

a b c

d e f

0

5

10

15

20

25

30

35

40

0

3

5

7

9

11

13

15

17

Fig. 3 Performance of BCM3D (in silico-trained CNNs and additional post-processing by LCuts) on previously unseen simulated data. a Voxel-level
segmentation accuracy and b cell counting accuracy (using an IoU matching threshold of 0.5 for each segmented object) averaged over N= 10 replicate
datasets for cells labeled with cytosolic fluorophores. c Improvement relative to silico-trained convolutional neural networks without post-processing.
d Voxel-level segmentation accuracy and e cell counting accuracy averaged over N= 10 replicate datasets for cells labeled with membrane-localized
fluorophores. f Improvements relative to silico-trained convolutional neural networks without post-processing.
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IoU matching threshold region (Fig. 5d). We note however that
neither Cellpose nor the Hartmann et al. algorithms were
specifically optimized/designed for segmenting membrane-
stained cells. Indeed, the performance of Cellpose on this type
of biofilm architecture is inferior to the results achieved using the
in silico-trained CNNs of BCM3D alone (without using LCuts
post-processing). One reason might be that the pretrained,
generalist Cellpose model has not been trained sufficiently on
long, thin, and highly interlaced rod-shaped cells, such as those
contained in a M. xanthus biofilm.

Morphological separation of mixed cell populations. Given the
improved segmentation results obtained using BCM3D, we rea-
soned that the same CNNs may have additional capacity to assign
segmented objects to different cell types based on subtle mor-
phological differences in the acquired images. Differences in the
imaged cell morphologies arise due to physical differences in cell
shapes (e.g., spherical vs. rod-shaped cells) or due to differences
in the fluorescent labeling protocols (e.g., intracellular vs. cell
membrane labeling), because fluorescence microscopes simply
measure the spatial distributions of fluorophores in the sample.
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Fig. 4 Comparison of segmentation accuracies achieved by conventional segmentation approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and
BCM3D. The estimated SBRs are 2.2, 1.8, and 1.3, respectively. The estimated cell densities are 54.8%, 59.0%, and 64.6%, respectively. a–c Three
experimental E. coli datasets (cytosolic expression of GFP) acquired at different time points after inoculation of cells. Segmentation accuracy is
parameterized in terms of cell counting accuracy (y-axis) and IoU matching threshold (x-axis). Each data point is the average of the cell counting
accuracies calculated using annotation maps traced by N= 3 different researchers. Data are presented as mean values ± one standard deviation indicated
by error bars. Curves approaching the upper right-hand corner indicate higher overall segmentation accuracy. d Comparison of segmentation results
achieved at the t= 600min time point by manual annotation (shown is one of N= 3 researchers’ annotation result, the other two annotation results are
shown in Supplementary Fig. S4), and by BCM3D using in silico-trained CNNs only and after further refinement of CNN outputs using LCuts. Similar results
were also obtained at the t= 300 and t= 360min time points. Segmentation results of the other methods are shown in Supplementary Fig. S4. Source
data are provided as a Source data file for Fig. 4a–c.
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The ability to separate different cell morphologies is important
for the study of multispecies biofilms, where interspecies coop-
eration and competition dictate population-level outcomes3,41–48.
Separation of differentially labeled cells is also important for the
study of gene activation in response to cell-to-cell signaling49.
Expression of cytosolic fluorescent proteins by transcriptional
reporter strains is a widely used technique to visualize activation
of a specific gene or genetic pathway in living cells. Such genetic
labeling approaches can be complemented by chemical labeling
approaches, e.g., using membrane-intercalating chemical dyes
that help visualize cells nonspecifically or environmentally sen-
sitive membrane dyes that provide physiological information,
including membrane composition50,51, membrane organization
and integrity52–54, and membrane potential42,55. Chemical and
genetic labeling approaches are traditionally implemented in two
different color channels. However, there are important drawbacks
to using multiple colors. First and foremost, the amount of
excitation light delivered is increased by the necessity to excite
differently colored fluorophores, raising phototoxicity, and pho-
tobleaching concerns. Second, it takes N times as along to acquire
N-color images (unless different color channels can be acquired
simultaneously), making it challenging to achieve high temporal
sampling in time-lapse acquisition. For these reasons, methods
that extract complementary physiological information from a
single-color image are preferable.

We evaluated the ability of BCM3D to automatically segment
and identify rod-shaped and spherical bacterial cells consistent,
with shapes of E. coli and Staphylococcus aureus in simulated
images (Supplementary Fig. S7). To segment cells in two-
population biofilms, we trained CNNs that classify pixels into

five different classes: “background”, “cell interior of population
1”, “cell boundary of population 1”, “cell interior of population 2”,
and “cell boundary of population 2”. Thresholding the CNNs
confidence maps can achieve cell counting accuracies larger than
90% for both cell types independent of their population fractions
(Fig. 6a). Post-processing of this result using LCuts improved the
cell counting accuracy by <0.5% on average, indicating that
under-segmented cell clusters are not prevalent in this dataset.

We next evaluated the ability of BCM3D to automatically
segment and separate membrane-stained cells that express
cytosolic fluorescent proteins from those that do not (Supple-
mentary Fig. S8). Again, the cell counting accuracy is consistently
above 80% for all tested mixing ratios (Fig. 6b). Finally, we
applied BCM3D to experimentally acquired biofilm images of two
different E. coli strains. Both strains were stained by the
membrane-intercalating dye FM4-64, but the second strain
additionally expressed GFP (Supplementary Fig. S9). The cells
were homogeneously mixed prior to mounting to randomize the
spatial distribution of different cell types in the biofilm (see
“Methods” section). Multiple 2D slices from the 3D image stack
were manually annotated and compared with the results obtained
by BCM3D. Consistent with the single-species experimental data,
a cell counting accuracy of 50% is achieved for each cell type at a
0.5 IoU matching threshold and, at lower IoU matching
thresholds, the counting accuracies increased to 60–70%, (Fig. 6c,
d). Thus, using appropriately trained CNNs in BCM3D enables
automated and accurate cell type assignments based on subtle
differences in cell morphologies in mixed population biofilms—a
capability not available using conventional image processing
methods.
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Fig. 5 3D Segmentation accuracy evaluation using M. xanthus biofilm images (cell density= 36.2%, and SBR= 1.58). a Maximum intensity projection
of a 3D M. xanthus fluorescence image. Cells were labeled with membrane-intercalating dye, FM4-64. Similar images were obtained at N= 120 different
time points. b Maximum intensity projection of the manually obtained 3D segmentation result. c Maximum intensity projection of a CNN-based 3D
segmentation result after LCuts post-processing. Cells that can be matched with the GT are displayed in the same colors as GT or otherwise colored in
white. d Segmentation accuracy of compared algorithms parameterized in terms of cell counting accuracy (y-axis) and IoU matching threshold (x-axis).
Source data are provided as a Source data file for Fig. 5d.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19866-8 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6151 | https://doi.org/10.1038/s41467-020-19866-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


IoU matching threshold

C
el

l c
o

u
n

ti
n

g
 a

cc
u

ra
cy

 (
%

)

Membrane labeling

IoU matching threshold

C
el

l c
o

u
n

ti
n

g
 a

cc
u

ra
cy

 (
%

)

Membrane and cytosolic labeling

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c d

10% 30% 50% 70% 90%
Percentage of membrane labeled cells

40

50

60

70

80

90

100

C
el

l c
o

u
n

ti
n

g
 a

cc
u

ra
cy

(%
)

Membrane-labeled cells, BCM3D (CNN only)
Membrane-labeled cells, BCM3D (CNN + LCuts)
Membrane-labeled and cytosol-labeled cells, BCM3D (CNN only)
Membrane-labeled and cytosol-labeled cells, BCM3D (CNN + LCuts)

b

a Rod-shaped cells, BCM3D (CNN only)
Rod-shaped cells, BCM3D (CNN + LCuts)
Spherical cells, BCM3D (CNN only)

0

10

20

30

40

50

60

70

80

90

100

C
el

l c
o

u
n

ti
n

g
 a

cc
u

ra
cy

(%
)

10% 30% 50% 70% 90%
Percentage of rod-shaped cells

10

20

30

40

50

60

70

80

90

100

BCM3D (CNN + LCuts)
BCM3D (CNN only)BCM3D (CNN + LCuts)

BCM3D (CNN only)

0

D
en

sity (%
)

0

10

20

30

40

50

60

70

0

25

50

75

100

D
en

sity (%
)

Fig. 6 Performance of BCM3D on mixed population biofilm images. a Cell counting accuracy of BCM3D on simulated images containing different ratios of
rod-shaped and spherical cells. Black diamonds represent the counting accuracy for N= 10 independently simulated datasets. Green dots represent the cell
density for each independent dataset. Error bars represent ± one standard deviation. b Cell counting accuracy of BCM3D on simulated images with different
ratios of membrane-labeled, and membrane-labeled and interior fluorescent protein expressing cells. Black diamonds represent the counting accuracy for
N= 10 independently simulated datasets. Green dots represent the cell density for N= 10 independent datasets. Error bars represent ± one standard
deviation. c, d Cell counting accuracy of BCM3D on experimental images of c membrane-labeled, and d membrane-labeled and interior fluorescent protein
expressing E. coli cells (mixing ratio ~1:1). Each data point is the average of the cell counting accuracies calculated using annotation maps traced by three
different researchers (N= 3). Data are presented as mean values ± one standard deviation indicated by error bars. Source data are provided as a Source
data file for Fig. 6.
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Discussion
CNNs have been successful applied to many different problems in
biological image analysis, but their ability to segment individual
cells in 3D and time-lapse 3D bacterial biofilm images has not yet
been fully explored. Here, we demonstrated a CNN-based image
analysis workflow, termed BCM3D, for single-cell segmentation and
shape classification (morphometry) in 3D images of bacterial bio-
films. In this work, we applied BCM3D to 3D images acquired by
LLSM. However, BCM3D readily generalizes to 3D images acquired
by confocal microscopy or advanced super-resolution microscopy
modalities, provided that realistic image formation models are used
to simulate the training datasets. The use of simulated training data
is a major advantage of BCM3D, because it overcomes incon-
sistencies inherent in manual dataset annotation (Supplementary
Figs. S5 and S6), and thus solves the problem of obtaining sufficient
amounts of accurately annotated 3D image data. The ability to use
simulated training data provides needed flexibility not only in terms
of the microscope platform used for imaging, but also in terms of
the bacterial cell shapes that are to be segmented.

We systematically investigated the advantages and limitations of
BCM3D by evaluating both voxel- and cell-level segmentation
accuracies, using simulated and experimental datasets of different
cell densities and SBRs. BCM3D enabled accurate segmentation of
individual cells in crowded environments and automatic assign-
ments of individual cells to specific cell populations for most of the
tested parameter space. Such capabilities are not readily available
when using previously established segmentation methods that rely
exclusively on conventional image and signal processing algorithms.

While BCM3D surpasses the performance of previous
approaches, we stress that further improvements are possible and,
for long-term, high frame-rate time-lapse imaging experiments,
absolutely needed. Our systematic analysis revealed that high cell
density and low SBR datasets are particularly challenging for the
CNNs used in this work. Future work will therefore focus on
increasing the contrast and resolution in bacterial biofilm images.
While, the use of optical super-resolution modalities can provide
higher spatial resolution, such resolution improvements often
come at a cost of reduced image contrast and faster photo-
bleaching/phototoxicity. Software solutions that can process
images with limited resolution and low SBRs will therefore play a
tremendously important role in biological imaging. BCM3D is a
general workflow that integrates computational simulation of
training data, in silico training of CNNs for a specific task or a
specific cell type, and mathematical post-processing of the CNN
outputs. Incorporating different training strategies and different
CNNs, such as the generalist CNN used in Cellpose34, into the
BCM3D workflow will enable automated cross-validation of
segmentation results when a ground truth or manual annotation
map is not available. Furthermore, CNN-based image processing
modules developed for contrast enhancement and denoising have
also surpassed the performance of conventional methods based
on mathematical signal processing56–59. Incorporating these tools
into the BCM3D workflow promises to further improve the
single-cell segmentation accuracies. We anticipate that the ability
to accurately identify and delineate individual cells in dense 3D
biofilms will enable accurate cell tracking over long periods of
time. Detailed measurements of behavioral single-cell phenotypes
in larger bacterial communities will help determine how macro-
scopic biofilm properties, such as its mechanical cohesion/adhe-
sion and its biochemical metabolism, emerge from the collective
actions of individual bacteria.

Methods
Lattice light sheet imaging of bacterial biofilms. Fluorescence images of bac-
terial biofilms were acquired on a home-built LLSM. LLSM enables specimen
illumination with a thin light sheet derived from 2D optical lattice18,60.

Here, a continuous illumination light sheet was produced by a time-averaged
(dithered), square lattice pattern18, and the illumination intensity at the sample was
<1W/cm2. The submicrometer thickness of the excitation light sheet is maintained
over long propagation distances (~30 µm), which enables optical sectioning, and
thus high resolution, high contrast imaging of 3D specimens comparable to con-
focal microscopy. However, fluorophore excitation by a 2D light sheet reduces
phototoxicity, because each excitation photon has multiple opportunities to be
absorbed by fluorophores in the excitation plane and produce in-focus fluores-
cence. Widefield fluorescence images corresponding to each illuminated specimen
plane are recorded on a sCMOS detector (Hamamatsu ORCA Flash v2). In this
work, 3D biofilm images were acquired by translating the specimen through the
light sheet in 200 nm steps, using a piezo nanopositioning stage (Physik Instru-
mente, P-621.1CD). The data acquisition program is written in LabVIEW 2013
(National Instruments).

Ampicillin-resistant E. coli K12, constitutively expressing GFP61, were cultured
at 37 °C overnight in LB medium with 100 μg/ml ampicillin. Overnight cultures
were diluted 100 times into the same culture medium, grown to an optical density
at 600 nm (OD600) of 0.6–1.0, and then diluted by an additional factor of 10.
Round glass coverslips with the diameter of 5 mm were put into a 24-well plate
(Falcon) and 400 μl of cell culture was added to the well. Cells were allowed to settle
to the bottom of the well and adhere to the coverslip for 1 h. The round coverslips
were then mounted onto a sample holder and placed into the LLSM sample-basin
filled with M9 medium. GFP fluorescence was excited using 488 nm light sheet
excitation. Biofilm growth was imaged at room temperature every 30 min for a total
of 20 time points. At each time point, a single 3D image stack contained 400
images, each acquired with a 15 ms exposure time to avoid motion blur.

Myxococcus xanthus strain LS3908 expressing tdTomato under the control of
the IPTG-inducible promoter62 and DK1622 (WT) were cultured in the nutrient-
rich CYE media at 30 °C until it reached an OD600 of 0.6–1.0. Media was
supplemented with 1 mM IPTG for tdTomato expressing cells. Chitosan (Thermo
Fisher)-coated 5 mm round glass coverslips were prepared by incubating coverslips
with 1% (w/v) chitosan (1.5% glacial acetic acid (v/v)) at room temperature for 1 h.
Coverslips were then rinsed with water and placed into a 24-well plate (Falcon)
with 350-400 μl of undiluted cell culture. WT cells were stained directly in the
24-well plate with 5 ng/ml FM4-64 (Thermo Fisher) dye. Cells were allowed to
settle and adhere to the coverslip for 2 h. After the settling period, the coverslip was
gently rinsed with CYE media to flush away unattached cells. The rinsed coverslip
was then mounted onto a sample holder and placed into the LLSM sample-basin
filled with MC7 starvation buffer. tdTomato and FM4-64 fluorescence was excited
using 561 nm light sheet excitation. The 3D image stack contained 400 2D images.
Each 2D slice was acquired with an exposure time of 30 ms.

For mixed population biofilm imaging, ampicillin-resistant E. coli K12,
constitutively expressing GFP61, and ampicillin-resistant E. coli K12, expressing
mScarlet (pBAD vector, arabinose induce) were cultured separately at 37 °C
overnight in LB medium with 100 μg/ml ampicillin. Overnight cultures were
diluted 100 times into the same culture medium, grown to an optical density at 600
nm (OD600) of 0.6–1.0, and then diluted to an OD of 0.1. After dilution, the two
strains were mixed together. Round glass coverslips with the diameter of 5 mm
were put into a 24-well plate (Falcon) and 500 μl of cell culture was added to the
well. Cells were allowed to settle to the bottom of the well and adhere to the
coverslip for 1 h. The cell culture medium was then removed and replaced by 500 μl
M9 medium containing 0.2% (w/v) arabinose. The co-culture was incubated at
30 °C overnight. Ten minutes before imaging, the co-culture was stained with
5 ng/ml FM4-64 (Thermo Fisher) dye. 3D image stacks of 20 planes with 5 ms
exposure time per frame were acquired using 488 nm excitation.

Raw data processing. Raw 3D images were background subtracted and then
deskewed and deconvolved18,19. The background was estimated by averaging
intensity values of dark areas (devoid of cells) in the field of view. Deconvolution
was performed using the Richardson–Lucy algorithm with ten iterations using
experimentally measured point spread functions (PSFs) as the deconvolution
kernel. The experimentally measured PSFs were obtained separately for each color
channel using fluorescent beads (200 nm FluoSpheres®, Thermo Fisher) coated on
a coverslip63. 3D images were rendered using the 3D Viewer plugin in Fiji64 or
ChimeraX65.

Generation of simulated biofilm images. To generate data for training of CNNs,
we computationally simulated fluorescence images of 3D biofilms, for which spatial
arrangements among individual cells are known precisely and accurately. Growth and
division of individual rod-shaped cells in a population were simulated using Cell-
Modeller, an individual-based computational model of biofilm growth (Fig. 1a)66. In
individual-based biofilm growth models, cells are the basic modeling units. Each cell is
characterized by a set of parameters, including its 3D position, volume, and spatial
orientation. All the cells in the simulated biofilm are then allowed to evolve in time
according to predefined biological, chemical, and mechanical rules. For example, cells
grow at a defined rate and then divide after reaching a certain volume threshold.
Cellular collisions that are due to cell growth are alleviated by imposing a minimum
distance criterion between cells at each time point. For our simulations, we chose cell
diameter and cell length (d, l) parameters consistent with a given bacterial species,
namely (1 μm, 3 μm) for E. coli67, (0.7 μm, 6 μm) for M. xanthus68, and (1 μm, 1 μm)
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for spherically symmetric S. aureus69. While the cell volume can be readily adjusted in
CellModeller, the cellular volume density, which is determined by the intercellular
spacing, is not directly adjustable. We therefore adjusted the cellular volume density
after each simulation by scaling the cellular positions (cell centroids), and thus the
intercellular distances by a constant factor, while leaving cell sizes, shapes, and
orientations unchanged. This post-processing procedure enabled simulation of the
exact same 3D cell arrangements at adjustable cell volume densities.

We fluorescently labeled simulated cell volumes and surfaces according to two
commonly used labeling strategies in fluorescence microscopy. To simulate
expression of intracellular fluorescent proteins, the fluorescence emitters were
placed at random positions within the cell volume. To simulate membrane staining,
the fluorescence emitters were placed at random positions on the cell surface. Each
cell contained between 500 and 1000 fluorophores to simulate expression level
variations between cells, which is often observed in experimental images. Once the
fluorophore spatial distributions were determined, a 3D fluorescence image
(Fig. 1b) was computationally generated. Each fluorophore was treated as an
isotropic point emitter, so that it would produce a diffraction-limited PSF on the
detector. Experimentally measured 3D PSF shapes (see “Raw data processing”
section) were used as the convolution kernel. Next, the fluorescence signal intensity
was scaled by multiplying the image by a constant factor and then a constant
background intensity was added to the image at ~200 photons per pixel, as
measured in experimental data. This procedure enabled independent adjustments
of the fluorescence signal and background to obtain SBRs consistent with
experimental data. In a final step, we introduced Poisson-distributed counting
noise, based on the summed background and signal intensities, as well as Gaussian-
distributed camera read-out noise (experimentally calibrated for our detector at
3.04 photons per pixel on average)70. This resulting image data (Fig. 1c) was then
processed in the same manner as experimental data (see “Raw data processing”
section). In contrast to experimental data, generation of the corresponding voxel-
level annotation maps is fast and error free, because the underlying ground truth
cell arrangements are known a priori (Fig. 1d).

To mimic imaging of reporter gene expression in a subset of cells, we simulated
biofilm images, in which all cells were stained at the cell surface (e.g., with a
membrane-intercalating fluorescent dye) and a subset of cells additionally
contained intracellular fluorophores (e.g., through the expression of an intracellular
fluorescent protein; Supplementary Fig. S10a, b). The mixing ratios between
membrane-labelled, and membrane and interior labelled cells were 10:90, 30:70,
50:50, 70:30, and 90:10. Ten different cell arrangements containing ~300 cells were
simulated for each ratio. To train the CNNs (see next section), six datasets were
used, all with a 50:50 mixing ratio.

To mimic imaging of cells with different morphologies, we simulated biofilms
containing spherical and rod-shaped cells (Supplementary Fig. S10c, d). Cell
arrangements were first simulated using rod-shaped cells and then a fraction of rod-
shaped cells is replaced with spherical cells. The size of the rod-shaped cells is that of
E. coli (~3 × 1 μm, length by diameter). The size of the spherical cells is that of S.
aureus (~1 μm in diameter)71. Both cell types were labelled by intracellular
fluorophores, as described above. The mixing ratios between rod-shaped and spherical
cells were 10:90, 30:70, 50:50, 70:30, and 90:10. Ten different cell arrangements
containing ~300 cells were simulated for each ratio. To train the CNNs (see next
section), we picked one image from each mixing ratio for a total of five images.

Training the convolutional neural networks. We trained 3D U-Net CNNs for
voxel-level classification tasks72 within the NiftyNet platform73 (network archi-
tecture depth 4, convolution kernel size 3, ReLU activation function, 32 initial
feature maps, and random dropout of 0.5 during training). To achieve robust
performance, we trained these networks using five to ten simulated biofilm images
with randomly selected cell densities and SBRs (see “Generation of simulated
biofilm images” section). The same raw data processing steps used for experimental
data (see “Raw data processing” section) were also applied to simulated data. 3D
deconvolved simulated data and their corresponding voxel-level annotations were
used to train the CNNs. Each image used for training contained ~9 million voxels.
We trained CNNs by classifying each voxel as “background”, “cell interior”, or as
“cell boundary” based on the underlying cell arrangements. For mixed-species
biofilms, two additional classes, “cell interior” and “cell boundary” of the second
species, were used. This type of annotation scheme has been shown to increase
separation of bacterial cells in 2D (ref. 74). For data augmentation, we applied
NiftyNet’s built-in scaling, rotation, and elastic deformation functions. Instead of
the original cross-entropy loss function combined with uniform sampling, we used
the Dice loss function and “balanced sampler”, so that every label has the same
probability of occurrence in training. All networks were trained for 2000–3600
iterations with a learning rate of 0.0001. Using these parameters, it took ~24 h to
train the CNNs on a NVIDIA Tesla V100 GPU with 16 GB memory.

Thresholding of CNN-produced confidence maps. Voxel-level classification by
CNNs generates different confidence maps (one confidence map for each anno-
tation class). The confidence values range between 0 and 1, and represent the
confidence of assigning individual voxels to a given class. After thresholding the
“cell interior” confidence map to obtain a binary image (Supplementary
Fig. S11a–c), connected voxel clusters can be isolated and identified as single-cell
objects using 3D connected component labeling75. A conservative size-exclusion

filter was applied: small objects with a volume approximately ten times less than
the expected cell size were considered background noise and filtered out using an
area open operator75. Since the cell-interior volumes do not contain the cell
boundaries, we dilated each object by 1–2 voxels to increase the cell volumes using
standard morphological dilation75. The threshold value to segment individual cell
objects based on the “cell interior” confidence map was determined by plotting the
overall voxel-level segmentation accuracy, quantified as the IoU value (aka Jaccard
index76) vs. the confidence value thresholds (Supplementary Fig. S11d, e). Optimal
voxel-level segmentation accuracies were consistently obtained using confidence
thresholds between 0.88 and 0.94. Throughout this work, we use 0.94 for cells
labeled with intracellular fluorophores and 0.88 for cells labeled with membrane-
localized fluorophores.

Post-processing of U-Net result using a refined LCuts algorithm. Thresholding
of the “cell interior” confidence map produces a binary segmentation result
(background= 0, cell interior= 1), where groups of connected, nonzero voxels
identify individual cells in most cases. However, when cells are touching, they are
often not segmented as individuals, but remain part of the same voxel cluster
(undersegmentation). On the other hand, a single cell may be erroneously split into
smaller subcellular objects (oversegmentation). Finally, in datasets with low SBR,
connected voxel clusters may be detected that do not correspond to cells and thus
produce false positive objects (Supplementary Fig. S1a). To address these errors
and improve the segmentation accuracy further, we included additional mathe-
matical image analysis steps to post-process the CNN results and reduce under-
segmentation and oversegmentation errors.

Step 1: False positive objects are identified by evaluating the coefficient of
variation77,78 for each connected voxel cluster i:

CVi ¼
σ i
μi
; ð1Þ

where σi and μi denote the standard deviation and the mean of the intensity taken
over all voxels contained in connected voxel cluster i. If the coefficient of variation
is larger than ρ, then the current object will be classified as a false positive object
and removed from the confidence map by setting all its voxels to zero. The
removed objects will then no longer be counted when evaluating the cell counting
accuracy. The value of ρ is selected based on the coefficient of variation of the
background. For the datasets analyzed here, this sample coefficient of variation was
determined to be ρ= 1.1. After CV filtering, objects smaller than 25% of the
expected bacterial cell size are also removed by setting its voxels to zero. The
remaining connected voxel clusters are then considered for further processing
(Supplementary Fig. S1a).

Step 2: To identify and delineate individual cells in the connected voxel clusters
identified in the previous step, we implemented medial axis extraction using the
method of inscribed spheres38, with the constraint that the sphere radii do not
exceed the expected diameter of a single bacterial cell (e.g., d= 0.8 µm;
Supplementary Fig. S1b left). The set of N inscribed spheres are tangent to the
object’s surface and parameterized by (xi, yi, zi; ri < d/2) for i= 1, …, N.
Determination of the (xi, yi, zi; ri) coordinates is achieved using the Euclidean
distance transform of the objects’ boundary79, so that the points with coordinates
(xi, yi, zi) reliably trace out the central cell axes of individual bacterial cells
(Supplementary Fig. S1b right).

Step 3: To separate different linear segments after cell axis extraction
(Supplementary Fig. S1c), we used a refined version of the LCuts algorithm39,80.
LCuts is a graph-based data clustering method designed to detect linearly oriented
groups of points with certain properties. The fundamental elements of a weighted
mathematical graph are nodes, edges, and edge weights. Here, the points with
coordinates (xi, yi, zi) represent the graph nodes. Edges are the connections among
nodes. Edges are assigned weights, for example, to reflect the confidence that two
nodes belong to the same group. LCuts achieves grouping by assigning weights to
edges in the fully connected graph to reflect the similarity between two nodes. The
features of each node include its location and direction, where the location of each
node is simply its Cartesian coordinates. The direction of each node is found by
first determining its 5-hop neighborhood, removing nodes at large relative angles,
and evaluating the major direction of the outlier removed neighborhood
(Supplementary Fig. S12).

The algorithm to separate the nodes into different groups is a recursive graph
cutting method39. Graph cuts (e.g., nCut81) disconnect the edges between two
groups of nodes when the combined weights of these edges are minimized. The
weights, between node i and node j, are calculated as follows:

wij ¼ wD � wT ; ð2Þ
where

wD ¼
e� D2

ij=σ
2
D if D2

ij ≤ r

0 if D2
ij > r;

(
ð3Þ

wT ¼ e� cos θijð Þ�1ð Þ2=σ2T : ð4Þ
wD weighs the distance between two nodes and wT weighs difference between

node directions. Dij is the Euclidean distance between node i and node j, and r is set
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to eliminate edges between two far away nodes. θij is the relative angle between the
directions of nodes i and j. σD and σT are adjustable parameters that control the rate
of exponential decay. LCuts continues to separate groups of nodes until each group
satisfies a stopping criterion. The stopping criterion is biologically inspired based
on the expected length L of a single bacterial cell and a group’s linearity after each
recursion. LCuts yields linearly oriented groups of points that trace out the central
axes of individual cells (Supplementary Fig. S1c). Importantly, cell separation is
achieved without having to specify the number of cells in the biofilm in advance.
Furthermore, to limit the need for optimization of post-processing routines, the
four adjustable parameters used in LCuts, namely cell diameter d, the cell length L,
and the decay parameters σD and σT are chosen based on a priori knowledge about
the bacterial cells under investigation. We found that the performance of LCuts is
not sensitive to the particular values of d, L, σD, and σT as long as they are
consistent with the imaged bacterial cell sizes and shapes (Supplementary Fig. S13).
Identification of single cells provided by LCuts alleviates undersegmentation errors
of the CNN-based segmentation.

Step 4: The final output of linear clustering can provide length, location and
orientation of each cell. Based on these linear clusters, the cellular architecture of
the biofilms can be reconstructed by placing geometrical models of cells in space, as
shown in Supplementary Fig. S1d. For fast computation, spherocylinders are used
as the geometrical model using a radius consistent with the known sizes of bacterial
cells. To further refine the cell surfaces to better align with the CNN-segmented
volumes, we enclosed the inscribed spheres found in Step 2 in a convex hull
(Supplementary Fig. S1d).

Performance evaluation. We quantified segmentation accuracy both at the cell-
level (object counting) and at the voxel-level (cell shape estimation). To quantify
the cell-level segmentation accuracy, we designated segmented objects as true
positive (TP) if their voxel overlap with the ground truth or the manual annotation
resulted in an IoU value larger than a particular IoU matching threshold. This
criterion ensures one-to-one matching. A threshold of 0.5 is typically chosen when
reporting single cell counting accuracy values34,40. We follow this convention here.
If the segmented cell object could not be matched to a ground truth/manually
annotated cell volume, then it was counted as a false positive (FP) and the IoU
value of that segmented object was set to zero. If a ground truth/manually anno-
tated cell volume was not identified in the image, then it was counted as false
negative (FN). The cell (object) counting accuracy was then defined as TP/(TP+
FP+ FN). The average IoU value over all segmented objects in the image quantifies
the voxel-level segmentation accuracy, i.e., the accuracy of cell shape estimation.

To evaluate the accuracy of cell segmentation on experimental data, three
researchers separately traced the cell contours on experimental 2D slices by using
freehand selections in Fiji ROI Manger64. Because human annotation is very time
consuming (~50 h for a complete 3D dataset containing ~300 cells in a 22 × 32 ×
12 µm3 volume), one to three single 2D slices were selected for each dataset. One
exception is the 3DM. xanthus, for which the cell outlines in all available x-, y-, and
z-slices were traced manually (Supplementary Fig. S14a). For straight, rod-shaped
cells, the centroids of the resulting 2D cell contours all fall within the cell interior
volume. To group together the contours belonging to the same cells, the centroid of
each contour was projected along the x-, y-, and z-dimension. If the projected
centroid was enclosed by any other contour in a different slice, then the centroid of
that contour was projected onto the plane of the initial contour. Two contours were
labeled as related if they contained each other’s projected centroids (Supplementary
Fig. S14b). This process is repeated for all possible contour pairs and their
relationship is recorded in an adjacency matrix. Next, related contours were
assigned to individual cells (Supplementary Fig. S14c). To separate incorrectly
grouped contours, we additionally identified clusters of centroids using the
DBSCAN point clustering algorithm82 (Supplementary Fig. S14d). In a final step,
we manually removed incorrectly traced contours (Supplementary Fig. S14e). Cells
are reconstructed by creating convex hulls with the grouped contours
(Supplementary Fig. S14f, g). This procedure determined the approximate
positions, shapes, and orientations of individual cells in the 3D biofilm.

To estimate the SBRs of both simulated and experimental images, we manually
selected and determined the intensities of approximately ten “signal” and ten
“background” regions in the images. We computed the SBR as the mean signal
intensity divided by the mean background intensity. To estimate the local density
of a biofilm, we partitioned the image into several 3D tiles of size 64 by 64 by 8
voxels. We then estimated the local density as the total cell volume contained in
each tile divided by the tile volume. We calculated the mean density of the ten
densest tiles to define the “local density” metric reported for each dataset in the
paper. To estimate the cell density in an experimentally acquired biofilm image, the
same calculations were performed on either 3D manual annotations (if available)
or binary masks obtained by CNN-processing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used for generating the results presented in this paper are available from the
corresponding author upon request. Source data are provided with this paper.

Code availability
The code for running all the modules of BCM3D, as well as training and test data is
available at https://github.com/GahlmannLab/BCM3D.git (ref. 83) and https://doi.org/
10.5281/zenodo.4088658.
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