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ABSTRACT Here, we report the draft genome sequences of seven strains of poten-
tially probiotic Limosilactobacillus fermentum isolated from the traditional fermented
milk product dahi. The estimated average genome size was 1,955,815 bp, with a median
GC content of 52%. Genome annotation predicted an average of 1,871 protein-coding
genes and 47 RNAs.

Lactic acid bacteria (LAB) are known for their ability to impart a multitude of health
benefits. Recently, Lactobacillus fermentum, a member of LAB, was reclassified as

Limosilactobacillus fermentum for its metabolic and ecological properties (1). L. fermen-
tum is a Gram-positive, non-spore-forming, nonmotile, rod-shaped bacterium that can
grow singly, in pairs, or in short chains (1). L. fermentum is usually found in habitats
that are nutrient rich and are associated with humans, plants, animals, and food (2).
L. fermentum is considered a promising potential probiotic candidate due to its lack of
antibiotic resistance genes, along with its antioxidative, antimicrobial, and cholesterol
reduction properties (3–5). The genome of L. fermentum possesses specific genes that
help it to tolerate the immune system of the host, interact with the other microbes of
the gut, and colonize the host epithelium (6–8).

We report the genome sequences of seven strains of L. fermentum (QAULFN56,
QAULFN64, QAULFN21, QAULFN53, QAULFN54, QAULFN55, and QAULFN62) that were
isolated from the traditional fermented milk product dahi. Samples were collected from
dairy corner shops of Rawalpindi, Islamabad, Pakistan. For isolation, 100 ml of dahi sam-
ple was plated on de Man Rogosa Sharpe (MRS) agar (pH 6.86 2) and incubated at 37°C
for 24 h in a GasPak anaerobic system (Sigma-Aldrich). Single colonies from MRS plates
were subcultured, and purified cultures were obtained. The cultures were identified as
strains of L. fermentum with a microbial identification system explained previously (9),
followed by analysis using the ON-rep-seq gene sequencing tool (10).

The pure colonies from agar plates were grown overnight in MRS broth followed by
DNA extraction using InstaGene matrix (Bio-Rad Laboratories, California, USA). A Qubit
2.0 fluorometer (Invitrogen, Carlsbad, CA, USA) was used to quantify the DNA. DNA
libraries for high-throughput sequencing were obtained with the commercially avail-
able Vazyme TruePrep DNA library prep kit V2 (Vazyme Biotech, Nanjing, China).
Sequencing of these libraries was performed on an Illumina HiSeq-2000 sequencing
platform (BGI-Shenzhen, Shenzhen, China) with an average read length of 101 bp.
FASTQ files were generated, and average total raw reads were 10,294,243. Default pa-
rameters were used for all software unless otherwise specified. The quality trimming of
the sequencing reads was performed using Trimmomatic version 0.38 (11). The num-
ber of filtered average reads was 9,340,781, and these were aligned with the reference
genome of L. fermentum IFO 3956 (NCBI RefSeq accession number NC_010610). The as-
sembly of the high-quality reads was performed using the Velvet (v1.2.10) assembler (12).
The de novo assembly results were evaluated using Quast software (13). The assembled
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genomes were annotated through PGAP (14). The subsystem identification in the
genomes was determined through RAST (15), while evaluation of orthologous genes was
performed via clusters of orthologous genes (COGs) analysis (16) and eggNOG (17). The
results are presented in Table 1. The genomes were mined for the presence of bacteriocin,
antibiotic resistance, and CRISPR/CRISPR-Cas genes through the online tools BAGEL4,
CARD, and CRISPR Finder, respectively (18–22). Except for strains QAULFN54 and
QAULFN21, the rest of the five strains had bacteriocin genes. CRISPR sequences were iden-
tified in all the strains except QAULFN54. The presence of CRISPRs suggested immunity to
foreign attacking agents, like phages, jumping genes, or transfer elements (23).

Data availability. The genomic data reported here have been deposited in GenBank
under the accession numbers given in Table 1. The SRA accession numbers are also pro-
vided in Table 1. The BioProject number is PRJNA744373, and the relevant BioSample num-
bers are SAMN20114169 to SAMN20114175.
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