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Abstract 

Background:  The Shiga toxin–producing Escherichia coli (STEC) O91:H21 strains NCCP15736 and NCCP15737 were 
isolated during a single outbreak in Korea, NCCP15736 from a symptomatic carrier and NCCP15737 from an asympto‑
matic carrier. To investigate genomic differences between the two strains, we performed whole-genome sequencing 
of both strains and conducted a comparative genomic analysis.

Results:  Using the Illumina HiSeq 2000 platform and Rapid Annotation using the Subsystem Technology (RAST) 
server, whole-genome sequences of NCCP15736 and NCCP15737 were obtained and annotated. Phylogenetic 
analysis of ten E. coli strains showed that NCCP15736 and NCCP15737 are evolutionarily close. The two strains were 
found to be most close to E. coli O91:NM str. 2009C-3745. The genomic comparison showed that the fimD gene 
of NCCP15737 is truncated and that the truncation could underlie the defects in infection and pathogenicity of 
NCCP15737. The two strains showed the same virulence factor profiles, and we identified 25 virulence factors from 
NCCP15736 and NCCP15737, respectively. We identified ten and nine phage-associated regions in the NCCP15736 
and NCCP15737 genomes, respectively; the two strains share five of these.

Conclusions:  NCCP15736 and NCCP15737 differ at the genomic level, even though they share features such as 
virulence-related genes. NCCP15737 has a deletion in fimD, which may underlie its asymptomatic character. We con‑
clude that complete genome sequencing and integration of other types of omics data are needed to fully reveal the 
mechanism underlying the asymptomatic character of NCCP15737.
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Background
Escherichia coli is a typical member of the normal 
microflora of the human gastrointestinal tract [1]. 

However, some E. coli isolates cause serious disease. 
They can be divided into three major subgroups: com-
mensal or nonpathogenic strains, pathogenic strains 
that cause intestinal infection, and extraintestinal path-
ogenic strains [2]. Intestinal pathogenic E. coli include 
enteroaggregative E. coli, enterohemorrhagic E. coli 
(EHEC), enteropathogenic E. coli (EPEC), enteroinva-
sive E. coli, and enterotoxigenic E. coli (ETEC). Shiga 
toxin-producing E. coli (STEC) O157:H7 in humans 
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was first reported in 1983 [3–5]. STEC causes a variety 
of diarrheal diseases and hemolytic uremic syndrome 
(HUS) [6]. EHEC belongs to the STEC group but it is 
associated with a distinctive clinical syndrome, namely 
hemorrhagic colitis (HC), mainly caused by E. coli 
O157:H7 [7, 8]. Shiga toxin (Stx) inhibits protein syn-
thesis by disrupting the 28S RNA of the 60S riboso-
mal subunit [9]. Shiga toxins can be classified into two 
groups: Stx1 and Stx2 [7]. Stx1 originates from Shigella 
dysenteriae and there are three subtypes: Stx1a, Stx1c 
and Stx1d; these genes are highly conserved in STECs. 
Stx2 shows a lower degree of conservation and includes 
several variants: Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, 
and Stx2g [10]. Most outbreaks involve STEC O157:H7, 
but outbreaks caused by non-O157 STEC have shown a 
recent increase [11]. Thus, a better understanding of the 
causes of the asymptomatic character of STEC strains 
is required. Non-O157 STEC includes the O8:H, O26:H, 
I26:H11, O91:H21, O103:H2, O111:H, O113:H21, 
O128:H2, and O145:H [7] serotypes.

Two STEC O91:H21 isolates were used in this study, 
one from a symptomatic carrier and one from an asymp-
tomatic carrier, both isolated during a recent outbreak 
in Korea [12]. Molecular and cellular analyses to inves-
tigate differences in pathogenicity between the isolates 
were performed in a previous study. A reduced adher-
ence phenotype and transcriptional repression of type 
I fimbriae genes were identified in the isolates from the 
asymptomatic carrier; these two factors may explain why 
the isolates cause no symptoms. However, the mecha-
nism underlying the transcriptional repression of type I 
fimbriae is not yet understood at the genomic level. To 
investigate the differences between the O91:H21 iso-
lates from symptomatic and asymptomatic carriers and 
to explore the genetic basis underlying these differences, 
whole-genome sequencing and comparative genomic 
analyses were performed.

Methods
Strain, isolation, and serotyping
An outbreak of STEC at an elementary school was 
reported in Gwangju, Korea on July 2004 [12]. A total of 
1643 stool samples were obtained from asymptomatic 
individuals and all isolates were biochemically charac-
terized using the API20E system (Biomerieux, Marcy 
l’Etoile, France). A total of 74 STEC isolates were char-
acterized as positive for STEC but caused no symptoms. 
Apart from the isolates from asymptomatic carriers, one 
STEC isolate from a symptomatic carrier was character-
ized. The isolated strains were deposited in the National 
Culture Collection for Pathogens (NCCP) at the Korean 
National Institute of Health under accession numbers 
NCCP15736 and NCCP15737. For the present study, 

NCCP15736 and NCCP15737 were obtained from the 
NCCP for whole-genome sequencing. This research has 
been reviewed and approved by the Institutional Review 
Board of the Korean Centers for Disease Control and 
Prevention.

Library preparation and whole‑genome sequencing
A sequencing library was constructed using the TruSeq 
Sample Preparation Kit (Illumina, San Diego, CA, USA) 
following the manufacturer’s instructions. Genomic 
DNA was end repaired and ligated with paired-end 
sequencing adapters. DNA fragments with the desired 
length of ~500 bp were selected by gel electrophoresis. A 
sequencing library was produced by PCR amplification. 
The Illumina HiSeq  2000 platform was used for whole-
genome sequencing.

Genome assembly and annotation
Low-complexity reads, reads with quality scores <Q20, 
adapter sequences, and duplicate reads were discarded. 
De novo assembly of high-quality reads was performed 
with SOAPdenovo (version 1.05) [13]. The de novo 
assembly results were corrected based on alignment of 
all reads that passed the quality control threshold against 
the assembly results using SOAPaligner (version 2.21) 
[14]. After correction, scaffolds >500  bp in length were 
considered for downstream analysis.

Open reading frames and annotated open reading 
frames were identified using the Rapid Annotation using 
Subsystem Technology (RAST version 4.0) [15] server 
pipeline. The coding sequences (CDSs) of NCCP15736 
and NCCP15737 were compared using the sequence 
base comparison functionality of the RAST server. For 
comparison of type I fimbriae gene clusters between the 
two strains, the sequence base comparison functional-
ity of the RAST server was also used. To investigate the 
virulence factor genes, a BLAST search of the total open 
reading frames (ORFs) of NCCP15736 and NCCP15737 
against the virulence factor genes of E. coli listed in 
VFDB [16] was performed with an e-value threshold of 
1e − 5. To select homologous virulence factor genes, the 
BLAST Score Ratio (BSR) was calculated and only genes 
with a BSR score ≥0.4 were used in further analyses. The 
BSR score was calculated using our in-house scripts. 
We excluded genes with coverage lower than 60%, even 
if they showed high sequence identity. Phage-associated 
gene clusters in the genome sequences of NCCP15736 
and NCCP15737 were identified using the PHAST server 
[17]. Three scenarios for the completeness of the pre-
dicted phage-associated regions were defined according 
to how many genes/proteins of a known phage the region 
contained: intact (≥90%), questionable (90–60%), and 
incomplete (≤60%).
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Phylogenetic analysis and genomic structure comparison
To infer the evolutionary relationships among E. coli 
O91, including NCCP15736 and NCCP15737, multiple 
sequence alignments of the whole genome were per-
formed with Mugsy (version 1.2.3) [18]. The generalized 
time-reversible [19] + CAT model [20] was used to infer 
the structure of maximum-likelihood phylogenetic trees 
using FastTree (version 2.1.7) [21]. FigTree (version 1.3.1) 
(http://tree.bio.ed.ac.uk/software/figtree/) was employed 
for tree visualization. For comparison of genomic struc-
tures between the two strains, the progressive alignment 
algorithm in Mauve (version 2.3.1) [22] was used. The 
BLAST algorithm was used to compare phage-associated 
regions.

Quality assurance
The genomic DNA was purified from a pure culture of a 
single bacterial isolate of NCCP15736 and NCCP15737, 
respectively. Potential contamination of the genomic 
library by other microorganisms was assessed using a 
BLAST search against the non-redundant database. We 
also checked for contamination by other genomes by 
confirming coverage distribution.

Results and discussion
General features
A total of 569,860,000 bp and 576,270,000 bp of paired-
end reads were generated with the Illumina HiSeq 2000 
platform from genomic DNA of NCCP15736 and 
NCCP15737. We used 517 Mbp and 477 Mbp of high-
quality reads for assembly after quality control. After 
de novo assembly, a total of 151 scaffolds with a scaf-
fold N50 of 133,815  bp were obtained for NCCP15736 
and 156 scaffolds with a scaffold N50 of 140,358 bp were 
assembled for NCCP15737. The draft genome size of 
NCCP15736 was 5079,147  bp and that of NCCP15737 
was 5,126,930  bp. The genomic features of NCCP15736 
and NCCP15737 are summarized in Table 1. Based on a 
RAST analysis, 4823 putative CDSs and 14 tRNA genes 
were identified in the NCCP15736 genome. A total of 
4924 putative CDSs and 26 RNAs were identified in the 
NCCP15737 genome (Fig. 1; Additional file 1: Table S1).

Comparison of genome structure
In the comparative analysis of genomic structure per-
formed using the progressive alignment function of 
Mauve, we detected structures that were highly con-
served between NCCP15736 and NCCP15737 (Fig.  2). 
Several unaligned scaffolds were also detected.

Phylogenetic analysis
Phylogenetic comparison of candidate genes, imple-
mented in SEED [23], showed that NCCP15736 and 
NCCP15737 are most close to E. coli O104:H4 str. GOS1 
(score 516). A whole-genome phylogenetic tree showed 
that NCCP15736 is close to NCCP15737 and that both 
strains are closer to E. coli O91:NM str. 2009C-3745 
(Fig. 3).

Type I fimbriae operon
In a previous study, it was reported that the cell sur-
face of NCCP15737 is completely bald; the lack of type 
I fimbriae was concluded to be the main cause of the 
asymptomatic character of NCCP15737 [12]. From the 
comparison of NCCP15736 and NCCP15737 using 
the sequence-based comparison functionality of the 
RAST server, we determined that fimD is truncated in 
NCCP15737, and its product is 591 amino acids instead 
of the full 852 amino acids (Fig. 4). The product of fimD 
is also known as fimbrial usher protein, which anchors 
the type I pilus to the cell surface [24]. Type I fimbriae 
are important for the virulence and survival of E. coli 
[25]. To investigate the role of fimD in the infection and 
pathogenicity of E. coli O91:H21, further experiments 
such as a fimD deletion study and microarray analysis 
of gene expression in NCCP15736 and NCCP15737 are 
required.

Virulence factors
NCCP15736 was isolated from a symptomatic human 
carrier but NCCP15737 was isolated from an asympto-
matic human carrier. To determine the causal mecha-
nisms underlying the observed pathogenicity, we 
investigated the virulence factors of NCCP15736 and 
compared these factors with those of NCCP15737. 
Using a BLAST search against VFDB, we identified the 
same number, 25, of virulence factors from NCCP15736 
and NCCP15737, respectively (Additional file  2: Table 
S2). The 25 virulence genes present in NCCP15736 
were also present in NCCP15737. The virulence genes 
of NCCP15736 and NCCP15737 can be classified into 
five categories: adherence, invasion, iron uptake, secre-
tion system, and toxins. In the adherence category, E. 
coli common pilus (ECP)-related genes (ecpA, B, C, D, 
E, and ecpR) F1C fimbriae (focC), and type I fimbriae 
genes (fimA, B, C, D, E, F, G, H, and I) were identified. 

Table 1  Genomic features of  NCCP15736 and  NCCP15737 
strains of Escherichia coli

Strain NCCP15736 NCCP15737

Genome (Mb) 5.08 5.13

% GC 50.59 50.62

Total open reading frames 4823 4924

tRNAs 14 22

rRNAs 0 4

http://tree.bio.ed.ac.uk/software/figtree/
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Tia invasion determinant (tia) [26], which belongs to 
the invasion category and originates from E. coli O1:K1, 
was identified in both strains. In the iron uptake cat-
egory, iron-regulated element gene (ireA) and salmo-
chelin siderophore-related gene (iroN) were identified in 

NCCP15736 and NCCP15737. Neither strain contained 
all of the genes in the LEE-encoded TTSS effectors cate-
gory, harboring only one secretion gene, escR [27]. In the 
toxins category, alpha-hemolysin–related genes (hlyA, B 
and D) [28] were identified. Alpha-hemolysin is a major 

Fig. 1  Subsystem category distribution of NCCP15636 and NCCP15737 based on the SEED databases. a NCCP15736, b NCCP15737
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virulence factor present in ETEC, STEC, and EPEC 
strains. It is acquired by horizontal gene transfer via 
conjugative plasmids [29]. Shiga-like toxin-related genes 
(stx1A and 1B) [30] were present in both of the strains 
and exhibited 100% sequence conservation. In sum-
mary, the NCCP15736 and NCCP15737 strains showed 
the same virulence factors, although NCCP15736 was 
isolated from a symptomatic carrier and NCCP15737 
was isolated from an asymptomatic carrier. In a previous 
report [12], the expression of type I fimbriae genes was 
found to be significantly repressed, and the repression 
was hypothesized to be the main cause of the asympto-
matic nature of NCCP15737.

Phage‑associated regions
Prophages are mobile genetic elements that can deliver 
antimicrobial-resistance genes [31] or virulence factors 

[32] to bacterial hosts and contribute to the diversity of 
host genomes [33]. We identified ten phage-associated 
regions (S1–S10) in the NCCP15736 genome and nine 
phage-associated regions (A1–A9) in the NCCP15737 
genome using the PHAST algorithm (Additional file 3: 
Table S3). Seven of the ten phages in NCCP1576 were 
intact, and seven of the nine phages in NCCP15737 
were intact. NCCP15736 and NCCP15737 each con-
tain two incomplete prophages. Only one question-
able prophage, in the S6 region (Stx2-converting phage 
1717), was identified in the NCCP15736 genome. Five 
of the identical phage-associated regions, as deter-
mined via a BLAST search, were shared by the two 
strains. The prophage-associated regions S2, S6, S8, S9, 
and S10 were unique to NCCP15736, and the A5, A7, 
A8, and A9 regions were unique to the NCCP15737 
genome.

Fig. 2  Comparative analysis of genomic structure of strains NCCP15736 and NCCP15737 of Escherichia coli. Comparison of genome structure 
between NCCP15736 and NCCP15737 using a progressive alignment implemented in Mauve
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Future directions
The number of outbreaks caused by non-O157 STEC has 
increased recently and is causing growing concern. In this 
study, we performed whole-genome sequencing and com-
parative genomic analysis of two strains, NCCP15736 and 
NCCP15737. Our whole-genome sequencing and bioinfor-
matics analyses revealed that NCCP15736 and NCCP15737 

have the same virulence gene profiles, but NCCP15737 
fimD shows a deletion. Even though our results did not 
reveal the genomic basis of the transcriptional repression of 
type I fimbriae genes in NCCP15737, we provided a struc-
tural basis for the relationship between the deficiency in the 
gene encoding type I fimbriae and the asymptomatic char-
acter of NCCP15737. We suggest that complete genome 
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Fig. 3  Whole-genome based phylogenetic tree of NCCP15736 and NCCP15737 strains of Escherichia coli. Evolutionary time is scaled by 100; lower 
values imply relatively recent branching. The scale indicates the number of substitutions per site. The NCCP15736 (red) and NCCP15737 (blue) 
strains were placed in the same clade. The isolate most closely related to the two strains, based on whole-genome phylogenetic analysis, was E. coli 
O91:NM str. 2009C-3745
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sequencing and integration of other types of omics data 
are required to fully reveal the mechanism underlying the 
asymptomatic character of NCCP15737.

Abbreviations
CDS: coding DNA sequences; EHEC: enterohemorrhagic Escherichia coli; NCCP: 
National Culture Collection for Pathogens; RAST: Rapid Annotation using 
Subsystem Technology; STEC: Shiga toxin-producing Escherichia coli; str.: strain; 
substr: substrain.

Authors’ contributions
SHC and WK planned and directed the project and interpreted the results. 
SHC drafted the manuscript. YSB, YBY, JBK, JTC, CHK and YHJ interpreted the 

Additional files

Additional file 1. Annotated genes of NCCP15736 and NCCP15737 using 
the RAST server.

Additional file 2. Virulence genes of NCCP15736 and NCCP15737.

Additional file 3. Phage-associated regions in NCCP15736 and 
NCCP15737.

results. YHJ performed the MLST database search. YSB characterized the strain 
and prepared the genomic DNA. TK performed the gene annotation and 
comparative genomic analysis and wrote the manuscript. All authors read and 
approved the final manuscript before submission.

Author details
1 Interdisciplinary Program in Bioinformatics, Seoul National University, 
1 Gwanak‑ro, Gwanak‑gu, Seoul 151‑742, Republic of Korea. 2 Depart‑
ment of Emergency Medical Service, Sun Moon University, Asan‑si, 
Chungcheongnam‑do 31460, Republic of Korea. 3 Division of Antimicrobial 
Resistance, Center for Infectious Diseases, Korea National Institute of Health, 
Cheongju 363‑951, Republic of Korea. 4 Department of Biomedical Laboratory 
Science, College of Medical Science, Konyang University, Daejeon 302‑832, 
Republic of Korea. 5 Department of Biomedical Laboratory Science, Kyung‑
dong University, 815 Gyeonhwon‑ro, Munmak‑eup, Wonju‑si, Gangwon‑do 
26495, Republic of Korea. 6 Glycobiology Unit, Department of Biological Sci‑
ence, Sungkyunkwan University and Samsung Advanced Institute for Health 
Sciences and Technology (SAIHST), 2066 Seobu‑ro, Suwon 16419, Republic 
of Korea. 7 Department of Food Science and Technology, Sunchon National 
University, Sunchon, Jeonnam 540‑950, Republic of Korea. 8 Division of Enteric 
Diseases, Center for Infectious Diseases, Korea National Institute of Health, 
Cheongju 363‑951, Republic of Korea. 

Acknowledgements
Not applicable.

Fig. 4  Comparative map of type I fimbriae in the NCCP15736 genome and other closely related species. Nine genes were highly conserved in the 
eleven strains, and only fimD (4) was truncated in NCCP15736. Numbers indicate genes encoding the following proteins: chaperone FimC (1); type I 
fimbriae regulatory proteins FimB and FimE, from left to right (2); type I fimbriae major subunit FimA (3); type I fimbriae anchoring protein FimD (4); 
type I fimbriae adaptor subunit FimF (5); type I fimbriae adaptor subunit FimG (6); mannose-specific adhesion FimH (7); N-acetylneuraminic acid 
outer membrane channel protein NanC (8); fructuronate transporter GntP (9). Gray background boxes indicate that the genes in the relative positions 
are conserved in at least four species. The comparative map was created with the genome browser of the SEED viewer (version 2.0)

http://dx.doi.org/10.1186/s13099-016-0138-9
http://dx.doi.org/10.1186/s13099-016-0138-9
http://dx.doi.org/10.1186/s13099-016-0138-9


Page 8 of 8Kwon et al. Gut Pathog  (2016) 8:57 

Competing interests
The authors declare that they have no competing interests.

Availability of data and material
Nucleotide sequence accession numbers: Whole-genome shotgun sequenc‑
ing data for the NCCP15736 and NCCP15737 strains have been deposited 
in DDBJ/EMBL/GenBank under the accession numbers AOUQ00000000 and 
AOUP00000000, respectively.

Ethics approval and consent to participate
This research has been reviewed and approved by the Institutional Review 
Board of the Korea Centers for Disease Control and Prevention (Reference No.: 
2013-12-04-P).

Funding
This work was supported by a grant from the Marine Biotechnology Program 
(Genome Analysis of Marine Organisms and Development of Functional Appli‑
cations) funded by the Ministry of Oceans and Fisheries).

Received: 26 May 2016   Accepted: 1 November 2016

References
	1.	 Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon 

JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the 
human distal gut microbiome. Science. 2006;312(5778):1355–9.

	2.	 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev 
Microbiol. 2004;2(2):123–40.

	3.	 Karmali MA, Steele BT, Petric M, Lim C. Sporadic cases of haemolytic-urae‑
mic syndrome associated with faecal cytotoxin and cytotoxin-producing 
Escherichia coli in stools. Lancet. 1983;1(8325):619–20.

	4.	 Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, 
Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, et al. Hemorrhagic 
colitis associated with a rare Escherichia coli serotype. N Engl J Med. 
1983;308(12):681–5.

	5.	 Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris 
GK. Laboratory investigation of hemorrhagic colitis outbreaks associated 
with a rare Escherichia coli serotype. J Clin Microbiol. 1983;18(3):512–20.

	6.	 Corrigan JJ Jr, Boineau FG. Hemolytic-uremic syndrome. Pediatr Rev. 
2001;22(11):365–9.

	7.	 Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 
1998;11(1):142–201.

	8.	 Caprioli A, Morabito S, Brugere H, Oswald E. Enterohaemorrhagic Escheri‑
chia coli: emerging issues on virulence and modes of transmission. Vet 
Res. 2005;36(3):289–311.

	9.	 Sandvig K, Bergan J, Dyve AB, Skotland T, Torgersen ML. Endocytosis and 
retrograde transport of Shiga toxin. Toxicon. 2010;56(7):1181–5.

	10.	 Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann 
A, Caprioli A, Tozzoli R, Morabito S, et al. Multicenter evaluation of a 
sequence-based protocol for subtyping Shiga toxins and standardizing 
Stx nomenclature. J Clin Microbiol. 2012;50(9):2951–63.

	11.	 Luna-Gierke RE, Griffin PM, Gould LH, Herman K, Bopp CA, Strockbine N, 
Mody RK. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli 
infection: USA. Epidemiol Infect. 2014;142(11):2270–80.

	12.	 Kim JB, Oh KH, Park MS, Cho SH. Repression of type-1 fimbriae in Shiga 
toxin-producing Escherichia coli O91:H21 isolated from asymptomatic 
human carriers in Korea. J Microbiol Biotechnol. 2013;23(5):731–7.

	13.	 Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, 
et al. De novo assembly of human genomes with massively parallel short 
read sequencing. Genome Res. 2010;20(2):265–72.

	14.	 Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved 
ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.

	15.	 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, 
Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations 
using subsystems technology. BMC Genom. 2008;9:75.

	16.	 Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database 
for bacterial virulence factors. Nucleic Acids Res. 2005;33(1):325–8.

	17.	 Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage 
search tool. Nucleic Acids Res. 2011;39:347–52.

	18.	 Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related 
whole genomes. Bioinformatics. 2011;27(3):334–42.

	19.	 Tavaré S. Some probabilistic and statistical problems in the analysis 
of DNA sequences. Lectures on Mathematics in the Life Sciences. 
1986;17:57–86.

	20.	 Stamatakis A. Phylogenetic models of rate heterogeneity: a high per‑
formance computing perspective. Parallel and distributed processing 
symposium 2006. 20th International 2006 IPDPS.

	21.	 Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum 
evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 
2009;26(7):1641–50.

	22.	 Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment 
of conserved genomic sequence with rearrangements. Genome Res. 
2004;14(7):1394–403.

	23.	 Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, 
Gerdes S, Parrello B, Shukla M. The SEED and the rapid annotation of 
microbial genomes using subsystems technology (RAST). Nucleic Acids 
Res. 2014;42:206–14.

	24.	 Nishiyama M, Horst R, Eidam O, Herrmann T, Ignatov O, Vetsch M, Bet‑
tendorff P, Jelesarov I, Grutter MG, Wuthrich K, et al. Structural basis of 
chaperone-subunit complex recognition by the type 1 pilus assembly 
platform FimD. EMBO J. 2005;24(12):2075–86.

	25.	 Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. Type 1 
fimbrial expression enhances Escherichia coli virulence for the urinary 
tract. Proc Natl Acad Sci USA. 1996;93(18):9827–32.

	26.	 Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, 
Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. The genome 
sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares 
strong similarities with human extraintestinal pathogenic E. coli genomes. 
J Bacteriol. 2007;189(8):3228–36.

	27.	 Pallen MJ, Beatson SA, Bailey CM. Bioinformatics analysis of the locus for 
enterocyte effacement provides novel insights into type-III secretion. 
BMC Microbiol. 2005;5:9.

	28.	 Burgos Y, Beutin L. Common origin of plasmid encoded alpha-hemolysin 
genes in Escherichia coli. BMC Microbiol. 2010;10:193.

	29.	 Lim JY, Yoon J, Hovde CJ. A brief overview of Escherichia coli O157:H7 and 
its plasmid O157. J Microbiol Biotechnol. 2010;20(1):5–14.

	30.	 Lee JE, Reed J, Shields MS, Spiegel KM, Farrell LD, Sheridan PP. Phyloge‑
netic analysis of Shiga toxin 1 and Shiga toxin 2 genes associated with 
disease outbreaks. BMC Microbiol. 2007;7:109.

	31.	 Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M. Bacteriophages 
carrying antibiotic resistance genes in fecal waste from cattle, pigs, and 
poultry. Antimicrob Agents Chemother. 2011;55(10):4908–11.

	32.	 O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, For‑
mal SB. Shiga-like toxin-converting phages from Escherichia coli 
strains that cause hemorrhagic colitis or infantile diarrhea. Science. 
1984;226(4675):694–6.

	33.	 Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath 
S, Claesson MJ, Li Y, Leahy S, Walker CD, et al. Comparative genomics 
and transcriptional analysis of prophages identified in the genomes of 
Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Appl 
Environ Microbiol. 2006;72(5):3130–46.


	Whole-genome sequencing and comparative genomic analysis of Escherichia coli O91 strains isolated from symptomatic and asymptomatic human carriers
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Strain, isolation, and serotyping
	Library preparation and whole-genome sequencing
	Genome assembly and annotation
	Phylogenetic analysis and genomic structure comparison
	Quality assurance

	Results and discussion
	General features
	Comparison of genome structure
	Phylogenetic analysis
	Type I fimbriae operon
	Virulence factors
	Phage-associated regions

	Future directions
	Authors’ contributions
	References




