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Abstract: Functionalized graphene was efficiently prepared through ball-milling of graphite in
the presence of dry ice. In this way, oxygen functional groups were introduced into material.
The material was further chemically functionalized to produce graphene derivative with phosphonic
groups. The obtained materials were characterized by spectroscopic and microscopic methods,
along with thermogravimetric analysis. The newly developed material was used as an efficient
mercury adsorbent, showing high adsorption efficiency. The adsorption isotherms were fitted using
Freundlich and Langmuir models. The adsorption kinetics were fitted with pseudo-first order and
pseudo-second order models. Adsorption selectivity was determined in the presence of cadmium
ions and nickel ions. The presence of mentioned bivalent ions in the solution did not affect mercury
adsorption efficiency.

Keywords: graphene derivatives; mechanochemical synthesis; ball mill synthesis; mercury
adsorption

1. Introduction

Graphene with its multifunctionality attracts interest in many fields of science [1]. It is characterized
by unique chemical and physical properties such as high mechanical strength, elasticity, high thermal
conductivity, and high electron mobility [2–4]. Not only are basic studies devoted to graphene carried
out, but it has also become the main subject of research in many fields of engineering. The number of
potential applications of graphene is remarkable. Graphene and its derivatives are considered to be
useful in polymer fuel cells [5], solar cells [6], field effect transistors [7], sensors [8], optoelectronics [9],
composites and many others [10]. Moreover, functionalization of graphene is an effective way to alter its
physico-chemical properties, widening its applications spectrum [11,12]. With the rapid development
of science and industry, the demand for functionalized graphene is growing and it is necessary to
develop an effective and convenient scalable method to prepare high quality graphene derivatives.

The aim of this study is to develop low-cost and effective method of phosphonic graphene
derivatives’ production with tailored properties. Incorporation of phosphonic functional groups is
a commonly used approach in surface modification [13] and is often applied to enhance materials
chemical [14] and flame [15,16] resistance or biocompatibility [17,18]. In addition, phosphonic -based
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materials show excellent complexing properties and can interact with a wide range of metal ions [19,20].
However, in the literature, phoshponic graphene derivatives have rarely been reported and only a few
works in this subject can be found [21–25]. Ball-milling is a simple and effective, low-cost method for
production of carbon nanoplatelets and allows for producing graphene-derivatives on a large scale.
However, only a few research works have been conducted in this area [26–31]. Synthesis of graphene
and its derivatives in gaseous phase, as a widely used chemical vapour deposition method, suffers
from costly reagents and usage of specialized equipment. Beneficially, the graphene produced, is of
high quality, which is appropriate for applications in electronics. However, for some applications, the
obtained material does not have to possess an ideal structure. Moreover, chemical functionalization,
which purposely distracts the hexagonal lattice of graphene is frequently implemented in order to
tailor physicochemical properties of this nanostructure. It is especially well visible in applications
connected with interfacial interactions, as, for example, sorption studies. Graphene oxide (GO) which
may be concerned as an oxidized form of graphene is successfully used as an adsorbent for different
pollutants, including dyes or metal ions [32,33]. However, the synthesis of GO is performed under
harsh conditions, with the usage of strong acids and highly toxic manganese compounds. After
synthesis, the copious amount of water is used in order to purify the obtained material [34–37]. Taking
it into account, the proposed protocol for GO synthesis is far from the “green” approach. Overall,
the benefits from GO usage are hindered by its burden to the environment synthesis.

Here, we propose an efficient and low emission method for functionalized graphene derivative
manufacturing. Graphite was ball-milled under solvent free conditions in the presence of solid CO2.
The obtained graphene derivate with introduced oxygen groups (mainly carboxylic groups) was
further reacted with PCl3/H2O mixture in order to convert -COOH groups to bisphosphonic groups.
It is an industrially known reaction, used in the synthesis of pharmaceuticals [38–42]. However, in our
approach, we eliminated the usage of solvents and the reagents served as the reaction medium. It is
also worth noting that the unreacted PCl3 can be distilled off after synthesis and redirected into the
next reaction. Such approach ensures the maximal usage of the reagents, making the whole procedure
more sustainable.

The obtained graphene derivative with phosphorus bearing groups was proposed as an efficient
adsorbent for mercury ion removal from water. The phosphonic and bisphosphonic groups show high
affinity to mercury ions, thus the adsorption capacity and selectivity were expected to be substantially
improved after introduction of such groups into the graphene derivative. Moreover, next to the
functional groups, the defects created during ball-milling can play a crucial role in the adsorption
process. It is well known that defects in the adsorbent can act as active sites for adsorbate anchoring.
Therefore, the obtained material possesses a promising structure for proposed application.

2. Materials and Methods

2.1. Materials

Phosphorus trichloride (PCl3, Merck, Darmstadt, Gemrany, Purity >99%) was used without any
further purification. Carbon dioxide, graphite flakes (+100 mesh, >75%, product number 332461) and
HgCl2 were purchased in Sigma-Aldrich (Poznan, Poland). Filter paper no. 06-0014 was purchased in
Chemland (Stargard Szczecinski, Poland).

2.2. Material Preparation

A typical experiment was carried out in a planetary ball-mill (Pulverisette 6, Fritch, Idar-Oberstein,
Germany), using zirconium oxide containers and balls. The synthesis was conducted in the presence
of dry ice (40 g) and 2 g of pristine graphite (the mass ratio 20:1) and 40 zirconium oxide balls.
The rotational speed of the mill was 350 RPM, and the milling time was 48 h with 10 min pauses on
each 50 min of milling. The obtained graphene derivative with oxygen groups was denoted as GCO2.
In the next step of the experiment, GCO2 sample was reacted with phosphorus trichloride in water in
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order to introduce bis-phosphonic groups into the carbonaceous structure. After 5 h of stirring at 50 ◦C,
the residual liquids were decanted and the solids were suspended in 20 mL of water. The mixture
was heated under reflux for 1 h; then, the sample was separated by centrifugation and the solids were
washed with water until pH reached a value of 7.0 ± 0.2. The obtained product, denoted as GPhos,
was dried at 40 ◦C under reduced pressure (0.1 bar).

Another material—milled graphite (GM)—was also obtained by a ball-milling method.
The milling process was carried in a planetary ball-mill and it was conducted under the same conditions
with the exception that 2 g of pristine graphite was milled, with no other reagents. Milling of pure
graphite was performed to investigate the difference in the material structure between milled graphite
(GM) and graphite after ball-milling with dry ice (GCO2). Therefore, the GM sample served as a
reference for all studies.

2.3. Research Methodology

The Fourier Transformed Infrared (FTIR) spectra were recorded using a KBr pellet method on
a PerkinElmer Frontier spectrophotometer (Waltham, MA, USA) with a resolution of 2 cm−1 in the
range of 4000 cm−1–500 cm−1—number of accumulations: 10 times each. KBr was mixed with tested
powder in such quantities to get a transmission in the range of 20% to 70%.

Raman spectra were recorded using a Renishaw InVia spectroscope (Renishaw, New Mills, UK)
with argon ion laser operating at 514.5 nm focused through a 50× objective. The laser power was
reduced to 5% of maximum power at 514 nm to avoid sample damage. The spectra were collected in
the dark, with resolution of 2 cm−1 in the range of 100–3200 cm−1 and 3 accumulations. For analysis,
each peak was fitted using Origin Pro 9.1 (OriginLab Corporation, Northampton, MA, USA) with user
defined initialization parameters. Lorentzian fits were characterized by much better R2 parameter than
Gaussian fits. All fits achieved R2 greater than 0.98.

X-ray Photoelectron Spectroscopy (XPS) analyses was carried out with an Omicron NanoTechnology
X-ray photoelectron spectrometer (Scienta Omicron GmbH, Taunusstein, Germany) with a 128-channel
collector. The measurements was performed at room temperature in ultra-high vacuum conditions.
The photoelectrons was excited by an Mg-K X-Ray source. An Omicron Argus hemispherical electron
analyser with round aperture of 4 mm is used for analysing of emitted photoelectrons. The binding
energies are calibrated to obtain C=C peak at 284.5 eV and C-C at 285.2 eV. XPS spectra were analysed
with Casa-XPS software (Casa Software Ltd, Teignmouth, UK) using a Shirley background subtraction
and Gaussian–Lorentzian curve as a fitting algorithm.

Thermogravimetric analysis (TGA) was performed under argon atmosphere from 40 ◦C to 900 ◦C
at a linear heating rate 10 ◦C/min using Netzsch STA 449 F1 (Netzsch, Selb, Germany). To avoid heat
and mass transfer limitations, approximately 10 mg of the sample was used, and Al2O3 crucibles with
lids were employed.

The morphology of nanomaterials was studied using scanning electron microscopy (ESEM Quanta
Feg 250, FEI, Thermo Fisher Scientific, Waltham, MA, USA). The elemental analysis was performed by
energy-dispersive X-ray spectroscopy (EDX) using the EDAX Genesis APEX 2i with Apollo X SDD
spectrometer (EDAX Inc., Mahwah, NJ, USA) at 10 kV.

Specific surface area (SSA) was determined by a Brunauer–Emmett–Teller (BET) method from
nitrogen adsorption–desorption isotherms (77 K, surface area analyser NOVAtouch™ 2, Quantachrome
Instruments, Boynton Beach, FL, USA). In all calculations, the correlation coefficient for the linear BET
plot was at least 0.9998. Before the measurements, samples were degassed under vacuum at 40 ◦C for
12 h.

Adsorption studies of Hg2+ ions were carried out in the batch mode at room temperature and
pH 7, without stirring or shaking. In order to study adsorption kinetics and isotherms, measurements
were performed using different contact time, Hg2+ ion concentration and amount of adsorbent.
Solutions with desired Hg2+ ion concentration were obtained from the dilution of the stock solution
which was prepared by dissolving HgCl2 in Milli-Q deionized water. After appropriate contact
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time, adsorbents were separated from the metal ion solutions through a filter paper (Chemland,
no. 06-0014). Concentration of Hg2+ in the solutions before and after adsorption were determined
by atomic absorption spectrometry (AAS, GBC SCIENTIFIC EQUIPMENT, Hampshire, IL, USA).
Adsorption efficiency was then calculated according to the typical equation (Equation (1)):

Adsorption e f f icency(%) =
C0 − Ct

C0
× 100%, (1)

where C0 (mg/L) is the initial Hg2+ ion concentration and Ct (mg−1) is the concentration of Hg2+ ion
after appropriate contact time.

Two kinetic models: pseudo-first order (Equation (2)), pseudo-second order (Equation (3)) were
applied to understand the adsorption dynamics of Hg2+ on GPhos. The kinetic studies were carried
out using 1 mg of GPhos, 20 mL of Hg2+ solutions (1 mg/L) and contact time varying from 0.5–21 h.

Pseudo first-order equation:
ln(qe − qt) = lnqe − k1t, (2)

Pseudo second-order equation:

t
qt

=
1

k2q2
e
+

(
1
qe

)
× t, (3)

where, qe and qt (mg/g) represent the amount of metal ions adsorbed at equilibrium and time t.
k1 (min−1) and k2 (min·g/mg) are the pseudo-first-order and pseudo second order rate constants,
respectively [43].

To determine the type of adsorption and the capacity of the GPhos, Langmuir and Freundlich
models were applied. In these studies, 1 mg of GPhos was added into 20 mL solutions. The contact
time was set for 21 h and the Hg2+ concentration was: 0.5, 1.0, 1.5, 3.0, 5.0, 8.0, 10.0 and 16.0 mg/L.
The Langmuir isotherm model is based on a monolayer adsorption of metal ions onto a homogenous
surface. It assumes equivalent sorption energies and no interaction between adsorbed species. The
linear form of this isotherm is represented by the expression:

Ce

qe
=

Ce

qm
+

1
bqm

, (4)

where Ce (mg/L) is the equilibrium concentration of metal ions, qe (mg/g) signify the concentration
of metal ions adsorbed per unit mass of the adsorbent and qm (mg/g) and b (L/mg) are Langmuir
constants that indicate the maximum monolayer adsorption capacity and energy constant related to the
affinity of the binding sites, respectively. In comparison, the Freundlich isotherm model explains the
interaction between adsorbate molecules and adsorbents with multilayer adsorption on heterogeneous
surfaces. The linear form of Freundlich isotherm is given by Equation (5):

lnqe = ln K +
1
n
× ln(Ce), (5)

where K (L/g) and n (g/L) are Freundlich constants corresponding to adsorption capacity and
adsorption intensity, respectively [44].

3. Results

3.1. Synthesis

Milling of graphite with solid CO2 in a ball-mill was expected to introduce the oxygen
functionalities and delaminate functionalized graphite platelets. Then, the functionalized product
was subjected to the reaction with phosphorus trichloride in water environment. The reaction is a
conversion of carboxylic groups (-COOH) into respective bis-phosphonic groups. The mechanism of
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the reaction was described elsewhere, and we successfully used this approach in carbon nanotubes and
graphene oxide functionalization [21,45]. Schematic representation of the mechanochemical synthesis
is shown in Figure 1.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 16 
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Figure 1. Schematic representation of the mechanochemical synthesis.

The proposed approach benefits from the elimination of solvent in the first step of the reaction.
Moreover, no by-products are formed and there is no need to purify the obtained material; thus, it can
be directly used in the next step of the reaction. The chemical conversion of GCO2 into GPhos is a
one-pot synthesis, with usage of cheap and available reactants. The unreacted PCl3 can be redirected
into the next reaction, making the whole procedure more efficient. Therefore, it can be easily scaled-up
and used for mass production of graphene derivatives. In order to confirm the successful chemical
functionalization spectroscopic, microscopic and thermal analyses were performed.

3.2. Raman Spectroscopy

Raman spectroscopy was used to characterize the obtained materials. The results are presented
in Figure 2 and in Table 1. The ball-milling of graphite with CO2 was expected to introduce oxygen
groups into edges of graphene planes, making the structure similar to reduced graphene oxide (rGO).
For comparison, the Raman spectra of GM were also recorded. It was carried out in order to verify if
the structural changes are only due to mechanical cracking of the material or due to the functional
groups’ introduction. The analysis of Raman spectra was carried out in accordance with the latest
theory proposed by King et al. [46]. It assumes that the classic analysis of Raman spectra by isolating
D, G and 2D bands is insufficient for carbon nanostructures. According to this theory, it is possible to
extract the G and D’ mode from the Gapp band and 2D’ mode. As can be seen in Figure 2 bands G and
2D have been subjected to deconvolution that resulted in bands G and D’ and 2D and 2D’, respectively.
The positions of D and G bands for analyzed samples are compared in Table 1.

In the case of material with introduced oxygen groups (GCO2), the G mode is shifted 10 cm−1 to
higher wavenumbers in a relation to G mode for GM. It may indicate that the number of defects is
lower for GCO2 sample. Moreover, the D’ band is present in all defective graphenes and it is great as a
measure of amount of defects. In the case of the GM sample, the D’ peak is higher than for GCO2 and
GPhos samples. This may indicate a more degraded structure. During the ball-milling of graphite in
the presence of air, the sample is partially destroyed due to the high temperature occurring locally
and possibility of the combustion. It can be seen by the naked eye that the GM sample is rather in
a powder form, with possibly a high degree of amorphous carbon. Such assumption was further
made evident by a microscope in a thermogravimetric analysis. Taking into account that CO2 is used
as an extinguishing substance, it acts in the reaction as a combustion suppressant, preventing the
sample from uncontrollable destruction. Thus, in contrast to GM, the GCO2 sample remained its
layered structure with a lower number of defects in the hexagonal plane, which was confirmed by a
microscopy and Raman analysis.
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In all cases, band D is lower than appropriate band G. In addition, the intensity ratio of ID/IG,
the full width at half maximum of D’ and the difference between 2D’ and Gapp were analysed (Table 1).
The analysis confirms the introduction of functional groups into the material, as made evident by
changes in all the listed parameters. As can be seen in Table 1, differences between GCO2 and GPhos
are less distinct, which is reasonable. The reaction with PCl3/H2O does not lead to structural changes of
material, except for replacing the carboxyl groups by bis-phosphonic groups. Therefore, no substantial
differences in Raman spectra of GCO2 and GPhos samples are expected. The presence of phosphonic
groups was made evident by other methods (FTIR, XPS).
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Table 1. Analysis of Raman spectra for GM, GCO2, GPhos.

Sample D’-Gapp (cm−1) D G (cm−1) ID/IG D’ fwhm (cm−1) 2D’-Gapp (cm−1)

GM 40 1343 1571 1.06 31 1354
GCO2 36 1351 1582 1.00 21 1365
GPhos 36 1351 1581 0.91 18 1368

3.3. FTIR Spectroscopy Results

The FTIR spectroscopy was used to determine the functional groups present in the samples.
The spectra recorded for GCO2 and GPhos samples are presented in Figure 3a. Figure 3b shows a
zoomed region of 750–1800 cm−1, with band assignment. Both spectra show bands at c.a. 1576 cm−1,
corresponding to C=C vibrations in graphene planes. The FTIR spectrum of a GCO2 sample
(Figure 3a,b) reveals bands at 3430 cm−1, 1715 cm−1 and 1215 cm−1, which can be ascribed to -OH,
C=O and C-O bonds, confirming the presence of carboxyl groups in the sample. In the spectrum
registered for GPhosthe, a 3430 cm−1 band disappeared; however, new bands can be observed due
to the presence of phosphonic groups. The multiple band in the region 1300–1000 cm−1 confirms the
presence of P=O and P-O bonds in the analyzed structure. A weak band at 1498 cm−1 originating
from C-P stretching can also be observed. The disappearance of bands ascribed to -COOH groups
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is an additional piece of evidence of successful conversion of the carboxylic groups into phosphonic
ones [21,45].Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 16 
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3.4. XPS Spectroscopy Results

To further verify results obtained from FTIR analysis, GCO2 and GPhos were characterized by
XPS. As expected, the wide XPS survey spectrum of GCO2 (SI, Figure S1) revealed that the surface
of this sample consists of only C and O atoms. After reaction with PCl3, in the GPhos spectrum, a
new signal at ca. 134 eV can be observed, which confirmed the presence of P atoms on the sample
surface (SI, Figure S2). Table 2 summarizes the atomic percentage of elements on GCO2 and GPhos.
The analysis showed that the materials consist mainly of carbon. Taking into account the assumed
mechanism of the reaction, it can be concluded that functional groups are mainly located at the edges
of carbon flakes. Therefore, the number of functional groups in relation to carbon atoms building the
graphitic skeleton is comparatively low and, thus, the oxygen and phosphorus contents are also low.

Table 2. Elemental composition of GCO2 and GPhos calculated from X-ray Photoelectron Spectrocopy
survey spectra.

Sample Atomic Content (%)

C O P

GCO2 94.6 5.4 -
GPhos 85.4 14.2 0.4

In order to determine the chemical state of atoms in the analyzed samples, the C 1s and O 1s bands
were deconvoluted (Figure 4). The C 1s spectrum for GCO2 was divided into four components: C=C
(284.5 eV), C-C/C-O (285.2 eV), C=O (286.3 eV) and C(O)OH (290.0 eV) [47,48]. The O 1s band was
divided into two peaks C-O (531.4 eV) and C=O (529.7 eV), proving the presence of oxygen groups in
the GCO2 sample as an effect of reaction with dry ice under ball-milling. The C 1s spectrum for GPhos
was divided into four parts C=C (284.5 eV), C-C/C-O (285.2 eV), C=O/C-P (286.1 eV) and a small peak
at ca. 290.0 eV. The O 1s peak was divided into three parts (533.1, 531.8, 530.1 eV), which represent
chemical bonds (on the order of decreasing binding energy) P-O, C-O/P-O and P=O, respectively
(Figure 4b,d). The presence of C-P and P-O/P=O components in adequate bands confirmed the
expected structure of a GPhos sample. Moreover, the XPS results are consistent with FTIR spectroscopy,
both proving the presence of phosphonic groups.
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3.5. SEM Analysis

An SEM technique was used to demonstrate the mechanochemical cracking of large flakes of
graphite into a small grain size present in the GPhos sample. The pristine graphite flakes were close
to 50 µm in size. After ball-milling for 48 h and chemical reaction, the resultant GPhos shows a
dramatically reduced size of flakes, which were in the range from 100 nm to thousands of nanometers
(Figure 5a,b). Higher magnifications revealed the presence of exfoliated sheets made of a few carbon
layers (Figure 5b). The EDX measurement was carried out for 10 points on the sample surface.
As expected, the results show the presence of constituent elements for sample GPhos. High content of
oxygen (33.2% atomic, 55.3% mass), carbon (66.3% atomic, 39.5% mass) and the presence of phosphorus
(0.5% atomic, 1.12% mass) was observed. The results are in agreement with XPS analysis. However,
in contrast to XPS measurements, the EDX analysis is performed under a low vacuum (10−2 mbar),
which is not sufficient for removal of adsorbed gases from the sample surface. Therefore, higher
oxygen content was determined by EDX.
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3.6. TGA Analysis

Thermal stability of the materials was assessed by thermogravimetric analysis in argon (Figure 6).
For all analysed samples, decomposition was observed—however, to a varying degree. The GCO2
sample lost about 3% and GPhos lost about 5% of initial mass. According to the literature, the mass
loss up to 180 ◦C is due to the desorption of molecules, mainly water from the material surface. For
functionalized carbon materials, further mass loss in a higher temperature range can be ascribed to
functional groups’ degradation [49]. As can be seen in Figure 6, GCO2 and GPhos samples behave
similarly in temperatures up to 180 ◦C, with a more substantial mass loss observed for a GPhos sample
in the higher temperature range. Taking into account the higher molar mass of bis-phosphonic group
(in GPhos sample) as compared to a carboxylic group (in GCO2 sample), the result is completely
reasonable. Moreover, keeping in mind the results obtained by other methods, it can be concluded
that the observed mass loss is as high as expected. The mass content of phosphorus in the material
determined by EDX analysis was equal to about 1.1%. Assuming that the phosphorus is only in
the form of a bis-phosphonic group, and taking into consideration the structure of a bis-phosphonic
group, the weight loss caused by the decomposition of all bis-phosphonic groups in GPhos should be
approximately 3.8% of initial mass. It can be clearly seen in a TG curve for the GPhos sample that the
mass loss in the temperature range 200–600 ◦C is absolutely in agreement with the estimated value.
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In contrast, the TG curve for GM sample is visibly different (SI, Figure S3), with a well-pronounced
step in the 40–200 ◦C range and the highest total mass loss among all analyzed samples. As was
discussed in Section 3.2, the graphite ball-milling in air atmosphere led to partial degradation of the
material, making it less thermally stable.

3.7. BET Analysis

SSA of the GM, GCO2 and GPhos samples were determined from nitrogen adsorption–desorption
isotherms (SI, Figure S4). For ball-milled graphite, the SSA was ca. 4 m2/g. As expected, ball-milling of
graphite in presence of CO2 resulted in higher specific area (28 m2/g), which is mainly associated with
graphite flakes exfoliation. Importantly, after reaction with PCl3, there is no obvious change in SSA.
The slight decrease of surface area to 25 m2/g for GPhos could be connected with the partial removal of
the smallest particles of GPhos during washing after the performed reaction. The smallest and the most
exfoliated graphene platelets show the highest surface area and the highest disspersability. Therefore,
they could be more easily removed from the sample during the washing procedure, decreasing the
mean surface area of the analysed sample. For other samples, which is GM and GCO2, no washing
procedure was necessary.
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3.8. Adsorption Efficiency and Selectivity

In order to investigate the influence of functionalization on adsorption efficiency, adsorption
studies have been performed using GCO2 and GPhos as adsorbents. Studies were carried out at
different concentrations of adsorbate and results are presented with respect to the weight ratio of Hg2+

ions to adsorbent (Figure 7). In all cases, the GPhos showed a much higher adsorption efficiency than
GCO2. Taking into account that SSA of GCO2 and GPhos were almost the same, it can be concluded
that increasing in Hg2+ adsorption efficiency of GPhos is due to the presence of phosphonic groups.
The difference between adsorption efficiency increases with growing mercury to adsorbent ratio and,
for two studied Hg/adsorbent ratios, the removal efficiency exceeded 99% for the GPhos sample.
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Furthermore, adsorption efficiency of Hg2+ ions in the binary system was also investigated.
Measurements were conducted in the presence of additional bivalent metal ions: cadmium and nickel,
whose initial concentrations were set on the same level as the concentration of Hg2+ ions (1 mg/L). It
was found that coexisting Cd2+ and Ni2+ ions have no significant impact on Hg2+ adsorption efficiency.
As presented in Figure 8, the uptake of Hg2+ ions in binary systems was comparable to the uptake
observed for bare mercury ion solution (70 +/− 6% in all three cases).
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From Pearson’s theory, the relative affinities of metals for different ligands follow the general
pattern: hard metals interact more strongly with hard ligands and soft metals with soft ligands.
The phosphonic acid and Hg2+ are soft base and acid, respectively. The Ni2+ and Cd2+ ions are
borderline examples, that is, they are neither soft nor hard acids. It means that the complexation is
more favorable for mercury ions. This could be the reason why the removal of mercury is independent
from the presence of other ions. The second factor that may have an influence on the selectivity is the
reaction kinetics. The adsorption of mercury could be the fastest among analyzed ions; the equilibrium
is reached in the shortest time, leading to more efficient removal of these ions. Similar results for
graphene based adsorbents were obtained by others [50–52].

3.9. Langmuir and Freundlich Isotherm Model

The influence of concentration of mercury ions to adsorption efficiency was investigated.
The experimental data were fitted to the Langmuir and Freundlich adsorption isotherm models
(Figure 9). Obtained results revealed that the Langmuir model provides a better fit than the Freundlich
model (0.99 < R2 < 0.97). This indicates the homogenous distribution of active sites on the GPhos
surface and a monolayer coverage. Langmuir maximum capacity qm and constant b were equal to
82.2 mg/g, and 1.13 L/mg, respectively. Moreover, the RL parameter has also been calculated and its
values were in the range 0–1, confirming that the adsorption process of Hg2+ ions onto GPhos surface
is favorable.
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High surface area and hydrophilic character make the graphene oxide an interesting adsorbent.
Therefore, there is some literature concerning its metal ions’ adsorption abilities, including mercury
cations [50–55]. The summary of reported data is presented in Table S1. However, the synthesis
of GO is carried out under harsh conditions and the purification of GO produces a huge amount
of water contaminated with manganese or chromium compounds, and others, depending on the
applied protocol. Moreover, pristine GO does not show high sorption abilities towards Hg (23 mg/g
according to [53]) and different functionalization approaches are implemented. In the most frequently
performed procedure, ester or amide bonds are created between oxygen groups in GO and attached
moiety, which are unfortunately prone to hydrolysis. Consequently, it is possible that, during sorption
studies, the adsorbent is partially destroyed and may contaminate the purified medium. Taking this
into account, the adsorption properties of our material, which are not the highest among reported
values, are still significant. The material is obtained by a solvent-free, simple and low cost method and
the functionalization with phosphonic groups creates a stable C-P bond, which does not hydrolyze.
Therefore, the adsorbent reported by us is the golden mean between the expected properties and
simplicity and costs of its manufacturing.

3.10. Adsorption Kinetics Studies

An appropriate kinetic model can quantify the changes in analyte adsorption with time, which
is important for commercial usage of adsorbent. Two kinetic models, i.e., the pseudo first-order
and pseudo second-order models were applied to explain Hg2+ion adsorption behavior by a studied
adsorbent. Analyzing the results, it was found out that the pseudo-first model is not sufficiently good
for describing the process. The plot presented in Supplementary (Figure S5), clearly demonstrates
the lack of linearity. As can be seen in Figure 10, a much better fit was obtained for a pseudo-second
order equation and the correlation coefficient is greater than 0.997. The parameters k2 and h for a
pseudo-second order model were equal to 1.98 g/h·mg and 1.65 mg/g·h, respectively. The obtained
results suggest that this sorption system gave the best correlation data for the pseudo-second order
model, based on the assumption that the rate-limiting step may be chemical sorption or chemisorption
involving valence forces through sharing or exchange of electrons between sorbent and sorbate. In
other words, the efficiency of the sorption system stays in correlation with the availability of adsorption
sites on the surface of adsorbent rather than adsorbate concentration in bulk solution. It was also
shown in the literature that adsorption systems based on carbonaceous materials most frequently
follow the pseudo-second order kinetics.
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4. Conclusions

A simple and economically friendly method for graphene derivatives manufacturing was presented.
The ball-milling approach, together with solvent-free chemical transformation, is operationally
convenient and environmentally benign. Contrary to graphene oxide synthesis, in the method
proposed by us, the waste production is negligible. The obtained material was fully characterized
using spectroscopy, electron microscopy and thermal analysis. All results confirmed the expected
structure. The obtained graphene derivative with phosphorus bearing groups was proposed as an
efficient adsorbent for mercury ions removal from water. The removal efficiency exceeded 99% for
the functionalized adsorbent. Experimental data fit well to the Langmuir (R2 = 0.99) isotherm model.
Maximum adsorption capacity qs and energy constant of the adsorption capacity b were calculated and
were equal to 82.2 mg/g and 1.13 L/mg, respectively. The adsorption kinetics studies revealed that the
adsorption kinetics followed the pseudo-second order kinetic model, which is frequently observed for
carbonaceous materials. Moreover, the presence of others’ bivalent ions like cadmium or nickel ions
have no significant impact on adsorption efficiency of mercury ions. The most important advantages
of investigated material are high adsorption efficiency and simple and low-cost production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/4/485/s1,
Figure S1. XPS survey spectrum of GCO2; Figure S2. XPS survey spectrum of GPhos; Figure S3. TG curve for
GM sample (ball-milled graphite); Figure S4. Nitrogen adsorption–desorption isotherms for analyzed samples;
Figure S5. Plotted data revealing, that pseudo-first order model is not suitable in this case. Table S1. Comparison
of Hg(II) adsorption capacity of graphene based adsorbents.
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