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Abstract

A method of determining unknown phase-shifts between elementary images in two-dimen-

sional Structured Illumination Microscopy (2D-SIM) is presented. The proposed method is

based on the comparison of the peak intensity of spectral components. These components

correspond to the inherent structured illumination spectral content and the residual compo-

nent that appears from wrongly estimated phase-shifts. The estimation of the phase-shifts is

carried out by finding the absolute maximum of a function defined as the normalized peak

intensity difference in the Fourier domain. This task is performed by an optimization method

providing a fast estimation of the phase-shift. The algorithm stability and robustness are

tested for various levels of noise and contrasts of the structured illumination pattern. Further-

more, the proposed approach reduces the number of computations compared to other exist-

ing techniques. The method is supported by the theoretical calculations and validated by

means of simulated and experimental results.

Introduction

Breaking the diffraction limit [1–3] has been successfully achieved in modern microscopy by

different methods over the last couple of decades. As a result, non-conventional techniques

that push the resolution of optical microscopes beyond the classical limit have been proposed

[4–11]. Amongst them, structured illumination (SI) has been shown as a powerful alternative

that can double the resolution of wide-field microscopes. SI does not require for a focused

beam in the illumination, which reduces photo-bleaching of the fluorophores and allows a

larger field-of-view imaging [8–17] compared to scanning techniques. In SI the sample is illu-

minated by a structured pattern generated by a coherent superposition of planes waves. The

illumination pattern interacts with a fluorescent sample, resulting in an incoherent field which

corresponds to a modulated version of the object irradiance distribution. This modulation

shifts high-spatial frequencies of the object spectrum into low-frequency components that pass

through the transmission band of the wide-field optical transfer function (OTF) of the micro-

scope. However, these components are mixed together with the wide-field spectrum in the
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band support of the OTF. Therefore, a phase-shifting technique must be applied to untangle

the different spatial frequency components. Consequently, several images (named elementary

images) with relative phase-shifts of the illumination pattern must be taken to obtain a single

reconstruction with enhanced resolution. Once the spatial frequency components are isolated,

an extended image spectrum can be obtained with a resolution higher than the limit imposed

by the diffraction barrier. Nevertheless, the goodness of the final reconstruction is strictly

related to the precision in the knowledge of the introduced phase-shifts. Errors in the determi-

nation of these values produce artifacts in the final reconstruction and an erroneous estimation

of the object [18]. Several methods can be applied for determining the phase-shifts from the

elementary images, even with no prior knowledge of the system. Shroff, Fienup, & Williams

[19] proposed the measurement of the phase in the secondary spectral peaks of the elementary

images to calculate the estimated phase-shifts. This method is robust and fast, but produces

errors that can be up to 10% for small phase-shifts. In additions, the method accuracy signifi-

cantly decreases for SI patterns of spatial frequency higher than 85% of the cut-off frequency

of the OTF. This estimation error is especially self-defeating inasmuch as it limits the resolu-

tion improvement that can be obtained with SIM: doubling the spatial resolution implies the

use of a spatial frequency of the structured pattern that matches the cut-off frequency of the

wide-field OTF. To solve these drawbacks, Wicker, Mandula, Best, Fiolka, & Heintzmann [18]

proposed a robust method which can estimate the phase-shifts when the peaks of the SI spec-

tral components are not clearly visible or even fall out of the support region of the OTF. This

approach consisted in minimizing the cross-correlation between the calculated components

by iteratively changing the estimated phase-shift. A variant of the method that used a single-

step was proposed by Wicker [20], but results could be less precise than utilizing an iterative

process, especially in low-photon/high-noise conditions. In this paper we present a fast and

robust method for the estimation of the phase-shifts between elementary images in 2D-SIM.

We validated the method by simulated and experimental data. The algorithm robustness is

tested under different conditions such as the contrast of the pattern, noise and expected num-

ber of photons collected by the optical system.

Materials and methods

Theory

Let us briefly review the theoretical background and principles of 2D-SIM. In this type of

microscope, a thin fluorescent sample with a density distribution of fluorophores O(x) is illu-

minated by a structured irradiance pattern S(x), being x = (x, y) the transverse coordinates.

Note that the sample is assumed to be two-dimensional and therefore the axial behavior is

neglected. The resulting intensity is imaged by the microscope, producing the following inten-

sity distribution at the image plane

IðxÞ ¼ O
x
M

� �
� S

x
M

� �h i
� hðxÞ ; ð1Þ

being M the lateral magnification of the imaging system, and� the 2D-convolution product.

Furthemore, the 2D-point spread function (2D-PSF) is given by hðxÞ ¼ j~pðxÞ=lf j2, where ~p is

the Fourier transform of the microscope aperture stop, λ is the emission wavelength and f is

the focal lenght of the tube-lens.

Typically, the structured illumination pattern S(x) is a harmonic function which can be

expressed as the square modulus of a coherent superposition of plane waves. In practice, there

are two cases of interest: the superposition of two plane waves traveling with a symmetrical

direction with respect to the optical axis (2D-SIM), and the same two plane waves plus a third
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one traveling along the optical axis (3D-SIM). In this manuscript we will focus our attention in

the first case which yields to two-dimensional improvement of the optical resolution. Note

that the extension of the presented method to 3D-SIM is not straightforward.

In the case of 2D-SIM, considering that the relative phase ϕ of the plane waves can be

shifted, the illumination pattern can be described as

Sj�ðxÞ ¼ 2ð1þ c cos ð2pMAj � x þ �ÞÞ ; ð2Þ

being A the vector that defines the travelling direction of the plane waves and c the contrast of

the resulting pattern, which can be affected by the coherence between the plane waves as well

as their relative intensity. The index j refers to different directions of the pattern with respect

to the optical axis that are required for obtaining an isotropic 2D-SIM. Note that the spatial

frequency of the pattern, A, is defined in the image space and therefore the magnification of

the system is included in Eq (2). Hence, the intensity distribution in the image plane can be

written in the following form

Ij�ðxÞ ¼ O
x
M

� �
� Sj�

x
M

� �h i
� hðxÞ : ð3Þ

The effect of the modulation in terms of the spatial frequency content of the image can be

better understood in the spatial-frequency domain. Omitting irrelevant constant factors, the

Fourier transform of the image intensity distribution is given by

~I j�ðuÞ ¼ ½~OðMuÞ � ~Sj
�ðMuÞ�HðuÞ ; ð4Þ

where* represents the 2D Fourier transform, u are the spatial frequency coordinates, and

being H(u) the 2D optical transfer function (OTF) of the microscope. Inserting the Fourier

transform of the illumination pattern in its analytical form and considering an ideal contrast

of the pattern c = 1, Eq (4) can be written as follows

~I j�ðuÞ ¼
X1

m¼� 1

e� im�

jmj þ 1
Cj

mðuÞ ; ð5Þ

being

Cj
mðuÞ ¼ ½~OðMuÞ � dðuþmAjÞ�HðuÞ : ð6Þ

As it can be noted from Eq (6), apart from the wide-field spectrum of the object, m = 0, the

modulation introduces high spatial frequency information of the object within the OTF sup-

port, namely, the SI components (m = −1, +1). This frequency shift is proportional to the pat-

tern spatial frequency, A, which is chosen to be practically identical to the cut-off frequency of

the OTF to optimize the resolution improvement. Although the components are mixed within

the same spectral bandwidth, the dependence on the relative phase of the structured pattern in

Eq (5) permits to separate them as solutions of a system of three linearly independent equa-

tions. A combination of three images with proper phase-shifts of the illumination pattern is

required for this system. In a general case, the three phase-shifts between the elementary

images are unknown. Thus, they can be written as ϕ = (ϕ0 − α, ϕ0, ϕ0 + β). Note that the way in

which the phase-shifts are defined is arbitrary as it depends on the origin of the first phase-

shift. For simplicity, we neglected the global phase (ϕ0 = 0), which does not affect the forth-

coming mathematics. If the relative phase-shifts are known with high accuracy, the three

components can be retrieved by solving the system of equations as a combination of the
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elementary images, Ij
� a
; Ij0; I

j
þb, leading to

R

Cj
� 1

Cj
0

Cj
þ1

0

B
B
B
@

1

C
C
C
A
ðuÞ ¼

~I j
� a

~I j0

~I jþb

0

B
B
B
@

1

C
C
C
A
ðuÞ ; ð7Þ

being

R ¼

eia=2 1 e� ia=2

1=2 1 1=2

e� ib=2 1 eib=2

0

B
B
B
@

1

C
C
C
A

ð8Þ

the matrix that solves the system.

Once the components of the spectrum are isolated, they must be repositioned and properly

weighted to compensate for the shape of the OTF. The latter can be achieved by using a Wie-

ner-like filter with either the measured or the estimated OTF of the system, namely ĤðuÞ. In

addition, an apodization filter, HSI(u), is multiplied by the resulting object spectrum. We chose

an apodization filter based on the calculation of an OTF of size identical to the theoretical cut-

off frequency of the 2D-SIM. Nonetheless, other choices can be made such as a triangular apo-

dization function [15]. Note that this procedure is defined for one direction of the structured

pattern given by the spatial frequency vector Aj. The pattern is typically rotated three times to

produce a quasi-isotropic enhancement of the resolution. Conventionally, three wave vectors,

j = (1, 2, 3), are taken to produce relative rotations of the pattern equivalent to the angles −60˚,

0˚, 60˚. These operations result in the estimated high-resolution object spectrum which can be

expressed as

~Oj
SIðuÞ ¼

X3

j¼1

Xþ1

m¼� 1

Cj
mðuÞĤ

�ðuÞ
jĤðuÞj2 þ w2

� d u � mAjð Þ

( )

HSIðuÞ ; ð9Þ

where w is the Wiener parameter. The intensity distribution of the object produced by SIM is

calculated by simply computing the inverse Fourier transform of the Eq (9). Ideally, if the spa-

tial frequency of the projected patterns is equal to the cut-off spatial frequency of the original

OTF, the image intensity distribution obtained by SIM doubles the resolution with respect to

the wide-field image.

Normalized peak intensity difference maximization

In this section, we propose an alternative method of detecting the phase-shift between the ele-

mentary images in 2D-SIM. To this end, let us consider a 2D-SIM system which provides

images that can be described in the terms stated in Section 2. Typically, the spectrum of an ele-

mentary image contains three measurable peaks as a result of the zero component of the object

spectrum, shifted to three spectral positions determined by the SI spatial frequency, see Eq (5).

The respective positions of the peaks for a given direction of the pattern j are placed in the

coordinates provided by the vector pj
m ¼ mAj, being m = (−1, 0, 1). If the peaks are measurable

their spectral position can be detected with high accuracy.

Once the peak positions are known, elementary images with three relative phase-shifts ϕ =

(−α, 0, β) are used as inputs for solving the system of equations. Since the values α and β are

unknown, we solve the system for arbitrary values of the phase-shifts, ϕ0 = (−α0, 0, β0), namely
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the phase-shifts estimation. Then Eq (7) gives rise to an estimation of the solutions, that are

the true solutions only if α0 = α and β0 = β. In such a case, the three components of the spec-

trum can be perfectly isolated from each other. Any other value of the estimated phase-shifts

result in a combination of mixed components located at positions previously determined by

the vector. In case of estimated phase-shifts deviating from the experimental values, the recon-

struction algorithm leads to an improper unmixing of the components. Consequently, peaks at

the zero frequency positions (i.e. shifted along the spatial frequency vector A) of all SIM orders

appear in each unmixed SIM order. Hence, the presence of residual peaks indicates a mis-

matching between the experimental phase-shifts and the phase-shifts used in the reconstruc-

tion algorithm. Taking into account this reasoning, the intensities of the SI peak component

and the residual peak for a given direction of the pattern, j, can be calculated by

impeak ¼ jĈþ1ðu ¼ mAÞj ; ð10Þ

where Ĉþ1 represents the estimated +1 SI component given by Eq (7), that is, the estimated

solution of the system of equations. Note that even though a similar approach could be done

with the wide-field component Ĉ0, we focus our attention on the high-resolution components.

Since the solutions for Ĉþ1 and Ĉ � 1 are completely symmetrical, the method is only applied to

one of the components. We define the normalized peak intensity difference as

� a0; b
0

ð Þ ¼
iþ1
peakða

0; b
0
Þ � i� 1

peakða
0; b

0
Þ

iþ1
peakða

0; b
0
Þ þ i� 1

peakða
0; b

0
Þ
: ð11Þ

In order to write the normalized peak intensity difference in an analytical form, let us con-

sider the solution of the system of equations described in Eq (7). As we assumed the real

phase-shifts α and β to be unknown, we introduce the estimated phase-shifts, α0 and β0, in

order to solve the system. For instance, the system can be solved by using the Cramer’s rule.

To this end, we calculated the determinant of the matrix in Eq (8), which results in δ(α0, β0) =

i[sin α0(cos β0 − 1) + sin β0(cos α0 − 1)]. The determinant must be different from zero and

therefore α0 6¼ pπ and β0 6¼ qπ, being p and q integer numbers. Accordingly, the solution for

the +1 frequency component can be expressed as

Ĉþ1ðuÞ ¼
~I � aðuÞðeib

0

� 1Þ þ ~I 0ðuÞðe� ia
0

� eib0 Þ þ ~IþbðuÞð1 � e� ia0 Þ
i½ sina0ð cosb0 � 1Þ þ sinb0ð cosa0 � 1Þ�

: ð12Þ

Substituting the three phase-shifted images from Eq (5) in the former solution we obtain

the following equation:

Ĉþ1ðuÞ ¼ ½Kða0; b
0
Þ � ~Oðu � AÞ þ Lða0; b0Þ~Oðuþ AÞ�jHðuÞj: ð13Þ

where

K a0; b
0

ð Þ ¼
e� ia � eia0 � eib þ e� ib0 þ eiða0þbÞ � e� iðaþb0Þ

i½ sina0ð cosb0 � 1Þ þ sinb0ð cosa0 � 1Þ�

L a0; b0ð Þ ¼
e� ia � e� ia0 � eib þ eib0 þ e� iða0 � bÞ � e� iða� b0Þ

i½ sina0ð cosb0 � 1Þ þ sinb0ð cosa0 � 1Þ�
:

ð14Þ

As it can be seen from the above equation, there is no contribution from the zero SI compo-

nent to the +1 component estimated solution, independently of the phase-shifts values.

Phase-shift estimation in structured illumination microscopy
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Substituting iþ1
peak ¼ jĈþ1ðþAÞj and i� 1

peak ¼ jĈþ1ð� AÞj leads to

iþ1
peakða

0; b
0
Þ ¼ jKða0; b0Þ � ~Oð0Þ þ Lða0; b0Þ � ~Oð2AÞjjHðAÞj

i� 1
peakða

0; b
0
Þ ¼ jLða0; b0Þ � ~Oð0Þ þ Kða0; b0Þ � ~Oð� 2AÞjjHð� AÞj ;

ð15Þ

Note that in a 2D-SIM set of elementary images the values of α and β are fixed. Conse-

quently, the normalized peak intensity difference becomes a two-dimensional function that

can be written as follows:

� a0; b
0

ð Þ ¼
ðjKða0; b0Þj � jLða0; b0ÞjÞð1 � ZÞ
ðjLða0; b0Þj þ Kða0; b0ÞjÞð1þ ZÞ

; ð16Þ

being Z ¼
~Oð2AÞ
~Oð0Þ

�
�
�

�
�
�. Taking into account the attenuation of high spatial-frequency content of typ-

ical samples with respect to lower frequencies, especially when considering the effect of the

OTF, η can be neglected, that is:

j~Oð0Þj >> j~Oð2AÞj� !Z << 1 : ð17Þ

The normalized peak intensity difference can be represented as a surface for the variables α0

and β0, with a shape that depends on the experimental phase-shifts α and β. For experimental

phase-shifts within a period, α, β 2 (0, π), the corresponding surfaces are smooth and present

an absolute maximum for α0 = α and β0 = β. This fact can be proven by calculating the maxi-

mum of �(α0, β0) through its partial derivatives and the sign of the second derivative. We per-

formed this task by computing the partial derivatives in Mathematica and solving the resulting

system of equations. The partial derivatives were equal to zero for α0 = ±α + 2nπ and β0 =
±β + 2nπ, being n an integer number. It can be shown that the second derivative for those val-

ues of the estimated phase-shifts is always negative, which proves the presence of a maximum

in the surface when the estimated phase-shifts match the values of the experimental phase-

shifts. In practice, the total phase-shift of the SI pattern is smaller than 2π, which means that

the multiplicity of solutions is avoided. A scheme of the proposed algorithm is illustrated in

Fig 1. Surfaces for different values of the real phase-shifts calculated from Eq (16) are presented

in Fig 2. The surfaces display a maximum when the estimated and experimental phase-shifts

are equal to each other. Therefore, �(α0, β0) can be considered as a metric of goodness, higher

values of this function provide better estimations of the phase-shifts.

In practice, an iterative process must be implemented in order to find the maximum of the

surface. In doing so, the estimated solutions are obtained for a set of increasing values of the

estimated phase-shifts ða0rþ1
; b
0

sþ1
Þ ¼ ða0r; b

0

sÞ þ ðDa;DbÞ, being r and s the iteration counters

and Δα and Δβ the phase-step. Consequently, the best estimation of the phase-shifts are the

values ða0 ¼ a0max; b
0
¼ b

0

maxÞ for which the surface presents a maximum, matching the follow-

ing condition

�ða0max; b
0

maxÞ ¼ maxð�ða0; b0ÞÞ , ða0max; b
0

maxÞ ¼ ða; bÞ ! Ĉj
m ¼ Cj

m : ð18Þ

The precision of the estimation depends on the values of Δα and Δβ as well as the statement

in Eq (18) is only true for Δα = Δβ! 0. An illustration of the convergence of the algorithm is

shown in Fig 3. Note that the peak intensities of the SI components are constant so they must

be measured once. Hence, the resulting normalized peak intensity difference function depends

exclusively on the phase-shift estimates. As a result, instead of calculating every point of the

surface �(α0, β0) with a given accuracy, a nonlinear programming solver (BFGS quasi-Newton

algorithm [21]) was used to find the minimum of 1/�(α0, β0). The nonlinear optimization
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drastically reduces the computation time of the proposed method, providing precise phase-

shift estimations in the order of milliseconds. In a whole reconstruction process, the proposed

approach must be applied to 3 angles of SI pattern. The resulting isolated spatial-frequency

components are recombined by means of Eq (9) and then Fourier transformed to obtain the

2D-SIM reconstructed image.

Results and discussion

Simulation

In this section, we test the proposed method by means of a simulation. To this end, we firstly

made a convergence study of the normalized peak intensity depending on the experimental

phase-shifts. Afterward, we used this study to propose a time-optimized iterative algorithm to

estimate the values of the unknown phase-shifts. The performance of our method is compared

to the standardly used algorithms in terms of the error in the phase-shifts estimation. We sim-

ulated the image formation through a 2D-SIM system with experimental parameters of

NA = 1.4, and emission wavelength equal to 512nm. We generated an object consisting of a

Fig 1. Algorithm scheme. Illustration of the normalized peak intensity difference procedure. The peak positions are

measured from the Fourier transform of one elementary image. Then, the spectra of the elementary images are

combined by solving the system of equations for estimated phase-shifts α0 and β0. The resulting solution represent an

estimation SI components. The normalized peak intensity difference is measured and maximized through an iterative

process.

https://doi.org/10.1371/journal.pone.0221254.g001
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cluster of beads of size 5 times smaller than the wide-field 2D-PSF, see Fig 4(a). After that, a SI

pattern with a spatial frequency of 95% of the cut-off frequency of the wide-field system was

simulated and projected onto the object, see Fig 4. The resulting spectrum was filtered by a

simulated 2D-OTF and Fourier transformed to generate the simulated image intensity distri-

bution, as described in Eq (3). In this simulation phase-shifts can be chosen to generate the

three elementary images required in the 2D-SIM reconstruction and then compared with the

estimated values calculated by the normalized peak intensity difference. In addition, we con-

sidered the presence of Gaussian and Poisson noises by using the following imaging model

[22]:

IððxÞ ¼ g½IpðxÞ þ npðxÞ� þ nrðxÞ ; ð19Þ

being g the gain of the sensor, Ip(x) is the expected number of photons of the image, np(x) the

photon noise and nr(x) the readout noise of the camera. The gain was set to 1 in order to sim-

plify the analysis. Thus, elementary images in terms of the number of photons are calculated

by means of Eq (19). All simulated images are affected by shot noise as well as a maximum of

10 photons of gaussian readout noise. In order to verify the validity of the normalized peak

intensity difference method, we simulated the acquisition of three sets of elementary images

with a maximum expected number of photons nmax = 2000 and for phase-shifts equal to
3p

4
; 0; 3p

5

� �
, 3p

4
; 0; p

5

� �
and p

4
; 0; 2p

5

� �
. A zoomed-in region of one of the simulated elementary

images and its corresponding Fourier transform are shown in Fig 4. Simulated data were used

as input in the proposed phase-shift estimation algorithm. The peak positions of the SI

Fig 2. Analytical normalized peak intensity difference surfaces. Theoretical surfaces �(α0, β0) for different real phase-shifts α and β. The marked

points represent the maximum of the surface, which coincides with the estimation of the phase-shifts.

https://doi.org/10.1371/journal.pone.0221254.g002
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components were obtained by applying a conventional peak detection to one of the elementary

images Fourier transform. Note that the accuracy of this detection can be improved by zero-

padding the elementary images [16]. We calculated the surface �(α0, β0) for each simulated

acquisition with steps equal to Δα = Δβ = 10−4. The resulting surfaces are presented in Fig 5.

The surfaces match the shape predicted by theory, see Fig 2 for comparison. Furthermore, the

absolute maximum of the surfaces corresponds to the estimated phases. In order to prove it,

Fig 3. Method convergence illustration. Example of the convergence of the solutions as the value of the estimated

phase-shifts approach the experimental phase-shifts.

https://doi.org/10.1371/journal.pone.0221254.g003

Fig 4. Simulation of a structured illumination microscope imaging process. (a) Synthetic object consisting of a cluster of beads of size 5 times

smaller than the wide-fiield point spread function. (b) Simulated image intensity distribution of an elementary image of the synthetic object and (c) its

corresponding Fourier transform (modulus). The arrows show the position of the peak of the SI components.

https://doi.org/10.1371/journal.pone.0221254.g004
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we measured the values of the maximum of each surface and compared them to the simulated

phase-shifts. As a result, the estimated phase-shifts matched the simulated values, with an

accuracy σ(α), σ(β) strictly dependent on Δα and Δβ (see values in Table 1).

In a next step, we changed the maximum expected number of the photons, nmax, collected

by the optical system for assessing the effect of the presence of noise in the simulation. Exam-

ples of simulated elementary images in low-photon conditions (nmax = 30, 100, and 200) and

their corresponding Fourier transforms are shown in Fig 6. We also implemented the iterative

cross-correlation algorithm [18] and the method based on the measurement of the phase from

the peak components [19] to compare the performance with our method. We applied the three

algorithms varying the maximum expected number of photons from 10 to 3000 by randomly

adding shot-noise and a maximum of 10 photons of Gaussian read-out noise. At that point, we

calculated the error in the determination of the phase-shifts by comparing the estimated

phase-shifts with the inputs. This measurement was repeated 30 times for each value of nmax.

An average of the 30 estimated phase-shift errors as well as the standard deviations are repre-

sented in the left plot of Fig 7. As expected, the error in the phase-shift estimation for the

phase-of-peak method was relatively high compared to the correlation-based and the normal-

ized peak intensity difference. Furthermore, the precision of the phase-of-peak algorithm

remains constant, at ranges of 10−2 rad. On the other hand, the correlation-based and the pro-

posed method showed a similar behaviour leading to errors in the order of 10−3 rad for rela-

tively low levels of maximum expected photons, nmax> 500. In addition, a zoomed-in region

of the plot is presented in the right plot of Fig 7 in order to compare the performance of the

proposed method and the correlation-based in low-photons conditions. Results indicate that

both algorithms performed with the same accuracy for a maximum expected number of pho-

tons nmax> 100. The proposed method provided relatively accurate estimations of the phase-

shifts even when the relationship between the expected number of photons and the noise was

Fig 5. Simulated normalized peak intensity difference surfaces. �(α0, β0) surfaces calculated from the simulation for different phase-shifts. The

surfaces present an absolute maximum when the position of the estimated phase-shifts match the phase-shifts used as inputs.

https://doi.org/10.1371/journal.pone.0221254.g005

Table 1. Values of the estimated phase-shifts (α0, β0) calculated from the normalized peak intensity surface for different values of the phase-steps Δα, Δβ. All values

are expressed in radians.

Δα, Δβ α α0 σ(α) β β0 σ(β)

0.01 3π/4 2.36 0.01 3π/5 1.88 0.01

0.001 3π/4 2.356 0.001 3π/5 1.885 0.001

0.0001 3π/4 2.3562 0.0001 3π/5 1.8849 0.0001

https://doi.org/10.1371/journal.pone.0221254.t001
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significantly low (nmax = 30). Whole reconstruction examples performed with the proposed

method in low SNR conditions for three angles of the projected pattern (−60˚, 0˚, 60˚) are pre-

sented in Fig 8. In such cases, the reconstructed images were highly affected by noise, but the

proposed algorithm was efficient to decompose and shift the SI components.

Until now, we have considered an ideal SI pattern of contrast equal to 1. In practice, this

value can be affected by the coherence of the light source, by an unequal power distribution of

the intefering beams, or by any light source from out-of-focus planes. The proposed approach

is based on the detection of the peaks produced by the SI in the Fourier domain, so it is

Fig 6. Simulated elementary images in presense of noise. Intensity distributions of an elementary image of the

simulated cluster of beads for different maximum expected number of photons (nmax = 30, 100, and 200) (top row),

their corresponding spectra (bottom row).

https://doi.org/10.1371/journal.pone.0221254.g006

Fig 7. Tolerance to noise comparison. Comparison of the estimated phase error as a function of the maximum expected number of the photons for the

phase-of-peak, iterative cross-correlation, and the proposed method. In addition to the shot noise a read-out Gaussian noise of 10 photons was added to

the simulated images. The coloured areas represent the standard deviation of errors.

https://doi.org/10.1371/journal.pone.0221254.g007
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relevant to examine the behavior of the algorithm in terms of the pattern contrast. Sets of

2D-SIM data were simulated form several values of the pattern contrast and maximum

expected number of photons, maintaining the corresponding level of noise (10 photons of

standard deviation). We compared the error in the phase-shifts estimation of the proposed

method with the cross-correlation algorithm. Results showed that both algorithms estimated

the phase-shifts with the same precision for values of the contrast higher than 0.2 and expected

number of photons equalt to 200 and 2000. However, the error in the phase-shift estimations

started to increase for pattern contrasts smaller than 0.2. Curves displaying the behavior of

both algorithms as a function of the pattern contrast and maximum expected number of pho-

tons are shown in Fig 9. The curves show the average phase-shift estimation over 30 images for

each value of the contrast, affected by different random noises as well as the standard deviation

of the measurements. Nevertheless, even under extremely unfavorable conditions such as

c< 0.1, an estimation of the phase-shifts with errors below 1% were calculated by both

methods for nmax = 2000. Additionally, the correlation-based algorithm showed less tolerance

than the proposed method when the contrast of the pattern was below 0.2 for nmax = 200.

Examples of the whole reconstruction carried out with our method are presented in Fig 10, for

Fig 8. Simulated wide-field and 2D-SIM images depending on the maximum expected number of photons.

Comparison between the simulated wide-field images and the 2D-SIM reconstructed images for different values

(nmax = 30, 100, and 200) of the maximum expected number of photons. The spectra of the 2D-SIM reconstructed

image is also presented. Although the images are highly affected by noise, in the worst case (nmax = 30) the algorithm

still provided an estimation of the phase-shifts with an error smaller than 5%.

https://doi.org/10.1371/journal.pone.0221254.g008
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Fig 9. Tolerance to the pattern contrast comparison. Average phase-shift estimation errors as a function of the pattern contrast for maximum

expected number of photons equal to 200 and 2000. The filled area represent the standard deviation of the 30 measurement performed for each value of

the contrast. In addition to shot noise, a readout noise of 10 photons was added to the images.

https://doi.org/10.1371/journal.pone.0221254.g009

Fig 10. Tolerance to the pattern contrast. Simulated wide-field and 2D-SIM for contrasts of the SI pattern equal to 0.1 and 0.5. The maximum

expected number of photons was set to 200 photons, with a maximum of 10 photons of Gaussian noise in addition to the shot noise. Even in these

unfavorable conditions, the algorithm provided an estimation of the phase-shifts with an error smaller than 1%. As expected, the resulting

reconstructions are affected by noise but the unmixing of the components was properly achieved by the proposed method.

https://doi.org/10.1371/journal.pone.0221254.g010
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nmax = 200 and pattern contrasts 0.1 and 0.5. Both reconstructions present the expected

enhancement in the lateral resolution with a more significant influence of the noise for a more

diminished pattern contrast.

In order to provide an estimation of the computation time, we performed an estimation of

100 random values of the phase-shift for a single direction of the pattern. For a tolerance of

10−6 the average computation time was (0.0070±0.0005)s. The calculations were performed in

Matlab by means of a computer with an Intel Core-i7-3770 3.4 GHz processor with 20 GB of

RAM.

We can conclude that in practical conditions (a high expected number of photons, low

noise and high contrast of the pattern) the proposed method and the iterative correlation

based algorithm [18] present the same performance in terms of the accuracy. In that sense, the

normalized peak intensity difference represents a computational simplification of the method

proposed by Wicker et al. Furthermore, the presented method can be optimized reducing the

computation time to few milliseconds. Nevertheless, the main drawback of our method is that

the peaks of the SI components need to be measurable: they must be inside the band support

of the OTF as well as they must have enough photons to be detected.

Experimental results

In this section, we tested the proposed method by using experimental data. For that purpose,

we built a structured illumination microscope consisting of a fiber-coupled laser (λ = 488nm),

two optical relays of magnification M1 = 1 and M2 = 1, a MO Olympus M = 50x, NA = 0.50, a

tube-lens (TL) of focal length 200mm, and a sCMOS camera Hamamatsu OrcaFlash 4.0 with

2048x2048 pixels of 6.5μm pixel size. The structured illumination is produced by a phase dif-

fraction grating of 50 lp/mm (Pasco). The zero-order of the grating was blocked out by using a

spatial filter (located at the image plane of the first relay system) whilst the higher orders were

filtered by the MO aperture stop, which were projected by means of the second optical relay.

Fig 11. Elementary experimental image. (a) Elementary image of a dye solution of cotton fibers and (b) its corresponding Fourier transform.

https://doi.org/10.1371/journal.pone.0221254.g011
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Since the grating was illuminated by a spherical wave, the separation of the orders could be

tuned by changing its distance to the point source, which allowed the projection of a SI pattern

of the desired spatial frequency [23]. The grating was mounted onto a rotating plate held by a

stepper motor (Owis) to produce the rotations of the pattern and the transverse movement

required for the phase-shifting the SI pattern, respectively. A long-pass filter (lcut = 530nm)

was used to filter the laser light in the collection whilst allowing the fluorescent light to reach

the camera.

With this setup, we tested the validity of the method by using a fluorescent solution of cot-

ton fibers dyed with Rhodamine 123 as sample. We collected sets of 2D-SIM elementary

Fig 12. Normalized peak intensity difference surfaces for different values of the phase-shifts. Normalized peak intensity difference surfaces

obtained for various sets of elementary images. The phase-shifts were generated by displacing the diffraction grating a given amount of steps with the

stepper motor. The surfaces show the expected behavior, that is, the phase-shifts proportionally increased with the number of steps.

https://doi.org/10.1371/journal.pone.0221254.g012
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images for one direction of the pattern. The experimental phase-shifts were sequentially

increased. To this end, the displacement of the diffraction grating was set to an increasingly

higher number of steps of the stepper motor. An elementary image captured by the system and

its correspondent Fourier transform are shown in Fig 11. For each set, we calculated the nor-

malized peak intensity surfaces, see Fig 12. Note that the contrast of the pattern (see panel (b)

of Fig 11) was relatively low. We measured a contrast of 0.27 by comparing the weight of the

spectral components.

Fig 13. Experimental 2D-SIM reconstruction. Experimental images of a fluorescent USAF 1951 test target (NA = 0.1). The expected lateral resolution

enhancement is observed between (a) the wide-field image and (b) the 2D-SIM reconstruction. Equivalently, the 2D-SIM system provided an extended

bandwidth as displayed in the corresponding Fourier transforms, (c) and (d). Note that no residual peaks are displayed in (d), which means that the

proposed approach produced a properly unmixed spectral components.

https://doi.org/10.1371/journal.pone.0221254.g013
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To demonstrate the resolution improvement provided by our system as well as validating

our method in practical conditions, we carried out a proof-of-concept experiment with low

numerical aperture. In this case, we used a 4x and NA = 0.1 microscope objective and a fluo-

rescent 1951 USAF test target as sample. The spatial frequency of the SI pattern was set at

approximately 92% of the cut-off frequency of the microscope objective. In these conditions,

we carried out a whole 2D-SIM reconstruction by using the normalized peak intensity differ-

ence in order to estimate the phase-shifts. In this case, we applied the time-optimized algo-

rithm to a set of elementary images with unknown phase-shifts of the projected pattern. The

Fig 14. Reconstruction performed using the proposed method for a FairSIM dataset. (a) Wide-field image and (c) structured illumination images of

200 nm Tetraspeck beads. The corresponding Fourier transforms are presented in (b) and (d).

https://doi.org/10.1371/journal.pone.0221254.g014
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relative rotation angles of the diffraction grating were (−60˚, 0˚, 60˚). The 2D-SIM reconstruc-

tion and its comparison with the wide-field image are shown in Fig 13. As it can be observed,

there are no artifacts in the 2D-SIM estimated spectrum. Consequently, the estimation of the

phase-shifts provided by our method is close to the experimental phase-shifts. An improve-

ment of 5 groups can be measured in the SIM reconstruction with respect to the wide-field

image, which means a resolution enhancement of a factor 1.8. Note that non-uniformities in

the fluorescent dye of size close to the resolution limit become more noticeable in the SIM

image due to the improvement in the lateral resolution.

In a last experiment, we used a dataset (SLM-SIM 200nm-Tetraspeck 680nm) from the

open-source FairSIM [24] repository to prove the performance of the normalized peak inten-

sity difference for data with unknown acquisition parameters. In this dataset, four angles of the

illumination pattern were used. The proposed method calculated properly the estimated

phase-shifts as there is no presence of artifacts neither in the image or its Fourier transform,

see Fig 14. In the same way, the expected transverse resolution improvement in the recon-

structed SIM image can be observed.

Conclusion

We have presented an alternative method for estimating the phase-shifts between elementary

images in 2D-SIM. The method is based on the comparison of the peak intensities of the spa-

tial frequency components resulting from the estimated solutions obtained with standard SIM

reconstruction. The calculation of the normalized intensity difference of the peaks results in a

two dimensional function with the estimated phase-shifts as coordinates. The surface presents

an absolute maximum when the estimated phase-shifts are equal to the experimental ones.

Thus, maximizing the intensity difference of the peaks guarantees a proper estimation of the

experimental phase-shift. We showed the validity of the method via simulations and experi-

ments. The computation time of the method can be optimized by using a nonlinear program-

ming solver. Furthermore, we studied the stability and robustness of the results provided by

the method under different conditions, such as the dependence on the phase-shift, the contrast

and the presence of noise. The algorithm shows a high immunity to noise as well as to SI pat-

terns with low-contrast. The method shows a precision in the estimation of the phase-shifts

comparable to the standardly used cross-correlation method, but requiring for fewer computa-

tions and converging with a faster computation time.
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