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Previously network representation learning methods mainly focus on exploring the
microscopic structure, i.e., the pairwise relationship or similarity between nodes.
However, the mesoscopic structure, i.e., community structure, an essential property in
real networks, has not been thoroughly studied in the network representation learning. We
here propose a deep attributed network representation learning with community
awareness (DANRL-CA) framework. Specifically, we design a neighborhood
enhancement autoencoder module to capture the 2-step relations between node
pairs. To explore the multi-step relations, we construct a community-aware skip-gram
module based on the encoder. We introduce two variants of DANRL-CA, namely, DANRL-
CA-AM and DANRL-CA-CSM, which incorporate the community information and attribute
semantics into node neighbors with different methods. We compare two variant models
with the state-of-the-art methods on four datasets for node classification and link
prediction. Especially, we apply our models on a brain network. The superiority
indicates the scalability and effectiveness of our method on various networks.
Compared with DANRL-CA-AM, DANRL-CA-CSM can more flexibly coordinate the
role of node attributes and community information in the process of network
representation learning, and shows superiority in the networks with sparse topological
structure and node attributes.

Keywords: attributed networks, representation learning, community information, brain networks, node
classification, link prediction

1 INTRODUCTION

Many real-world systems or data can be easily represented as networks. For example, in social
networks, e.g., Facebook Zhang et al. (2018), a node represents the user and an edge represents the
friendship between users; in brain networks, e.g., Fly-drosophila-medulla-1 Rossi and Ahmed (2015),
a node denotes the neuron and an edge denotes the fiber tract between neurons. Obviously, networks
can efficiently store and access relational knowledge between the interacting nodes Zhang et al.
(2018). Hence, network analysis has been always concerned by academia and industry. Network
analysis heavily relies on the network representation Wang et al. (2017). However, the traditional
network representation could be sparse because it is usually developed on the discrete adjacency
matrix, such as LLE Roweis and Saul (2000), Belkin and Niyogi (2001) and Ahmed et al. (2013),
which would limit the expansion of the above methods inmachine learning applications Perozzi et al.
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(2014). In recent years, network representation learning (NRL)
Perozzi et al. (2014) has received widespread attention because it
can learn dense and low-dimensional node embeddings with
preserving the network properties. An emerging approach to
NRL is based on natural language models Sheikh et al. (2019),
especially skip-gram Mikolov et al. (2013a) Mikolov et al.
(2013b). At present, many excellent NRL methods, such as
DeepWalk Perozzi et al. (2014), node2vec Grover and Jure
(2016), LINE Tang et al. (2015), GreRep Cao et al. (2015),
NetMF Qiu et al. (2018) and ANE Liu et al. (2020), have been
proposed.

Essentially, the above methods mainly focus on the
microscopic structure that includes local closeness proximity,
i.e., the first-order, second-order, and high-order proximity
Zhang et al. (2020), which indicate the one-step, two-step,
and multi-step relations between two nodes, respectively.
Notably, the community structure which is one of the
common connectivity patterns observed in many kinds of
networks Grover and Jure (2016), can reveal the implicit
relationships between nodes from a higher structural level
over the microscopic structure Wang et al. (2017) Keikha
et al. (2018). For example, communities in functional brain
networks are likely to group brain regions having similar
functions Sporns and Betzel (2016) Wang and Li (2019). The
algorithms Wang et al. (2017) Keikha et al. (2018) have proved
that incorporating the community information into NRL is
conducive to learn discriminative node representations. To
further capturing the highly non-linearity that is universal in
networks Wang et al. (2016) Gao and Huang (2018) Zheng et al.
(2020), deep learning technologies have been applied in NRL,
such as community-based variational autoencoder (ComVAE)
Shi et al. (2019).

Moreover, nodes are often accompanied with a rich set of
attributes. Sheikh et al. Sheikh et al. (2019) state that the attributes
are invaluable when structural information is missing or
structurally unrelated nodes have high attribute similarity.
Currently, some attributed NRL methods Zhang et al. (2018)
Gao and Huang (2018) Zheng et al. (2020) Liao et al. (2018) Yang
et al. (2015) Huang et al. (2017a) have been designed to integrate
the structure and the attributes in a principled way.

Evidently, mining the community information and preserving
the attribute semantics are both advantageous to enhance the
quality of node embeddings based on the microscopic structure.
Therefore, Zhu et al. Zhu et al. (2018) propose the CTDW
algorithm.

However, how to effectively integrate the multiple
heterogeneous information sources, including the microscopic
structure, community structure and attribute semantics, from
non-linear relational data for learning informative network
representation is still challenging.

Therefore, we propose a deep coupling framework in the
paper, i.e., deep attributed network representation learning
with community awareness (DANRL-CA). Precisely, the
DANRL-CA framework consists of two coupled modules, that
is, the neighborhood enhancement autoencoder and community-
aware skip-gram, which share connections to the encoder. In
particular, the community information and attribute information

are preprocessed, and then integrated into the adjacency matrix
as the input of the framework.

To summarize, we make the following contributions:

• We propose a deep coupling DANRL-CA framework. To
preserve the second-order proximity, the neighborhood
enhancement autoencoder module reconstructs the target
neighbors of nodes. The target neighbors are obtained by
incorporating the community information and attribute
information into the adjacency matrix. To capture the
high-order proximity, we design a community-aware
skip-gram module based on the encoder.

• We preprocess the community information in two ways.
One is to treat the community information as node
attributes. The other is to calculate the community
similarity matrix on the assumption that the
representations of nodes within a community should be
more similar than those belonging to different communities.
Then, we define two variants of DANRL-CA, namely, the
DANRL-CA-AM and DANRL-CA-CSM.

• Compared with DANRL-CA-AM, the DANRL-CA-CSM
model mostly shows superior performance on four datasets
and two network analysis tasks, which is explained that
DANRL-CA-CSM can flexibly balance the contribution of
attribute semantics and community information to the
quality of network representation. Moreover, DANRL-
CA-CSM has a better representation for the networks
with sparse network structure and node attributes over
DANRL-CA-AM.

• The proposed method DANRL-CA has excellent
performance on brain networks without node attribute
information, which shows that our methods can still be
extended to networks with only structural information, and
have prospects for application in brain science.

The rest of the paper is organized as follows. In Section 2, we
review the related work. The preliminaries involved in the paper
are given in Section 3. In Section 4, we detail the proposed
DANRL-CA framework. In Section 5 and 6, we introduce how
we conduct the experiments, and discuss the experimental results.
Finally, we conclude our work in Section 7.

2 RELATED WORK

In recent years, NRL as an effective feature mining method has
achieved extensive attention. The success of natural language
models provides a new direction for NRL Perozzi et al. (2014),
Grover and Jure (2016), Tang et al. (2015), Cao et al. (2015), Qiu
et al. (2018), Liu et al. (2020). The above methods are on the
assumption that the nodes with similar contexts (sequences) in
the structure also have similar representations in the new vector
space. However, social information networks in the real world are
usually sparse, which could result in poor node embeddings
Zhang et al. (2016).

Significantly, a node is usually accompanied by auxiliary
information, which can be defined as node attributes. The
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attributes can reflect and affect the community structure of
networks Marsden and Friedkin (1993) McPherson and Cook
(2001) Marsden (1988). Based on the strong correlation of the
structure and the attributes, the representation of attribute
networks has been vigorously explored Gao and Huang (2018)
Zheng et al. (2020) Liao et al. (2018) Yang et al. (2015) Huang
et al. (2017a). Moreover, how to jointly embed the heterogeneous
information sources is a challenging task. The previous work
Zhang et al. (2018) shows that the deep coupling paradigm is
beneficial to integrate the multiple information sources from
complex networks to learn robust node representations.
Specifically, ANRL is a deep two-part coupling model, which
is composed of neighbor enhancement autoencoder and
attribute-aware skip-gram module. The two modules share
connections to the encoder.

However, most of the previous attributed NRL methods
merely consider the microscopic structure. Wang et al. Wang
et al. (2017) point out that for two nodes within a community,
even if they only have a weak relationship in the microscopic
structure due to the data sparsity issue, their similarity will also be
strengthened by the community structure constraint. Hence, Zhu
et al. Zhu et al. (2018) propose CTDW, which incorporates the
community features and text features of nodes into NRL under
the framework of matrix factorization. Nevertheless, the design of
matrix factorization requires a high computational cost.
Meanwhile, the creation of shallow model Hamilton et al.
(2017) restricts the representation ability of CTDW for
complex networks.

To integrate the multiple heterogeneous information sources,
i.e., the community information, attribute semantics, and
microscopic structural information, from the non-linear
attributed network data, and then learn scalable and effective
network representation, we propose a deep coupling neural
network framework, i.e., DANRL-CA, in which the
neighborhood enhancement autoencoder and community-
aware skip-gram module are tightly interconnected as they
share the first several layers. Notably, the community
information and attribute information are incorporated into the
adjacency matrix to enhance the direct neighborhood of nodes.

3 PRELIMINARIES

In this section, we first give some notations and network
properties involved in the paper, and then declare the formal
definition of the problem to be solved.

3.1 Notations
Let G = (V, E, A, X) be an attributed social information network,
whereV = {v1, . . . , vn} is the set of n nodes, E ⊂ (V ×V) is the set of
edges, A denotes the adjacency matrix and X represents the
attribute matrix. In the adjacency matrix A, if the network is
undirected, aij = aji. If the network is unweighted, an edge exists
between nodes vi and vj, aij = 1, or else aij = 0. The row Xi in the
attribute matrix X denotes the attribute information associated
with node vi. Here, we discuss the undirected and unweighted
networks.

3.2 Network Properties
1) Community information

The communitymatrixC ∈ Rn×l, where l indicates the number
of communities, can be obtained through some non-overlapping
community detection methods. If node vi belongs to the
community m, the corresponding element cim = 1, else cim = 0.

2) Attribute proximity

The attribute proximity denotes the proximity between node
pairs that are evidenced by the attributes. Specifically, the
attribute proximity between nodes vi and vj is determined by
the similarity between Xi and Xj.

3) Second-order proximity and High-order proximity.

The second-order proximity and high-order proximity both
indicate the indirect proximity between nodes vi and vj, which is
because node vj is within the context of node vi instead of an edge
between them. The second-order proximity captures the 2-step
relations between each pair of nodes, which can be determined by
the number of common neighbors shared by node pairs Zhang
et al. (2020). The high-order proximity explores the k-step (k ≥ 3)
relations, which can be reflected by the number of k-step (k ≥ 3)
paths from node vi to node vj Zhang et al. (2020).

3.3 Attributed Network Representation
Learning
Given an attributed social information network G = (V, E, A, X),
we aim at embedding the network into a new low-dimensional
vector space via learning a mapping function f: G → Y ∈ Rn×d,
where d (≪ n) is the dimension of network representation. Then,
each node can be represented with a vector. The objective of the
function is to preserve the structure and attribute information
simultaneously.

4 METHODS

In this section, an overview of the proposed DANRL-CA
framework is provided. Then, we describe the selected
community detection algorithms and how we preprocess the
community information and attribute information in two
variant models. Next, we introduce the framework design in
detail. Finally, we give the optimization of the models.

4.1 Overview
The DANRL-CA framework takes the encoder component as the
basis to extend two branches, which are used to preserve the
second-order and high-order proximity, respectively. Figure 1
shows the architecture of the DANRL-CA framework. In the
framework, the encoder and decoder component build the
neighborhood enhancement autoencoder module, and the
encoder and graph context component construct the
community-aware skip-gram module. Motivated by ComVAE
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Shi et al. (2019), we first modularize the community detection
algorithms to mine the optimal community information on the
networks. Then, the community information, attribute semantics,
and adjacency matrix are aggregated (details see Section 4.3),
which is the input, namely, the reconstructed adjacency matrix R,
of the DANRL-CA. In particular, based on different algorithms to
process community information, we design two variants of the
framework, namely, the DANRL-CA-AM model and the
DANRL-CA-CSM model.

4.2 Community Detection Algorithms
Taking the applicability of classical community detection
algorithms in the large-scale networks into account Zhao
et al. (2017), three effective methods, i.e., Label Propagation
Algorithm (LPA) Raghavan et al. (2007), Infomap Rosvall and
Bergstrom (2008), and Multilevel Blondel et al. (2008), are
employed.

1) Label Propagation Algorithm (LPA)

By allocating each node with a unique community label as the
initialization, LPA merges the community label of each node
through the voting of node neighbors until convergence Shi et al.
(2019). The computational complexity of LPA is a linear function
of the number of edges, i.e., O(E).

2) Infomap

Infomap encodes node sequences with the shortest length
based on the information theory, and then detects the
communities through a deterministic greed search strategy Shi
et al. (2019). Primarily, the node sequences are obtained by
random walk sampling. Infomap runs in O(E).

3) Multilevel

Multilevel is divided into two phases that are repeated
iteratively until the modularity cannot be increased. The first

phase is that after assigning a distinct community for each node, a
node is moved to the community of one of its neighbors based
on the highest positive contribution to modularity, which is
repeated for all nodes until there is no further improvement.
The second phase is that each community itself is considered as
a node. The computational complexity of Multilevel is
O(NlogN).

4.3 Preprocessing
In this part, we describe the preprocessing of community
information and attribute information in detail.

1) Community information

We deal with the community information in two ways.

• DANRL-CA-AM: If categorizing the community
information as node attributes, we will obtain a new
attribute matrix W, which is constructed by
concatenating the attribute matrix X and community
matrix C. Here, the community matrix C is mined by the
above community detection algorithms, where rows
identify all nodes and columns list all community
categories. When node vi is located in the community m,
the element in the ith row and the mth column is 1,
otherwise it is 0.

• DANRL-CA-CSM: The community information implies
that the representations between the target node and its
neighbors within a community could be similar. To capture
the characteristic, we calculate a community similarity
matrix C(S), which is used as the similarity measurement
method. Each element c(S)ij of the community similarity
matrix is defined as

c S( )
ij � CosineSimilarity Ci, Cj( ) � CiC

T
j

|Ci‖Cj|, (1)

where Ci denotes the community information related to node vi.

FIGURE 1 | The architecture of the proposed DANRL-CA framework.
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2) Attribute information

Similarly, we obtain an attribute similarity matrix, which is on
the observation of social homophilyMarsden and Friedkin (1993)
McPherson and Cook (2001), and the description of each element
for the two variant models is shown below respectively.

In the DANRL-CA-AM model,

w S( )
ij � CosineSimilarity Wi,Wj( ) � WiW

T
j

|Wi‖Wj|. (2)

Here, Wi indicates the reorganized attribute information related
to node vi.

In the DANRL-CA-CSM model,

x S( )
ij � CosineSimilarity Xi, Xj( ) � XiX

T
j

|Xi‖Xj|. (3)

Here, Xi represents the original attribute information affiliated
with node vi.

Most of the networks in the real world are sparse Zhang et al.
(2016). The more the common neighbors between node pairs are,
the more accurate the preserved second-order proximity is.
Therefore, we propose to linearly combine the similarity
matrix and adjacency matrix via setting the hyperparameters.
The result is seen as the reconstructed adjacency matrix R, which
is given below for the DANRL-CA models.

In the DANRL-CA-AM model,

R � ηA + ψW S( ). (4)
Here, A is the adjacency matrix, W(S) denotes the reorganized
attribute similarity matrix, and the hyperparameters η and ψ are
used to control the effect of A and W(S) separately.

In the DANRL-CA-CSM model,

R � ηA + ψX S( ) + ϕC S( ). (5)
Here, A represents the adjacency matrix, X(S) is the original
attribute similarity matrix, and C(S) is the community
similarity matrix. Similarly, the hyperparameters η, ψ and ϕ
aim at balancing the roles of the above matrices, respectively.

4.4 Framework Design
In this section, the architecture of the proposed DANRL-CA
framework is introduced, including the neighborhood
enhancement autoencoder module and the community-aware
skip-gram module.

1) Neighborhood enhancement autoencoder module.

The reconstruction criterion of the autoencoder is to capture
the data manifolds smoothly and thus preserve the similarity
between samples Salakhutdinov and Hinton (2009). This feature
of the autoencoder is beneficial for preserving the second-order
proximity. When the reconstructed adjacencymatrix R is taken as
the input of the autoencoder, each instance Ri characterizes the
neighborhood structure with the community information and
attribute semantics of the corresponding node vi. Then, the

reconstruction process of the autoencoder could make the
nodes with similar neighborhood structure also have similar
latent representations. Hence, the neighborhood enhancement
autoencoder module is proposed in the DANRL-CA framework.

The autoencoder consists of the encoder and decoder. Next,
we give the relationship between the input and output of each
layer in the encoder

y 1( )
i � δ RiW

1( ) + b 1( )( )
y k( )
i � δ y k−1( )

i W k( ) + b k( )( ), k ∈ 2, . . . , K{ }, (6)

where Ri is the ith row data in the reconstructed adjacency matrix
R. The symbol δ(.) denotes the non-linear activation functions,
which is typically the elementwise sigmoid or hyperbolic tangent
nonlinearity (tanh), or the identity function if staying linear
Bengio et al. (2013). Furthermore, the parameters W(k) and
b(k) indicate the weight matrix and bias vector in the kth layer,
respectively, and K represents the number of layers.

The decoder is the inverse calculation process of the encoder,
which here shares the same activation function with the encoder
and is designed to obtain the reconstructed output R̂ of input R.

Then, by minimizing the error between the input and output,
the loss function of the autoencoder is defined as

Lae � ∑n
i�1

Li � ∑n
i�1

‖R̂i − Ri‖22, (7)

where n is the number of nodes.
Significantly, as shown in Bengio et al. (2013), the choice of

activation function δ(.) in the decoder depends largely on the
input domain range and nature and is usually chosen so that Li
returns a negative log likelihood for the observed value of Ri.
Hence, in the paper, we choose the tanh function.

Inspired by SDNE Wang et al. (2016), to capture the
meaningful edge information effectively, we impose more
penalty to the reconstruction error of non-zero elements than
that of zero elements, and the modified objective function is
shown as

LM
ae � ∑n

i�1
‖ R̂i − Ri( ) ⊙ bi‖22, (8)

where ⊙ means the Hadamard product and bi � {bij}nj�1. If the
element rij = 0, bij = 1, else bij = χ > 1.

2) Community-aware skip-gram module

We use the encoder, which encodes the community
information and node attributes into network representation,
to replace the input and hidden layer of the classic three-layer
neural network skip-gram, and then design the community-
aware skip-gram module. Inspired by the excellent
performance of Deepwalk on sparse networks, we also train
the skip-gram module by node sequences. We adopt the alias
node sampling strategy and objective optimization with negative
sampling to speed the training, which are introduced in node2vec.
The corresponding objective of the community-aware skip-gram
module is expressed as Equation 9
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LNS
sg � −∑n

i�1
∑
c∈C

∑
−b≤j≤b,j≠0

⎧⎪⎨⎪⎩log σ h′T i+j( )y K( )T
i( )

+ ∑|neg|
s�1

Evs~Pn v( ) log σ −h′Ts y K( )T
i( )[ ]⎫⎬⎭,

(9)

where n is the number of nodes in the networks, c ∈ C denotes
the sampled node sequences, and b is the window size. The
symbol hi′ is the ith column data of the transition matrix H′
between the middle representation layer of the autoencoder
and output layer of the skip-gram, y(K)

i denotes the
representation of node vi, σ(x) � 1

1+exp(−x) is a sigmoid
activation function, and |neg| indicates the number of
negative samples. The sampling distribution Pn(v)∝ d3/4v is
set as suggested in Mikolov et al. (2013b), where dv represents
the degree of node vn, and Evs~Pn(v) indicates that the noise
node vs is expected to be sampled based on the probability
distribution Pn(v).

The community-aware skip-gram module aims at capturing
the high-order proximity.

4.5 Model Optimization
To learn scalable and effective node representations, we combine
the loss of the community-aware skip-gram module and the
neighborhood enhancement autoencoder module by the
hyperparameter α that is used to balance the contribution of
two branches

Lc � LNS
sg + αLM

ae . (10)
However, overfitting may occur due to the employment of the

autoencoder. To alleviate the phenomenon, we add the l2 norm
regularizer

Lreg � 1
2
∑K
k�1

‖W k( )‖2F + ‖Ŵ k( )‖2F( ), (11)

where K is the number of layers in the encoder and decoder. The
symbolsW(k) and Ŵ

(k)
are used to represent the weight matrix of

the encoder and decoder in the kth layer, respectively.
Overall, we optimize the following loss function

L � LNS
sg + αLM

ae + γLreg, (12)
where γ is the coefficient of Lreg.

For each variant model, by iteratively training two modules
until the entire model converges, we learn informative node
embeddings, i.e., the representation output Y(K) of the
autoencoder.

Algorithm 1 describes the learning process of the entire
framework, and all parameters are denoted as Θ.

Algorithm 1. Framework of DANRL-CA

5 MATERIALS

In this section, we provide an overview of the datasets and
baselines used in our experiments. In addition, we introduce
the experimental setup. The validity of the proposed models over
other state-of-the-art methods is assessed via two machine
learning tasks, namely, node classification Sen et al. (2008)
Kazienko and Kajdanowicz (2012) and link prediction Wang
et al. (2020) Mallick et al. (2019). Specially, the proposed models
are also applied on brain networks, and perform well in link
prediction.

5.1 Datasets
The experiments operate on Citeseer Zhang et al. (2018), PubMed
Zhang et al. (2018), Cora Liu et al. (2019), Flickr Huang et al.
(2017b), and Fly-drosophila-medulla-1 Rossi and Ahmed (2015)
datasets, where the first three belong to citation networks, and the
last two belong to the social network and the brain network
respectively. Table 1 summarizes the statistics of datasets.
Meanwhile, we give an introduction to the above datasets as
follows.

1) Citeseer: In this dataset, the papers are classified into Agents,
AI, DB, IR, ML and HCI, where the six classes are as node
labels. In addition, a node and an edge indicate the paper and
the citation relation between papers, separately. After
removing the stop-words and the words that appear less
than 10 times in the paper, the remaining unique words
are as node attributes.

2) PubMed: This is a citation network. The papers are divided
into three classes: Diabetes Mellitus Experimental, Diabetes

TABLE 1 | Dataset statistics.

Datasets # Nodes # Edges # Attributes # Labels

Citeseer 3,312 4,714 3,703 6
PubMed 19,717 44,338 500 3
Cora 2,708 5,429 1,433 7
Flickr 7,575 239,738 12,047 9
Fly-drosophila-medulla-1 1,781 9,016 — —
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Mellitus Type 1, and Diabetes Mellitus Type 2, which are
regarded as the labels of nodes. The papers are described by
TF/IDF weighted word vectors in a dictionary composed of
unique words, i.e., node attributes, on diabetes from the
PubMed database.

3) Cora: This citation dataset consists of machine learning papers
that are classified into seven classes, namely, Case Based,
Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning and
Theory. The classes are again viewed as node labels.
Moreover, the bag-of-words model is used to deal with the
papers, and node attributes are obtained.

4) Flickr: Flickr is an image hosting and sharing website. In this
dataset, a node represents the user, and an edge represents the
friendship between users. Moreover, a list of tags used to
describe the interests of users is treated as node attributes, and
the pre-defined photo groups are regarded as node labels.

5) Fly-drosophila-medulla-1: The dataset reveals the nerve fiber
network of fly drosophila medulla, where a node denotes the
neuron and an edge describes the fiber tract between neurons.

5.2 Baselines
To evaluate the performance of the proposed DANRL-CA
models, we compare them with seven algorithms, including six
structure-based methods, i.e., M-NMF Wang et al. (2017),
DeepWalk Perozzi et al. (2014), node2vec Grover and Jure
(2016), LINE Tang et al. (2015), SDNE Wang et al. (2016),
and ComVAE Shi et al. (2019), in which M-NMF, and
ComVAE both consider incorporating the community
information into NRL, and one structure and attribute based
method, namely, ANRL Zhang et al. (2018).

1) DeepWalk: DeepWalk uses the uniform random walk to
sample the linear node sequences, which preserves the
high-order proximity.

2) node2vec: Unlike the rigid sampling strategy of DeepWalk,
node2vec utilizes the biased random walk to explore a more
flexible neighborhood structure.

3) LINE: LINE defines the clear objective function for capturing
the first-order and second-order proximity.

4) SDNE: SDNE is a deep model with a semi-supervised
architecture, in which the supervised component exploits
the first-order proximity and the unsupervised component
reconstructs the second-order proximity.

5) M-NMF: NMF is a matrix factorization method that
decomposes a non-negative matrix into the product of two
non-negative matrices, which aims at obtaining the
dimensionality reduction matrix of data features.
Specifically, M-NMF applies the NMF based learning
module to incorporate the first-order and second-order
proximity, and the modularity-based community detection
module to obtain the community information. Then, M-NMF
exploits the consensus relationship from the two modules for
learning network representation.

6) ComVAE: ComVAE contains two main modules, i.e., the
community detection module and the deep learning module.
The community detection module is to obtain the community

information. The deep learning module is to integrate the
second-order proximity and community information for
robust node representations. Here, the community
detection methods, Infomap and LPA, are applied.

7) ANRL: ANRL takes the encoder component as a basis to
extend two modules, namely, the neighbor enhancement
autoencoder and attribute-aware skip-gram, which intend
to capture the second-order and high-order proximity from
the structure, respectively. Furthermore, in the original paper,
the comparison of experimental results among the variants of
ANRL shows that ANRL-WAN has the optimal performance.
Hence, we select ANRL-WAN as our baseline.

5.3 Experimental Setup
For all baselines, we adopt the implementation released by the
original authors, and tune the parameters to make the models get
the best performance. Especially, for M-NMF, to construct the
community indicator matrix and community representation
matrix, the parameter k is set as the actual number of
communities on datasets. For LINE, we concatenate the first-

TABLE 2 | Detailed architecture information for datasets (DANRL-CA-AM/LPA).

Datasets # Neurons in Each Layer

Citeseer 3312-1000-500-128-500-1000-3312
PubMed 19717-1000-500-128-500-1000-19717
Cora 2708-1000-500-128-500-1000-2708
Flickr 7575-500-128-500-7575 (NC)

7575-1000-500-128-500-1000-7575 (LP)

TABLE 3 | Detailed architecture information for datasets (DANRL-CA-AM/
Infomap).

Datasets # Neurons in Each Layer

Citeseer 3312-1000-500-128-500-1000-3312
PubMed 19717-500-128-500-19717 (NC)

19717-1000-500-128-500-1000-19717 (LP)
Cora 2708-1000-500-128-500-1000-2708
Flickr 7575-500-128-500-7575 (NC)

7575-1000-500-128-500-1000-7575 (LP)

TABLE 4 | Detailed architecture information for datasets (DANRL-CA-AM/
Multilevel).

Datasets # Neurons in Each Layer

Citeseer 3312-1000-500-128-500-1000-3312 (NC)
3312-500-128-500-3312 (LP)

PubMed 19717-256-128-256-19717 (NC)
19717-500-128-500-19717 (LP)

Cora 2708-1000-500-128-500-1000-2708 (NC)
2708-500-128-500-2708 (LP)

Flickr 7575-500-128-500-7575 (NC)
7575-1000-500-128-500-1000-7575 (LP)
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order and second-order representation of each node to achieve
the final node representations. In the experiments, the dimension
d of network representation is set as 128. Furthermore, we set
walks per node r as 10, walk length l as 80, window size b as 10,
negative samples |neg| as 10, return p and in-out q both as 1.0 of
our models. The hyperparameters η, ψ, ϕ, χ, α and γ are tuned by
using the grid search, in which the preprocessing
hyperparameters η, ψ and ϕ take 0.5, 1.0, 1.5, 2.0, 2.5{ } as a
benchmark, and then are fine-tuned according to the actual
situation. He et al. point out that stacking multiple non-linear

layers helps to learning better representations He et al. (2016).
Particularly, the tower structure design with halved layer size for
each successive higher layer, which is followed by hidden layers
component, has been shown to be effective by recent work Liao
et al. (2018). Inspired by the above, and according to the
comparison of experimental results under different designs,
Tables 2–7 show the neural network architecture of the
proposed DANRL-CA models on the Citeseer, PubMed, Cora,
and Flickr datasets, and two tasks, i.e., node classification (NC)
and link prediction (LP). Especially, for the Fly-drosophila-
medulla-1 dataset, there are no node label information and
node attribute information. Here, we perform experiments on
link prediction, and do not discuss the model construction of
DANRL-CA-AM and DANRL-CA-CSM separately. The
corresponding description is illustrated in Table 8.

6 RESULTS AND DISCUSSION

6.1 Citation Networks and Social Network
1) Node Classification

Node classification is usually used for labeling data, which is a
significant task in reality. In the experiment, we utilize SVM as the
classifier, and use Micro-F1 and Macro-F1 as the metrics of
evaluating multi-label classification results. Specifically, the node
representations are first learned. Then, we randomly sample 30%
of the labeled nodes as the training data, and use the left to test the
performance. To reduce the influence of the randomness, which
is of the initial values of the classifier parameters, on the
experimental results, we repeat the process 10 times, and
calculate the average performance as the final results as Zhang
et al. (2018) Zhang et al. (2020) Liao et al. (2018) done. Table 9
shows the performance comparison. Next, we summarize and
analyze the observations.

Notably, M-NMF and DANRL-CA consider the preservation
of community information more than LINE and ANRL-WAN,
respectively. Different from the superiority of LINE over M-NMF
on most datasets, the proposed DANRL-CA models show better
classification results over ANRL-WAN on almost all datasets,
which shows that how to integrate the community information
and microscopic structural information in principle is essential,
and proves that the introduction of community information is
meaningful for learning network representation indeed. We also
see that the models considering both the structure and the
attributes consistently outperform those only focusing on the
structure, and the gap is more evident on the social network with
rich attribute information. The above observation suggests that
the reasonable integration of the structure and the attributes
facilitates the learning of accurate network representation. Based
on all the above discussions, the proposed DANRL-CA models
show the best performance in almost all cases, demonstrating the
scalability and effectiveness of our method.

Next, we compare DANRL-CA-AM and DANRL-CA-CSM,
which shows that DANRL-CA-CSM mostly has superior
performance. The observation explains that the design of
DANRL-CA-CSM can flexibly adjust the positive effect of

TABLE 5 | Detailed architecture information for datasets (DANRL-CA-
CSM/LPA).

Datasets # Neurons in Each
Layer

Citeseer 3312-1000-500-128-500-1000-3312
PubMed 19717-1000-500-128-500-1000-19717
Cora 2708-2000-1000-500-128-500-1000-2000-2708
Flickr 7575-256-128-256-7575 (NC)

7575-1000-500-128-500-1000-7575 (LP)

TABLE 6 | Detailed architecture information for datasets (DANRL-CA-CSM/
Infomap).

Datasets # Neurons in Each
Layer

Citeseer 3312-1000-500-128-500-1000-3312 (NC)
3312-256-128-256-3312 (LP)

PubMed 19717-1000-500-128-500-1000-19717
Cora 2708-1000-500-128-500-1000-2708 (NC)

2708-256-128-256-2708 (LP)
Flickr 7575-1000-500-128-500-1000-7575

TABLE 7 | Detailed architecture information for datasets (DANRL-CA-CSM/
Multilevel).

Datasets # Neurons in Each
Layer

Citeseer 3312-2000-1000-500-128-500-1000-2000-3312 (NC)
3312-500-128-500-3312 (LP)

PubMed 19717-1000-500-128-500-1000-19717
Cora 2708-2000-1000-500-128-500-1000-2000-2708 (NC)

2708-1000-500-128-500-1000-2708 (LP)
Flickr 7575-500-128-500-7575 (NC)

7575-1000-500-128-500-1000-7575 (LP)

TABLE 8 | Detailed architecture information for datasets (DANRL-CA/LPA/
Infomap/Multilevel).

Datasets # Neurons in Each
Layer

Fly-drosophila-medulla-1 (LPA) 1781-1000-500-128-500-1000-1781 (LP)
Fly-drosophila-medulla-1 (Infomap) 1781-500-128-500-1781 (LP)
Fly-drosophila-medulla-1 (Multilevel) 1781-500-128-500-1781 (LP)
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attribute semantics and community information on the accuracy
of node representations. Notably, the significant difference in the
PubMed dataset further reveals that when the network structure
and the node attributes are sparse, the community information
will greatly affect the representation of the network, which is
because as shown in Table 1, PubMed has the most sparse
topological structure and the fewest attribute tags in all datasets.

Furthermore, we execute the performance comparison under
the different community detection methods about ComVAE,
DANRL-CA-AM, and DANRL-CA-CSM. The result shows
that the accuracy of community information will affect the
performance of the model, which suggests that it is
meaningful to modularize the community detection methods
because the way is advantageous to improve the flexibility and
applicability of the model on various networks.

2) Link Prediction

Link prediction is a connectivity prediction task, which aims to
infer the missing and/or false edges, or predict the nonexistent
edges that are likely to generate in the future Zhang et al. (2020).
In our work, to obtain the ground truth, 50% of edges are
removed from the original network, and the selected
models embed the new network. Note that the remaining
network is guaranteed to be connected while the edges are
removed. The removed edges are regarded as positive samples.
We randomly sample the same number of nonexistent edges
from the original network, which are used as negative samples.
Then, the positive and negative samples constitute the test set.
We rank both the positive and negative samples under the
similarity calculation about node representations based on the
cosine similarity function, and utilize the AUC Fawcett (2006)
index to evaluate the ranking quality. Table 10 shows the
results. Obviously, the higher the score is, the better the
performance of the model is. Next, we have the
discussions below.

Unlike the experimental results on the node classification task,
the performance of M-NMF is always far better than that of
LINE. However, DANRL-CA models still exhibit
performance close to or better than ANRL-WAN most of
the time. The above presents that M-NMF is not always
suitable for any tasks, and proves the rationality of our
models for community information modeling. Similarly, in
most instances, the performance of the methods based on the
structure and the attributes is far superior to those based on
the structure, which demonstrates that the reasonable use of
attribute information is also conducive to the link prediction
task. Combined with all the above conclusions, the proposed
DANRL-CA models achieve relatively good experimental
results in most cases, demonstrating the effectiveness and
scalability of our method.

Furthermore, as discussed in the node classification task, we
can find similar conclusions from Table 10. The modularization

TABLE 9 | Node classification results on Citeseer, Pubmed, Cora, BlogCatalog and Flickr datasets.

Datasets Citeseer PubMed Cora Flickr

Evaluation Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
DeepWalk 0.5665 0.5212 0.8109 0.7978 0.7900 0.7782 0.4940 0.4835
node2vec 0.6002 0.5465 0.8104 0.7968 0.8058 0.7942 0.5155 0.5062
LINE 0.5605 0.5256 0.8049 0.7926 0.7884 0.7767 0.5613 0.5576
SDNE 0.4161 0.3632 0.4258 0.2900 0.5813 0.5201 0.6043 0.5991
M-NMF 0.5337 0.4814 0.7175 0.6630 0.6416 0.6269 0.6028 0.5974
ComVAE (Infomap) 0.2189 0.1521 0.3944 0.2990 0.2527 0.1372 0.5167 0.5095
ComVAE (LPA) 0.2173 0.1580 0.3952 0.2997 0.2416 0.1337 0.5383 0.5299
ANRL-WAN 0.7246 0.6764 0.8595 0.8584 0.8161 0.8030 0.6701 0.6584
DANRL-CA-AM/Infomap 0.7154 0.6658 0.8583 0.8551 0.8324 0.8204 0.9135 0.9125
DANRL-CA-AM/LPA 0.7138 0.6710 0.8452 0.8421 0.8350 0.8228 0.9128 0.9118
DANRL-CA-AM/Multilevel 0.7146 0.6739 0.8189 0.8125 0.8358 0.8225 0.9002 0.8988
DANRL-CA-CSM/Infomap 0.7155 0.6631 0.8753 0.8740 0.8313 0.8173 0.9057 0.9042
DANRL-CA-CSM/LPA 0.7122 0.6750 0.8774 0.8751 0.8313 0.8166 0.9056 0.9043
DANRL-CA-CSM/Multilevel 0.7177 0.6723 0.8791 0.8772 0.8336 0.8193 0.9078 0.9065

+We use red bold to highlight the best performance, and utilize black bold to show the performance comparison results between DANRL-CA-AM, and DANRL-CA-CSM, respectively.
Significantly, there is the overlap between the red bold part and the black bold part.

TABLE 10 | Link prediction results on Citeseer, Pubmed, Cora, BlogCatalog and
Flickr datasets.

Datasets Citeseer PubMed Cora Flickr

Evaluation AUC AUC AUC AUC
DeepWalk 0.6020 0.7925 0.7209 0.7247
node2vec 0.5485 0.7977 0.7244 0.7341
LINE 0.5309 0.6213 0.6047 0.5262
SDNE 0.6093 0.7562 0.6326 0.9023
M-NMF 0.6249 0.7944 0.7884 0.8725
ComVAE (Infomap) 0.5729 0.5531 0.5703 0.7635
ComVAE (LPA) 0.5654 0.5518 0.5727 0.7539
ANRL-WAN 0.9666 0.8035 0.9181 0.7800
DANRL-CA-AM/Infomap 0.9562 0.8700 0.9246 0.9383
DANRL-CA-AM/LPA 0.9550 0.8981 0.9314 0.9377
DANRL-CA-AM/Multilevel 0.9531 0.8414 0.9244 0.9382
DANRL-CA-CSM/Infomap 0.9565 0.9592 0.9276 0.9378
DANRL-CA-CSM/LPA 0.9528 0.9564 0.9328 0.9375
DANRL-CA-CSM/Multilevel 0.9575 0.9506 0.9300 0.9374

+We use red bold to highlight the best performance, and utilize black bold to show the
performance comparison results between DANRL-CA-AM, and DANRL-CA-CSM,
respectively. Significantly, there is the overlap between the red bold part and the black
bold part.
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of community detection methods makes the model flexible. The
design of DANRL-CA-CSM is more conducive to produce
distinguishable neighborhood information than DANRL-CA-
AM if the network structure is more and more sparse, and the
number of node attributes is small, which is clearly reflected in the
PubMed dataset.

6.2 Brain Network
Previous studies Drakesmith et al. (2015) Akiki et al. (2018)
have found that the missing or false edge could lead to an
abnormal brain function which might cause a disease.
Therefore, we here apply network representation learning to
the field of brain network research. We implement the link
prediction task on the brain network Fly-drosophila-medulla-
1 without label information. Most algorithms which are
compared in Section 6, are applied to the brain networks,
except for the M-NMF and ANRL-WAN. Since the M-NMF
needs the actual number of communities, which is not given in
the brain network, and the ANRL-WAN will degenerate into
DeepWalk when the attribute information is not considered.
The results in Table 11 shows that our proposed models
achieve better performance than the state-of-art methods in
the brain network.

Especially, de Haan et al. point out that brain networks have
significant community structure characteristics de Haan et al.
(2012). Hence, it is necessary to explore whether capturing
community information is beneficial for learning node
representations. We further apply our method to brain
network without considering mining community information,
and the result is given in the last row in Table 11. Compared with
DANRL-CA/NoCommunityInformation, DANRL-CA/Infomap
has better performance, while DANRL-CA/LPA and DANRL-
CA/Multilevel obtain poor experimental results. The
comparison results demonstrate that the validity of the
mined community information will greatly promote the
quality of node representations, and vice versa. To prove
our idea, we then analyze the distribution of communities
excavated by the three community detection algorithms,
Infomap, LPA and Multilevel, respectively. We find that
Infomap tends to mine small-scale community structures

with nodes on the order of ten, LPA gathers about 92% of
the nodes into a large community, and Multilevel prefers to
explore community structures that are aggregated by nodes on
the order of hundred. Significantly, Betzel et al. (2019) Betzel
and Bassett (2017) show that small communities
associated with functionally-specialized areas (the scale
measurable with MRI) are ubiquitous in brain networks.
The community division result of Infomap is closer to the
actual structural definition of brain network than that of LPA
and Multilevel, which is further verified in the performance
comparison of ComVAE (Infomap) and ComVAE (LPA) in
Table 11.

7 CONCLUSION

Researchers have found that many neuropsychiatric diseases
(such as Alzheimer’s disease and schizophrenia) are associated
with abnormal topological changes in brain structure and
brain functional networks. Moreover, the development of
the brain and the realization of cognitive tasks all depend
on the interaction of neural activities between brain regions,
which can be inferred by some edge prediction tasks, such as
link prediction. The network representation learning can
provide a new direction for brain network research and
analysis. In the work, we propose a deep coupling DANRL-
CA framework in the paper, which incorporates the
community information and attribute semantics into NRL
via deep neural networks. Specifically, DANRL-CA consists
of neighborhood enhancement autoencoder module and
community-aware skip-gram module, which are designed to
preserve the second-order and higher-order proximity,
respectively. For the processing of community information,
we provide two solutions. DANRL-CA-AM model regards the
community information as node attributes, while DANRL-
CA-CSM model constructs a community similarity matrix on
the observation that the community information can impose
constraints from a high structure level on the node
representations. We mine the community information and
attribute semantics, which are integrated with the adjacency
matrix as the input of our models. Then, we improve the
accuracy of second-order proximity. Notably, we first verify
the effect of our models on common datasets with attribute
information and node label information. Next, we apply the
proposed method to brain network and achieve excellent
performance. We see that, on the one hand, a large number
of experimental results prove the effectiveness and scalability
of our method. Meanwhile, DANRL-CA-CSM can balance the
effect of heterogeneous information, including the attribute
semantics and community information, on network
representation, and achieves better performance on the
networks with sparse network structure and node attributes
over DANRL-CA-AM. On the other hand, network
representation learning plays an important role and
significance in the study of brain networks, so there can be
a lot of meaningful and valuable work to be done in the future,
such as explorations that depends on specific tasks.

TABLE 11 | Link prediction results on Fly-drosophila-medulla-1 dataset.

Datasets Fly-Drosophila-Medulla-1

Evaluation AUC
DeepWalk 0.6589
node2vec 0.6004
LINE 0.6073
SDNE 0.7961
M-NMF —

ComVAE (Infomap) 0.6885
ComVAE (LPA) 0.6429
ANRL-WAN —

DANRL-CA/Infomap 0.8972
DANRL-CA/LPA 0.7943
DANRL-CA/Multilevel 0.8024
DANRL-CA/NoCommunityInformation 0.8594

+ We use red bold to highlight the best performance.
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