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ABSTRACT The evolution of locally adapted ecotypes is a common phenomenon that generates diversity
within plant species. However, we know surprisingly little about the genetic mechanisms underlying the
locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted
traits dictates how an organism will respond to environmental selection pressures, and has major
implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic
architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a ge-
netic mapping population through a four-way outbred cross between two northern upland and two south-
ern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple
independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint
linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between
ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we
found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple
traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight
physical linkage. These results indicate that ecologically important traits in switchgrass have a complex
genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.
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Biological species are able to occupy a vast array of environmental
conditions through adaptations driven by natural selection. Local
adaptation is characterized by native populations consistently having
greaterfitness in their homehabitat in comparison to foreign transplants
from different habitats (Kawecki and Ebert 2004; Leimu and Fischer
2008; Hereford 2009). The majority of plant species have been found to
be locally adapted based on empirical studies of fitness responses in
reciprocal transplant studies (Leimu and Fischer 2008; Hereford 2009).
Yet, we still know very little about the role that the genetic architecture
underlying locally adapted traits plays in shaping how organisms re-
spond to the environment in terms of their performance and fitness

(Savolainen et al. 2013; Tiffin and Ross-Ibarra 2014). Further, local
adaptation can be constrained or confounded by gene flow, lack of
genetic variation, genetic drift, and the genetic architecture of traits
(Kawecki and Ebert 2004; Hereford 2009).

Over time, local adaptation to different habitats can contribute to the
formation of distinct ecotypes. The divergence of ecotypes can eventually
lead tospeciation through theevolutionof ecological reproductive isolation
(Ramsey et al. 2003; Kay 2006; Lowry et al. 2008; Glennon et al. 2012).
Ecotypes generally differ in suites (i.e., syndromes) of locally adapted traits
from other populations (Turesson 1922a,b; Clausen 1951; Lowry 2012;
Ravinet et al. 2016). These important trait correlations that characterize
ecotypic divergence can result from pleiotropy or tight genetic linkage
(Conner 2002;Wright et al. 2013;Mills et al. 2014). Alternatively, the traits
that underlie syndromes that characterize ecotypic divergence could be
under independent genetic control and be correlated as the result of
linkage disequilibrium (LD) caused by strong correlational selection
(Brodie et al. 1995). Understanding whether the suites of traits that char-
acterize ecotype divergence are caused by pleiotropy/linkage or indepen-
dent loci requires genetic crosses and quantitative trait analyses (Rogers
and Bernatchez 2005; Hall et al. 2006; Lowry et al. 2015a,b).

In plants, ecotype formation is frequently driven by divergence in soil
water availability across habitats, with ecotypes adapted tomoremesic
habitats being typically larger in size and flowering later than ecotypes

Copyright © 2016 Milano et al.
doi: 10.1534/g3.116.032763
Manuscript received June 23, 2016; accepted for publication August 30, 2016;
published Early Online September 8, 2016.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.116.032763/-/DC1.
1Corresponding authors: Department of Integrative Biology, The University of
Texas at Austin, 1 University Station C0930, Austin, TX 78712. E-mail: ermilano@
gmail.com and tjuenger@austin.utexas.edu

Volume 6 | November 2016 | 3561

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1
mailto:ermilano@gmail.com
mailto:ermilano@gmail.com
mailto:tjuenger@austin.utexas.edu


from drier habits (Clausen and Hiesey 1958; Porter 1966; Latta et al.
2007; Lowry 2012). Panicum virgatum (switchgrass) is an ideal system
for studying the evolutionary genetic basis of ecotype divergence.
Switchgrass is a long-lived outcrossing C4 perennial grass native to
a large region of central and eastern North America and extending south
into Central America. It is a common species of the tallgrass prairie,
utilized as a forage crop, and has been championed as a bioenergy
feedstock (Casler et al. 2011; Casler 2012; Parrish et al. 2012). Switchgrass
phenotypic diversity is characterized by two major ecotypes: “Upland”
and “Lowland,” which are hypothesized to have descended from glacial
refugia (McMillan 1959; Zhang et al. 2011b). Molecular studies support
the distinctness of the two ecotypes by estimating deep dates of diver-
gence between distinct upland and lowland haplotypes on the order of
0.7–1 million years ago (MYA) (Morris et al. 2011; Zhang et al. 2011b).
Upland plants are typically found in drier soil conditions than lowland
plants which typically reside in riparian habitats. The two ecotypes are
easily distinguished by a suite of morphological differences, with lowland
plants tending to have fewer and larger tillers, erect growth, a compact
crown, blue-green waxy leaves, and late flowering time. Genetic variation
in the cytoplasm is highly correlated with the divergence of the ecotypes
(Morris et al. 2011; Zhang et al. 2011b). Although the species is polyploid
(4· – 8·), recent full-sib linkage studies indicate tetraploid switchgrass
maintains preferential pairing and disomic inheritance (Okada et al.
2010; Lu et al. 2013). Tetraploids of each ecotype are largely reproduc-
tively compatible (McLaughlin and Kszos 2005) and putative hybrids are
found in regions of co-occurrence (Zhang et al. 2011a; Lowry et al. 2014).
Porter (1966) showed that upland and lowland ecotypes are locally
adapted to their respective habitats through a reciprocal transplant ex-
periment. The upland ecotype was found to be more drought tolerant
and have higher nitrogen demand than the lowland ecotype, which is
more tolerant to flooding. Numerous other transplant and field trials
have demonstrated phenotypic and physiological differences between
the two ecotypes (Wullschleger et al. 1996; Casler and Vogel 2004;
Cassida et al. 2005a,b; Barney et al. 2009; Yang et al. 2009; Cortese
et al. 2010). For example, resistance to rust fungus infection has been
found to be heritable and lowland populations are typically more re-
sistant than upland populations (Eberhart and Newell 1959; Uppalapati
et al. 2013).

In addition to ecotype divergence, adaptive phenotypic variation in
switchgrass is driven by environmental variables that correlate with
latitude. Classic research in switchgrass has demonstrated that pheno-
logical traits, including date of emergence, flowering time, and date of
senescence are strongly correlated with latitude of origin in common
garden experiments (McMillan 1959, 1965, 1967). Transplantation ex-
periments and field trials have consistently demonstrated that moving
genotypes north and south of their locations of origin results in a loss of
fitness due to a suite of environmental factors (McMillan 1959, 1965,
1967; Porter 1966; Casler and Vogel 2004; Lowry et al. 2014).

Here, we developed a new outbred genetic mapping population to
understand the genetic basis of adaptation to environmental factors that
are divergent between northern upland and southern lowland ecotypes
of switchgrass. Themapping populationwas formed through reciprocal
crosses between four grandparents derived from different locations
across the Great Plains of North America. Two of the grandparents
are lowland accessions derived from the southern Great Plains, while the
other two grandparents are upland accessions from the northern Great
Plains (Figure 1). This balanced design, including upland/lowland cy-
toplasm, allows us to ask whether a shared set of loci are involved in
adaptive divergence between southern lowland and northern upland
populations or if different alleles and loci might be involved in reaching
similar phenotypes in different local ecotype populations. We assessed

this complexity through genetic mapping and characterizing allelic
effects for quantitative trait loci (QTL) associated with ecotype diver-
gence. Our results provide insight into the underlying genetic basis of
adaptive ecotypic variation.

MATERIALS AND METHODS

Outbred mapping population
P. virgatum is an obligate outcrosser (Martínez-Reyna and Vogel 2002)
and as such it is necessary to account for the fact that parental material
will be genetically heterogeneous and thus generate many marker seg-
regation types. We created a four-way phase-known (pseudotestcross)
population to evaluate the genetic architecture of upland/lowland traits
in switchgrass. In this scheme, two sets of grandparents [lowland1 ·
upland2 and upland3 · lowland4] were crossed to create F1 hybrids that
were then reciprocally crossed to generate two large “outbred F2” pop-
ulations (F12♀·F34♂, F12♂·F34♀) of 200 progeny each. We used four
tetraploid grandparents in this design: Alamo (“AP13” genotype, the
reference genome and southern Texas accession), West Bee Cave
(“WBC3” genotype, a central Texas lowland ecotype), Summer
(“VS16” genotype, a northern upland accession), and Dacotah
(“DAC6” genotype, a northern upland accession). The Alamo and
Summer grandparents functioned as pollen donors in crosses and
therefore the two F1 hybrids and their subsequent outbred families
differ in that they contain either lowland WBC3 or upland DAC6
cytotypes (Figure 1). Given disomic inheritance, each outbred family
can segregate up to four unique alleles donated by the grandparents.
Phase can be resolved from the multigenerational information. Sam-
pling multiple grandparental alleles increases the possibility of evalu-
ating informative QTL and inspection of the allelic effects of QTL may
provide insight into genetic heterogeneity in ecotype divergence. For
example, do QTL alleles from WBC and AP13 exhibit similar or dif-
fering additive effects relative to VS16 and DAC6 QTL alleles? Finally,
the cytoplasmic segregation also allows for investigation into cytoplas-
mic and cytoplasmic by nuclear QTL interactions.

Cultivation and phenotyping
Seed from the reciprocal F1 hybrid cross was germinated and initially
planted in 4-inch pots in a greenhouse at the University of Texas at
Austin. At the two true leaf stage they were transferred to 1-gallon pots
using a potting mix of Promix (Premier Tech Horticulture, Riviére-du-
Loup, Quebec, Canada) and Turface (Profile Products, Buffalo Grove,
IL) in a ratio of 4:1. Plants were grown in a greenhouse under 16-hr
days from January to June 2012. Each plant was scored for date to first
flowering, from time of transfer to the 1-gallon pot to anthesis. Plant

Figure 1 Diagram of four-way outbred reciprocal cross between two
upland and two lowland ecotypes of P. virgatum.
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height was also quantified, as the total length of tallest tiller, on the day
of first flower. Leaf tissue for genomic DNA extraction was collected
and frozen in liquid N2. After flowering, the pots were moved from the
greenhouse to an outdoor field nursery. At the end of the growing
season, the plants were clonally divided by splitting the crown into
generally equal halves. These two replicates were repotted in the same
soil mixture using 1-gallon pots and maintained in the field nursery.
One replicate of each of the mapping progeny genotypes and 20 repli-
cates of each grandparent and F1 hybrid were transplanted into the field
at the experimental garden site at the Brackenridge Field Labs inAustin,
TX, in February 2014, while the other set of replicates was kept as
backup tissue and maintained in the field nursery. The field planting
was based on a randomized honeycomb design with 1.25 m interplant
distances surrounded by a row of border plants to minimize edge
effects. Weed barrier cloth (Sunbelt 3.2 oz.; Dewitt, Sikeston, MO)
was used to aid in establishment and minimize plot maintenance.
The common garden field site was located in lowland switchgrass
habitat associated with Colorado River floodplain (30.284138�N,
297.781632�W), where the soil type is Yazoo sandy loam.

The following traits were measured during the 2014 growing season
forfieldgrownplants: date tofirstflowering, chlorophyll content (SPAD),
specific leaf area (SLA), midday water potential (MDWP), total number
of tillers, single tillermass,numberof leavesonfive total tillers,height, and
pathogen susceptibility. Date to first flowering (flowering date) is calcu-
lated as the number of days from emergence to first anthesis. We
measured MD WP using a Scholander pressure chamber (PMS In-
strument Company, Albany, OR) on a mature leaf. Water potential
indicates the leaf water potential status, and when measured during the
heat of the day, can indicate tolerance to water stress. Larger (more
negative) water potential values indicate more water stress (Pérez-
Harguindeguy et al. 2013). Relative chlorophyll content was estimated
using a chlorophyll SPAD meter (Konica-Minolta SPAD 502; Konica-
Minolta, Chiyoda, Tokyo, Japan). Three readings from a single mature
leaf were taken and the mean value recorded. Relative chlorophyll con-
tent, or leaf “greenness,” was estimated by a corrected ratio of trans-
mitted light with wavelengths of 940 and 650 nm (Markwell et al. 1995).
SLA is the ratio of leaf area (square millimeter) to dry leaf mass (gram),
the resulting value is a measure of leaf density (Pérez-Harguindeguy
et al. 2013).We recorded the area of threemature leaves using a portable
leaf area meter (LI-3000A; Li-Cor, Lincoln, NE) and recorded the mass
of the same leaves after full desiccation. Larger values for the area-to-
mass ratio indicate a thinner, less dense leaf. Total plant height, single
tiller mass, total number of tillers, and number of leaves on five tillers
were taken at the end of the growing season. Height was measured using
a graded measuring rod and tiller mass was calculated by averaging the
dry weight of fivemature tillers stripped of leaves and inflorescences.We
calculated phenotypic correlations among traits for the grandparent
ecotypes and recombinant mapping progeny using the Spearman rank
method on raw phenotype values. We used the Holm–Bonferroni cor-
rection for multiple testing (Holm 1979).

Rust susceptibility
Infection by a fungal rust pathogen was observed in the mapping
population in the potted plants in 2013. Plants were treated with a
fungicide (Daconil GardenTech, Palatine, IL) to aid in vigorous estab-
lishment of clonal replicates, and all but 12 inches of above ground
biomass was removed before dormancy. The plants were then planted in
thefield for the following 2014 growing season. Physiological phenotypes
(see above, Cultivation and phenotyping) were measured on green,
healthy leaves. At the end of the growing season, five mature tillers were
harvested andmanually stripped of their leaves. Each leaf was then scored

for presence of the fungal pathogen using a qualitative four-point
rating: 1, completely infected and brown in color, to 4, no evidence of
pathogen and green in color (Supplemental Material, Figure S1). The
total number of leaves on all five tillers was recorded as well. Each
plant was then given a percentage score for each leaf category. We
then used a principal component analysis for the four percentile
scores to find the major axis of variation for the trait. The first prin-
cipal component explained 86.4% of the variation and was largely
associated with the percentage score of completely infected leaves.
We therefore used the scores for the first principal component (Rust
PC1) as a proxy for a pathogen-resistant phenotype.

Genotyping
Fresh leaf tissue was collected in the greenhouse, immediately frozen in
liquid N2, and stored at 280� in the spring of 2013. The equivalent of
100 mg of wet tissue was then used for genomic DNA extraction with
the MasterPure Plant Leaf DNA Purification Kit (Epicentre, Madison,
WI). The procedure was modified with an initial RNase A treatment
and two subsequent ethanol washes. Final DNA was eluted in 30ml TE
buffer and quantified using the Broad Range spectrum kit of the Qubit
2.0 (Life Technologies, Carlsbad, CA). Each extraction yielded �30–
200 ng/ml DNA.

Each plant was genotyped using a double-digest Restriction-site
Associated DNA sequencing (ddRADseq) (Peterson et al. 2012)
scheme. In brief, 300 ng of DNAwas cut with EcoRI and SphI enzymes.
In-line barcodes were ligated onto the EcoRI cut site, fragments were
size-selected on a Pippen Prep (Sage Science, Inc., Beverly, MA) at a
300 6 30 bp range, then Illumina adaptors were ligated onto the SphI
cut site. This produced nine multiplexed libraries with 48 individuals
each. Libraries were sequenced on an Illumina 2000 HiSeq (San Diego,
CA) at the Genome Sequencing and Analysis Facility in Austin, TX.
Raw read quality was evaluated with FastQC (v. 0.10.1). Library demul-
tiplexing was performed in Stacks (v. 1.06, Catchen et al. 2011). Se-
quencing resulted in �1.6 million (mean = 1,626,3296 34,002.78 SE)
raw reads per individual. Reads from each individual were thenmapped
to the P. virgatum v. 1.1 genome (DOE-JGI, http://phytozome.jgi.doe.
gov) using BWA mem (BWA v. 0.7.9a, Li 2013; Li and Durbin 2010).
Mapped reads were further processed in Stacks for genotype calling and
allele designations. The two F1 hybrids were designated as parents in
the Stacks ref_map.pl pipeline and 140,561 markers were included in
the catalog of markers for scoring genotypes. Each individual was then
genotyped at �38,000 (mean = 38,161.2 6 670.0 SE) markers. The
coverage for each marker was �40·. Due to missing data the dataset
was filtered for markers present in at least 50% of the individuals. We
also filtered for segregation distortion by testing for significant devia-
tion from Mendelian expectations and removing all loci where P ,
0.00005. This resulted in a high quality set of 1348 markers available
for subsequent linkage analysis.

Linkage map assembly and QTL analysis
Outbred mapping populations are often analyzed in a pseudotestcross
approach, developing independent maternal and paternal linkagemaps
based on single dose markers that uniquely segregate in either parent
(Haley et al. 1994). Here, we develop a joint linkage map based on the
outbred full-sib family (CP) design using Joinmap (v. 4.1) and the
multipoint maximum likelihood (ML) algorithm (van Ooijen 2011).
This algorithm is unique in that it simultaneously estimates phase and
recombination fraction and can utilize all possible segregation types in
ordering markers and estimating marker interval distances. We first
grouped markers into linkage groups (LGs) using a conservative loga-
rithmic odds-ratio (LOD) of 10.0. We then used a simple regression
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algorithm to order markers on each group with the following settings:
pairwise recombination frequency , 0.4, LOD . 3, with a Kosambi
mapping function to calculate genetic distances. Markers that affected
goodness of fit (mean chi-square. 3) were removed.We then usedML
to order and estimate mapping distances for the edited groups. This
produced a finalized map with 1281 markers.

We mapped QTL for phenotypic traits for the upland/lowland
outbred mapping population using a stepwise multiple-QTL model
fitting method as implemented in R/qtl (Broman et al. 2003;
Manichaikul et al. 2009). A generalized linearmodel was used to correct
for the effects of potting cohort for traits measured in the greenhouse.
Field traits did not need a cohort correction and were quantile normal-
ized to create a uniform set of normally distributed traits. All QTL scans
were performed using a normal model and Haley-Knott regression
based on a dense 2 cM grid of pseudomarkers generated using the
calc.genoprob function. We calculated LOD penalties for main effects
and interactions for each trait through 1000 permutations of the
scantwo function at an a of 0.05. We conducted a forward/backward
stepwise search for models with a maximum of 10 QTL that optimized
the penalized LOD score criterion. We calculated the 1.5 LOD drop
interval of QTL in the best-fit models and the percentage variance
explained for each QTL based on the final best-fit models using the
fitqtl function.We designated cytoplasm (cross direction) as an additive
and interactive covariate for the scantwo penalty calculation. We also
designated cytoplasm as an additive covariate for the stepwise model
fitting and performed a post hoc nuclear-by-cytoplasm interaction test.
Computation was performed on the Lonestar cluster at the Texas Ad-
vanced Computing Center at the University of Texas at Austin (www.
tacc.utexas.edu) using custom scripts (github.com/ermilano/4way).

Data availability
Raw sequence reads are available at the NCBI SRA, accession number:
SAMN05609456 (http://www.ncbi.nlm.nih.gov/biosample/5609456).
File S1 contains barcode information. File S2 is an R/qtl file that con-
tains the joint genetic map and genotype and phenotype data for each
individual in the QTL analysis. File S3 contains metadata for File S2.

RESULTS

Trait variation, divergence, and correlations
Upland and lowland ecotypes of switchgrass are characterized by
divergence in a variety of traits including differences in flowering time,
growth architecture, physiological characteristics, and disease suscep-
tibility (McMillan 1964, 1965, 1967; Casler et al. 2011; Uppalapati et al.
2013). Most traits we measured showed the expected trait differentia-
tion between the upland and lowland ecotypes based on the mean
values of each of the grandparents, including height (lowland . up-

land), tiller mass (lowland . upland), SLA (upland . lowland), rust
resistance (lowland . upland), flowering time (lowland . upland),
and leaf number (lowland . upland) (Figure S2). SPAD and MD
WP did not differ between upland and lowland ecotypes, and tiller
count was in the opposite direction of the pattern anticipated; lowland
genotypes developed more tillers than upland genotypes during this
establishment year. The phenotypic distribution of the traits in the F1
individuals and the F2 mapping progeny was generally unimodal and
exhibited limited transgressive segregation (Figure S2). For example,
flowering time in the F2 progeny ranged from 5 to 78 d, surpassing the
maximum grandparental ecotype value of 64 d from lowlandAP13.We
did not observe a significant effect of cytoplasm on any of the measured
phenotypes (ANOVA P . 0.05 for all trait comparisons across cyto-
plasmic backgrounds, data not shown).

Ecotypes are comprised of suites of divergent phenotypes associated
withadaptationtocontrastinghabitats. Inthegrandparents,weexpected
traits to be correlated with each other as a result of ecotypic divergence.
For example, there is a positive relationship between flowering date and
heightdue to short statureandearlyfloweringdateof theuplandecotype
compared to the tall stature and later flowering date of the lowland
ecotype. All correlations were positive except with SLA, where the
correlations were strongly negative. This is expected as the smaller,
thinner upland leaves have a larger leaf area-to-mass ratio. Genetic
recombination can reduce the numberofpairwise trait covariances if the
traits are largely polygenic and not controlled by a few pleiotropic loci of
major effect (Conner 2002). We calculated a correlation coefficient for
all pairwise trait combinations in the progeny and found 14 significant
correlations out of 36 total (Table 1). We found that some traits
remained highly correlated after recombination, for example, flowering
date and height measured in the field (Figure 2A), whereas other trait
pairs do not have a significant relationship, for example flower date and
SLA (Figure 2B).

Linkage map
We successfully ordered 1281 ddRADseq markers on 18 distinct LGs,
corresponding to the nine chromosomes of the tetraploid switchgrass N
andK subgenomes (Figure 3). The totalmap distance is 2288.7 cM,with
an average intermarker map distance of 1.8 cM (60.55 SE). This map
length is comparable to the Kanlow-by-Alamo pseudotestcross map at
2200.4 cM (Lowry et al. 2015b), but larger than separate male and
female F1 maps [Alamo male (1515 cM) and Kanlow female
(1935 cM), Okada et al. 2010; Alamo female (1733 cM) and Summer
male (1508 cM) maps Serba et al. 2013]. One third of the ddRADseq
markers mapped to unanchored contigs in the P. virgatum reference
genome, and we were able to place these markers onto LGs. There are
several marker segregation types that result from an outbred cross
depending on the heterozygosity in each of four grandparents

n Table 1 Spearman’s rank correlation (r) for phenotypic traits measured on the mapping population in the field

Flower Date Height Tiller Mass Tiller Number Leaf Number MD WP SPAD SLA

Height 0.265���

Tiller Mass 0.232��� 0.639���

Tiller Number 0.157 ns 0.341��� 0.165�

Leaf Number 0.066 ns 0.314��� 0.408��� 0.066 ns
MD WP 0.216 �� 0.09 ns 0.09 ns 0.064 ns 0.003 ns
SPAD 0.101 ns 0.14 ns 0.151 ns 0.1 ns 20.041 ns 0.084 ns
SLA 20.124 ns 20.22��� 20.271��� 0.065 ns 20.199�� 20.262��� 20.04 ns
Rust PC1 0.149 ns 0.071 ns 20.009 ns 20.232��� 20.087 ns 0.221��� 0.053 ns 20.147 ns
� P , 0.05, �� P , 0.01, ��� P , 0.001; ns, not significant. P-values corrected for multiple tests using the Holm–Bonferroni method. MD WP, midday water potential;
SPAD, chlorophyll content; SLA, specific leaf area; Rust PC1, pathogen resistance.

3564 | E. R. Milano, D. B. Lowry, and T. E. Juenger

http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://www.ncbi.nlm.nih.gov/biosample/5609456
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FileS1.txt
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FileS2.csv
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FileS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FileS2.csv
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FigureS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032763/-/DC1/FigureS2.pdf


(Wu et al. 2010). For example, four unique grandparental alleles
(,abxcd.) result in a fully informative marker for both linkage and
QTL mapping. However, loci with fewer than four unique alleles result
in partially informative markers (e.g., ,efxeg.). We found 798 par-
tially informative biallelic markers, 450 partially informative triallelic
markers, and 33 fully informative markers. The fully informative
markers uniquely identify the contributed grandparental chromosomes
and were used to phase each LG for analysis of allelic effects.

QTL
Overall, we identified 33 QTL and three epistatic interactions across
11 traits, using stepwise model selection (Figure 3). The largest additive
effect QTL was located on LG 5N at 116.12 cM, with 19.3% variance
explained [percent of phenotypic variance explained by QTL (PVE)]
for flowering time in the greenhouse. The largest additive effect QTL in
the field were for SLA on LG 9N at 36.63 cM (13.46 PVE), and plant
height on LG 2K at 132.27 cM (13.34 PVE) (Table 2). The only trait
lacking significant QTL was MD WP. Notably, we found a total of
seven QTL on LG 9K. Over two thirds of the QTL peaks were found
on one third of the LGs, with 72.7% of the QTL localized to the tetra-
ploid homoeologue pairs 2, 5, and 9. We did not detect any significant
(P . 0.05) cytoplasmic or nuclear-by-cytoplasmic interactions.

We found six QTL and one epistatic interaction for SLA, the largest
number ofQTLper trait in our study. Together, theseQTL totaled 57.23
PVE for that trait. We also found five QTL for both measurements of
height, in the greenhouse and in the field. Interestingly, there was only
one region, on LG 9N from 120 to 130 cM, where QTL for both height

measurements colocalized.We detected three and four QTL for flower-
ing time in the greenhouse and in the field respectively. However, while
each had a QTL on LG 2K, the confidence intervals did not overlap.We
discovered three pairwise epistatic interactions that explained a mod-
erate amount of variance relative to the additive effects. These interac-
tionswere found forheight (8.12PVE), SLA (9.43PVE), andgreenhouse
flowering time (11.22 PVE). We found significant rank changes in the
allelic effects depending on genetic background within each case but
there was no consistent pattern across the three separate interactions.
Three traits (leaf number, SPAD, and rust resistance) yielded a single
QTL but each QTL was ,10 PVE, suggesting there may be many
undetected loci controlling these traits. However, we acknowledge the
limitation of using single replicates of each genotype. Power to detect
small effect loci can be increased with more replication, especially
for low heritability traits.

Allelic effects
The use of an outbred mapping population affords a more detailed
evaluation of QTL allelic effects than traditional inbred line crosses
given the contribution of potentially four grandparental QTL alleles in
the F2 progeny. After phasing, the allelic affects at QTL can be evaluated
based on the four possible recombinant progeny, including upland
homozygotes (VS16/DAC6), lowland homozygotes (AP13/WBC3),
and the two upland/lowland hybrid genotypes (VS16/AP13 and
DAC6/WBC3). Inspection of the additive effects can therefore allow
some interpretation of the distribution of functional alleles within and
between ecotypes and the genetic mechanism associated with each trait.
For example, the functional alleles can be consistent between ecotypes
where unique upland and lowland genotypes contribute the same func-
tional alleles as determined by the magnitude and direction of their
additive effects (Figure 4A). Or functional alleles can be polymorphic
within ecotypes, where individual genotypes contribute unique func-
tional alleles to progeny irrespective of ecotype; a primary indication of
this pattern would be the observation of strongly differing phenotypes
in the two unique upland/lowland heterozygotes at a particular QTL
(Figure 4B). We can also evaluate whether the direction of the allelic
effects is the pattern expected given the overall phenotypic divergence
between upland/lowland ecotypes. We found 10 of the 33 QTL had
additive effects in the opposite direction of that expected for divergence
between upland and lowland ecotypes (Table 2). For example, lowland
ecotypes consistently flower later than uplands, but the lowland alleles
for flowering date on LG 2K resulted in an earlier flowering time than
upland alleles (Figure 4C). All five QTL on LG 2K, three out of four
QTL on LG 5K, and one each on LGs 9N and 6N exhibited allelic effects
in the opposite of expected upland/lowland ecotypic divergence.

DISCUSSION
To understand the genetic architecture of divergence between upland
and lowlandecotypesof switchgrass,weassembledagenetic linkagemap
andconductedQTLmapping for a reciprocal four-waycross.The results
ofQTLmapping allowedus to then characterize functional allelic effects
for traits associated with ecotype divergence. Segregation of phenotypic
variation within the mapping population suggests that the suite of traits
characterizing ecotypic divergence is the result of complex genetic
architecture that involves limited evidence for any large effect or
pleiotropic loci. QTLmapping also supported this conclusion, with loci
controlling trait divergence distributed throughout the genome. We
identified multiple QTL with additive effects that are consistent with
patterns of ecotypic divergence. This result suggests that some of the
same locimay be involved in upland/lowland ecotype divergence across
the geographic range of switchgrass. Overall, our results provide a better

Figure 2 Sample scatterplots of trait correlations, (A) flowering time
and height, and (B) flowering time and specific leaf area, in the F2
population with linear regression line (red) and averaged trait values
for the upland (dark green triangles) and lowland (light green triangles)
grandparent replicate plants. ���, p , 0.001; ns, not significant.
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understanding of the genetic architecture underlying ecotype diver-
gence and set the stage for improvement of regionally adapted cultivars
of switchgrass.

The evolution of ecotypes
Ecotype divergence is typically characterized by a suite of trait differ-
ences that are correlated with environmental conditions that compose
habitats (Clausen and Hiesey 1958; Lowry 2012). Ecologists often focus
on documenting similar suites of trait that are correlated across geno-
types and species, which they refer to as trait syndromes (Tjoelker et al.
2005; Possen et al. 2015). However, without genetic approaches it
is not possible to determine whether trait syndromes are driven by
pleiotropy/linkage or independent loci with allelic variation structured
across ecotypes. Allelic variation can become structured between eco-
types through a buildup of LD across physically unlinked loci as a result
of strong divergent and correlational selection. In a scenario where
there is little to no gene flow between ecotypes, and selection is acting
on suites of beneficial traits, we expect LD to build between loci asso-
ciated with all traits that contribute to local adaptation. We also expect
to see a significant reduction in LD and subsequent correlational struc-
ture following gene flow between ecotypes in nature, or through the
controlled crosses in our mapping study. In our mapping population,
we found that 11 of the trait correlations that were significant in the
grandparents were no longer significant in the F2 generation, suggesting
that those trait correlations were the result of LD due to population
structure between the ecotypes.

Whilemuch of the trait syndrome that characterizes the upland and
lowland ecotype divergence was due to independent loci, we also found
evidence of tight physical linkage and/or pleiotropy. Tight physical
linkage and pleiotropy can both facilitate and constrain adaptation,
depending on the direction of additive effects ondifferent traits. If allelic
effects across traits are in the direction consistent with local adaptation,

then tight linkage and pleiotropy can facilitate ecotype formation (Mills
et al. 2014; Schwander et al. 2014). However, if allelic effects on traits
are in the opposite direction of local adaptation, then the evolution of
these traits will be constrained due to genetic trade-offs (Kawecki and
Ebert 2004; Savolainen et al. 2013; Tiffin and Ross-Ibarra 2014). In our
study, we found that tiller mass and SLA, as well as height and SLA,
were significantly correlated in both the grandparents and the mapping
progeny. The raw correlation value was negative but this is the expected
direction for ecotype divergence. Tiller mass and SLA shared overlap-
ping QTL confidence intervals on LG 9K, and both had effects in line
with ecotypic divergence. Thus, physical linkage or pleiotropy may
facilitate adaptive evolution of these traits. In contrast, height and
SLA on LG 5K differed in direction of allelic effects. This genetic
architecture could constrain response to selection along the axis of
ecotype divergence.

Functional genetic variation is also often correlated with latitude,
which reflects adaptation to environmental gradients that track latitude
(Langlet 1971; Adrion et al. 2015). In switchgrass, much of the func-
tional genetic variation has been shown to be strongly correlated with
latitude (Casler and Vogel 2004; Casler et al. 2007; Lowry et al. 2014).
The design of our study confounds the effects of ecotype and latitude
because we only included northern upland and southern lowland in-
dividuals as grandparents in our crosses. While the lowland ecotype
does not occur in northern regions, the two ecotypes overlap each other
over a great portion of their range, with upland populations occurring
at least as far south as Texas (Lowry et al. 2014). To fully partition
latitudinal and ecotype effects, mapping populations would need to be
made between southern lowland and southern upland plants.

QTL colocalization
Our QTL findings are consistent with other P. virgatum studies, and we
provide possible evidence for genomic regions across the Panicum

Figure 3 Genetic linkage map for P. virgatum with QTL and 1.5 LOD drop confidence intervals mapped to the right of their respective linkage
groups. GH, greenhouse trait.
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complex, with consistent and conserved effects on traits. We found
several regions in the genome where QTL confidence intervals overlapped
across traits, mainly on tetraploid homoeologous pairs 2, 5, and 9. LG 2K
is particularly interesting because all of the QTL effects were in the
opposite direction than expected, based on patterns of ecotypic di-
vergence. This may be due to several factors that we address below
(see Allelic effects). We found seven QTL that localized to LG 9K. This
is consistent with previous mapping efforts of similar traits by Serba
et al. (2014) and Lowry et al. (2015a,b). Both studies found major
biomass QTL on LG 9K.

Another interesting comparison is to QTL recently identified in the
diploid relative of switchgrass, P. hallii. The reference genome for
switchgrass is anchored on the P. hallii genome and switchgrass and
P. hallii are estimated to have diverged 5.3MYA (Zhang et al. 2011b). P.
hallii has two genomic hotspots of ecotype divergence, where QTL for
many traits associated with ecotype divergence colocalize on LG 3 and
LG 5 (Lowry et al. 2015a,b). LG 5 is particularly interesting because
QTL for tiller number, flowering time, and height colocalized to the
lower arm of LG 5 in P. hallii and LG 5K in switchgrass. Additionally,
the lower arm for switchgrass LG 5N contained greenhouse-specific
QTL for flowering time and height.

The earliest polyploidization in switchgrass was estimated to be
roughly coincident with ecotype divergence occurring �1.2 MYA

(Zhang et al. 2011a). We found that SLA had two QTL on the lower
arms of LG 5K and LG 5N and the upper arms of LG 9K and LG 9N,
suggesting loci may have retained function across subgenomes rather
than diverged or degenerated as a result of genome duplication.

Allelic effects
Since upland and lowland ecotypes are estimated to have diverged 0.7–1
MYA (Morris et al. 2011; Zhang et al. 2011b) during the Pleistocene, we
might expect the majority of functional alleles to be fixed between
ecotypes because of putatively strong and consistent divergent selection
pressures. However, if there were very low levels of gene flow across the
geographic range of switchgrass populations, we might expect func-
tional alleles to be unique and varied among populations of each eco-
type. This is consistent with a model of ecotype divergence stemming
from ancient glacial refugia followed by adaptive radiations and genetic
bottlenecks with each glacial cycle (Zhang et al. 2011b), and occasional
gene flow across ecotype boundaries. In this model, ecotypes were
originally formed from strongly selected and possibly small popula-
tions. However, there have been several glacial episodes since the esti-
mated time of ecotype divergence, and with that, additional population
bottlenecks and subsequent bouts of range shifts and changes in envi-
ronmental selection pressures. Overall, we found that half of the QTL
exhibited a pattern suggestive of fixed differences between ecotypes,

n Table 2 Significant QTL for traits measured in the field and in the greenhouse

Phenotype Linkage Group Position (cM) 1.5 LOD C.I. (cM) LOD PVE PDE Effect Direction

Flowering Date 2K 113.28 106–122 9.13 9.1 74.09 +
Flowering Date 4K 83.41 54–86 8.77 8.72 70.99 2
Flowering Date 5K 98.4 86–172 5.32 5.17 42.09 +
Flowering Date 9N 132.87 16–158 5.09 4.94 40.22 2
Heighta 2K 132.27 126.14–132.27 14.01 13.34 39.08 +
Height 3N 106.5 95.3–122 5.68 5.13 15.03 2
Height 5K 150 130–181.56 4.39 3.93 11.51 +
Heighta 6N 61.39 56–65.35 13.32 12.63 37 2
Height 9N 130 120.45–142.6 5.81 5.25 15.38 2
Tiller Mass 2K 132 120–132.27 6.35 6.48 14.6 2
Tiller Mass 9K 24 10–49 6.55 6.69 15.07 +
Tiller Mass 2N 126 118–134 6.85 7.01 15.8 +
Tiller Mass 3N 114 96–124 7.45 7.65 17.24 +
Tiller Number 1N 70.15 59.25–79.25 7.1 8.19 85.8 +
Tiller Number 5K 98.4 86–136 4.46 5.06 53.01 +
Tiller Number 9K 83.86 76–94 4.43 5.02 52.59 2
Leaf Number 9K 42.37 30–48 6.36 8.25 80.82 +
SPAD 2K 113.28 96–123.5 5.67 7.43 97.94 2
Specific Leaf Area 5K 142.18 133.1–181.56 4.57 3.68 219.66 2
Specific Leaf Area 5N 104.11 100–110 7.4 6.06 232.37 +
Specific Leaf Areaa 8N 24.38 22–30 13.87 11.85 263.31 +
Specific Leaf Areaa 9N 36.63 34.39–40 15.59 13.46 271.91 +
Specific Leaf Area 9K 28 22–51.984 8.75 7.22 238.57 +
Specific Leaf Area 9K 108 48.21–138 4.64 3.73 219.93 +
Rust PC1 8K 13.21 6–52 4.86 6.22 25.91 +
GH Flowering Datea 2K 38.23 34–41.32 12 11.9 NA 2
GH Flowering Datea 5N 116.12 112–119.8 18.67 19.31 NA +
GH Flowering Date 9K 98 52–114.79 4.31 4.08 NA +
GH Height 3K 44 32.24–102.27 6.04 5.47 NA +
GH Height 5N 119.8 110.13–122 6.08 5.5 NA +
GH Height 7K 40.69 20–54 5.06 4.54 NA +
GH Height 9N 102 70–130 4.79 4.3 NA +
GH Height 9K 69.18 56–86 5.41 4.88 NA +

Each row represents a single QTL peak. LOD, logarithm of odds; C.I., confidence interval; PVE, percentage of phenotypic variance explained by QTL; PDE,
percentage of parental divergence explained by QTL; +, allelic effect consistent with ecotype divergence; 2, allelic effect opposite of ecotype expectation; GH,
greenhouse trait.
aEpistatic interaction between QTL within trait.
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supporting a model of considerable allelic heterogeneity both between
and within upland and lowland ecotypes. Additional crosses and ge-
netic mapping populations sampling a larger geographical distribution
of both uplands and lowlands will be valuable for further insight into
the evolution of switchgrass ecotypes.

Another important aspect of characterizing QTL is the direction of
allelic effects. Even thoughQTL studies are known to both overestimate
and underestimate effect size of QTL (Beavis 1998), there is very little
bias in detecting direction of effect.We found that 30% of our QTL had

allelic effects in the opposite direction than expected for upland and
lowland ecotype divergence. Here we offer some possible explanations.
In addition to the directional selection imposed by heterogeneous hab-
itats, populations may experience stabilizing selection, or maintain
polymorphisms in populations in the overlapping ranges that experi-
ence higher levels of gene flow. In the case of flowering time and height,
two traits that are strongly divergent between the ecotypes, we found
half of the allelic effects were in the opposite direction of expected
ecotype divergence. One possibility in this case is that the trait is com-
posed primarily of many very small effect loci, with allelic effects in the
expected direction that are beyond the level of detection of this study.
We found one particular region on the lower arm of LG 2K where all
effects were in the opposite direction of ecotypic expectation. This may
be the result of a chance fixation of a maladaptive chromosome block
due to genetic drift in a population bottleneck (Orr 1998), or from a
recent selective sweep for a trait we did not measure.

Pathogen resistance
Rust infections of switchgrass pose major challenges to biofuel pro-
duction as they can reduce ethanol yields up to 55% (Sykes et al.2015). It
is well known that the lowland switchgrass ecotype is more resistant to
rust than the upland ecotype (Hopkins et al. 1995; Uppalapati et al.
2013). Fungal pathogens are generally moisture- and temperature-
sensitive and often require high relative humidity for infection and
sporulation (Harvell et al. 2002). Thus, a higher pathogen load could
have driven greater resistance in southern lowland populations. What-
ever the cause, little is known about the genetic architecture of this
resistance. The natural infection that occurred during our experiment
allowed us to screen for resistance QTL. We detected one resistance
allele from the lowland WBC3 genotype using our coarse scale pheno-
type method. This lays the groundwork for future pathogen resistance
mapping efforts in switchgrass that can be used to develop a panel of
resistance alleles. Marker-assisted breeding programs can quickly and
efficiently develop cultivars for different climactic regions for traits not
amenable to transgenicmanipulation and genetic engineering. Locating
causal genes within QTL is costly, time intensive, and not useful if the
phenotypic effect of each QTL is small. Yet it would be possible to
introduce resistance alleles into the upland genetic background through
several rounds of targeted marker-assisted breeding (Vogel and Jung
2001).

Conclusions
Overall, our study has established a better understanding of the genetic
architecture of ecotype divergence in switchgrass. In addition to a
conceptual framework for the genetics of locally adapted ecotypes,
we provide a starting point for marker-assisted selection of desired
traits in a lignocellulosic bioenergy feedstock. Understanding and
exploiting locally adapted traits in different genotypes will allow us to
efficiently grow switchgrass in many different geographical regions
economically, and with minimal input and ecological impact. Since
there appears to be only limited pleiotropy underlying the divergence of
upland and lowland ecotypes, it should be possible to improve many
traits through breeding without incurring major phenotypic costs in
other traits.

Going forward, we plan to utilize the four-way mapping population
to better understand the genetic architecture of local adaptation across
different latitudes. Clonal replicates of this mapping population are
currently being planted in common gardens across the latitudinal
gradient of the North American Great Plains to address clinal varia-
tion and genotype-by-environment interactions in P. virgatum. These
complex interactions, in addition to ecotype divergence, are important

Figure 4 Selected allelic effects plots to illustrate (A) fixed ecotype
effects, (B) polymorphic ecotype effects, and (C) fixed ecotypic effect
in the opposite direction of expected ecotype divergence. The x-axis
indicates genotype. X-axis subtitle indicates LG and marker position of
the specific locus. GH, greenhouse traits; L1, AP13; L2, WBC3; U1,
DAC6; U2, VS16.
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considerations in habitat restoration, plant breeding, and accuracy of
agronomic modeling.
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