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Bradykinin has important physiological actions related to the regulation of blood vessel

tone and renal function, and protection from ischemia reperfusion injury. However,

bradykinin also contributes to pathological states such as angioedema and inflammation.

Bradykinin is metabolized by many different peptidases that play a major role in the

control of bradykinin levels. Peptidase inhibitor therapies such as angiotensin converting

enzyme (ACE) and neprilysin inhibitors increase bradykinin levels, and the challenge for

such therapies is to achieve the beneficial cardiovascular and renal effects without the

adverse consequences such as angioedema that may result from increased bradykinin

levels. Neprilysin also metabolizes natriuretic peptides. However, despite the potential

therapeutic benefit of increased natriuretic peptide and bradykinin levels, neprilysin

inhibitor therapy has only modest efficacy in essential hypertension and heart failure. Initial

attempts to combine neprilysin inhibition with inhibition of the renin angiotensin system

led to the development of omapatrilat, a drug that combines ACE and neprilysin inhibition.

However, omapatrilat produced an unacceptably high incidence of angioedema in

patients with hypertension (2.17%) in comparison with the ACE inhibitor enalapril (0.68%),

although angioedema incidence was less in patients with heart failure with reduced

ejection fraction (HFrEF) treated with omapatrilat (0.8%), and not different from that

for enalapril therapy (0.5%). More recently, LCZ696, a drug that combines angiotensin

receptor blockade and neprilysin inhibition, was approved for the treatment of HFrEF.

The approval of LCZ696 therapy for HFrEF represents the first approval of long-term

neprilysin inhibitor administration. While angioedema incidence was acceptably low in

HFrEF patients receiving LCZ696 therapy (0.45%), it remains to be seen whether LCZ696

therapy for other conditions such as hypertension is also accompanied by an acceptable

incidence of angioedema.
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INTRODUCTION

Despite decreasing incidence, cardiovascular disease remains amajor cause of prematuremorbidity
and mortality (1), and there is a continuing search for new therapies for its prevention and
treatment. LCZ696 (Entresto) is the first of a new drug class referred to as ARNI (dual acting
angiotensin receptor-neprilysin inhibitor) that contains equimolar amounts of valsartan, a type 1
angiotensin II receptor blocker (ARB) and sacubitril, a prodrug that is hydrolyzed to form LBQ657,
a potent inhibitor of neprilysin (Table 1). The approval of LCZ696 as therapy for heart failure with
reduced ejection fraction (HFrEF) represents the first approval of long-term neprilysin inhibitor
therapy. Neprilysin is a key enzyme in the degradation of natriuretic peptides, and the primary
rationale for neprilysin inhibitor therapy in cardiovascular disease was to increase endogenous
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natriuretic peptide levels, and thereby achieve the vasodilatation
and natriuresis these peptides produce. However, neprilysin
degrades many other peptides, including bradykinin (17).
Bradykinin may contribute not only to the benefits of neprilysin
inhibitor therapy but also to the adverse effects of this therapy. Of
particular concern for drugs that inhibit bradykinin degradation
and thereby increase bradykinin levels is the risk of angioedema,
with increased bradykinin levels implicated in both hereditary
and drug-induced forms of angioedema (18–21). This review will
briefly describe neprilysin, the kallikrein kinin system, and the
role of neprilysin in bradykinin metabolism, and then discuss the
potential role of kinins in mediating the therapeutic benefits and
adverse effects of neprilysin inhibitor therapy.

NEPRILYSIN

Neprilysin, also known as neutral endopeptidase 24.11, common
acute lymphoblastic leukemia antigen (CALLA), and cluster
of differentiation cell surface molecule 10 (CD10), is a
member of the neprilysin (M13) family of metallopeptidases.
The neprilysin family also includes the neprilysin homolog
membrane metalloendopeptidase-like 1 (NEP2) (22), endothelin
converting enzymes 1 and 2 (ECE-1 and ECE-2), endothelin
converting enzyme-like 1 (ECEL1), phosphate-regulating neutral
endopeptidase (PHEX), and the KELL blood group glycoprotein
(23, 24). Neprilysin and several other members of the
neprilysin family of metallopeptidases degrade bradykinin
(Table 2, Figure 1). Neprilysin is a predominantly membrane-
bound zinc-dependent metallopeptidase with a broad tissue
distribution, including the central nervous system, kidney, and
vascular endothelium (39). Neprilysin is expressed at a low level
on the membrane of mononuclear cells, and at higher levels by
neutrophils, lymphocytes, and lymphoid progenitors (40, 41). A
soluble form of neprilysin is found in blood plasma, cerebrospinal
fluid, amniotic fluid, and seminal plasma. Neprilysin has a broad
substrate selectivity (17), preferentially cleaving peptides on the
amino side of the hydrophobic residues phenylalanine, leucine,
and methionine (39, 42, 43).

THE KALLIKREIN KININ SYSTEM

The kallikrein kinin system has been reviewed elsewhere (44–46).
In humans, plasma kallikrein forms the nonapeptide bradykinin
from high molecular weight kininogen, whereas tissue kallikrein
forms the decapeptide kallidin (Lys0-bradykinin) from both high
and low molecular weight kininogens (Figure 2). Bradykinin
is also generated by aminopeptidase-mediated cleavage of
kallidin. A proportion of high molecular weight kininogen is
hydroxylated on the third proline of the bradykinin sequence,
leading to the formation of both hydroxylated and non-
hydroxylated bradykinin and kallidin peptides. Hydroxylated
and non-hydroxylated kinin peptides are of similar abundance
(48–50), and hydroxylated kinins have similar biological activity
to non-hydroxylated kinins (46). In the rat, both plasma and
tissue kallikrein produce bradykinin, which is not hydroxylated
(47).

There are two types of kinin receptor, the type 1 (B1)
receptor and the type 2 (B2) receptor. The B2 receptor
normally predominates, whereas B1 receptors are induced by
tissue injury. Bradykinin and kallidin are more potent on
the B2 receptor, whereas the carboxypeptidase N (kininase I)
metabolites bradykinin-(1-8) and Lys0-bradykinin-(1-8) are also
bioactive and more potent on B1 receptors (46). Kinin peptides
have a broad spectrum of activities that include the regulation
of blood vessel tone and renal function, and protection from
ischemia reperfusion injury (45). However, kinins also participate
in inflammation, producing vasodilatation, increased vascular
permeability, neutrophil chemotaxis and pain (45).

Tissue Specific Regulation of Kinin Levels
The kallikrein kinin system is primarily a tissue-based system,
with tissue kinin levels much higher than blood kinin levels
in both humans and in rats (47–49). Evidence for the tissue-
specific regulation of the kallikrein kinin system is the marked
variation in kinin levels between different tissues of the rat (47).
Kinin peptide levels are also higher in atrial tissue than blood of
humans (48, 49). Moreover, bradykinin peptide levels are higher
than kallidin peptide levels in blood and atrial tissue of humans,
whereas kallidin peptide levels are much higher than bradykinin
peptide levels in urine (48, 49). Many different enzymes cleave
bradykinin and may participate in its metabolism (Figure 1),
and peptidase activity plays a major role in the tissue-specific
regulation of bradykinin levels (51).

ROLE OF NEPRILYSIN IN BRADYKININ
METABOLISM

Several different experimental approaches have been used to
study the role of neprilysin in bradykinin metabolism. These
include study of the effects of neprilysin gene (MME) deletion
and mutation, study of the effects of neprilysin inhibitor
administration on physiological bradykinin levels, and study of
the metabolism of exogenous (supra-physiological) bradykinin
levels and the effect of neprilysin and other peptidase inhibitors
on the metabolism of exogenous bradykinin. The effect of
inhibition of an enzyme on bradykinin levels depends not only
on the specific enzyme’s contribution to bradykinin metabolism,
relative to other enzymes, but also the baseline degradation rate
for bradykinin. This is best illustrated by bradykinin metabolism
by the pulmonary circulation, where bradykinin is degraded
with approximately 99% efficiency (51). Thus, 1% inhibition of
pulmonary inactivation will double the amount of bradykinin
surviving pulmonary degradation, and may therefore double the
level of bradykinin in arterial blood (Figure 3).

Neprilysin Gene Knockout in Mice
Neprilysin gene knockout in mice causes increased basal vascular
permeability, hypotension and reduced heart weight/body
weight ratio (52). The reduced heart weight/body weight
ratio was attributed to the lower blood pressure. The
vascular permeability, but not hypotension, was reversed
by administration of recombinant neprilysin, and also
by separate administration of SR140333, a substance P
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TABLE 1 | Specificity of neprilysin inhibitors (Ki or IC50).

Inhibitor (units for Ki or IC50) Neprilysin NEP2 ACE ECE-1 ECE-2 APP References

Thiorphan (nmol/L) 4, 4.7 120, 129, 250 150 No >10 µmol/L# >100 µmol/L (2–6)

Phosphoramidon (nmol/L) 1.5, 2 0.8, 1.0 2 680*, 675* 1.2#, 4# >10 µmol/L (2, 3, 5–9)

Candoxatrilat (nmol/L) 3.2, 9.5 44 >10 µmol/L 6.5† >10 µmol/L (10, 11)

Omapatrilat (nmol/L) 0.45, ∼2, 3, 5–8 8, 17, 25 0.64, 0.98, 5 10 µmol/L† 194, 250, 260 (3, 10–13)

LBQ657 (nmol/L) 2.3, 5 Yes Yes, >10 µmol/L No Yes No (14–16)

Inhibitor concentrations are shown as nmol/L, except where indicated to be µmol/L. *pH: 7.2;
†
pH 6.5; #pH 5.5. ACE, angiotensin converting enzyme; APP, aminopeptidase P; ECE-1,

endothelin converting enzyme 1; ECE-2, endothelin converting enzyme 2; NEP2, neprilysin homolog membrane metalloendopeptidase-like 1.

TABLE 2 | Kinetic parameters of bradykinin hydrolysis by different enzymes.

Enzyme Km (µmol/L) kcat (min−1) kcat/Km (min−1
µmol/L−1) References

ACE (kininase II) 0.18, 1 500, 600 500, 3667 (25, 26)

Neprilysin (neutral endopeptidase 24.11) 34, 92, 120 1500, 4771, 6364 40, 44, 69 (3, 26, 27)

NEP2 2 150 75 (3)

Aminopeptidase P 21, 76, 280 720, 1560, 2280 8, 21, 34, (5, 28, 29)

Carboxypeptidase N (kininase I) 19 58 3 (30)

Carboxypeptidase M 16 147 9.2 (31)

Neutral endopeptidase 24.15 4.9 89 18 (32)

Endothelin converting enzyme-1* 340 1380 4.1 (33)

Endothelin converting enzyme-2† 27.4 348 12.7 (34)

ACE, angiotensin converting enzyme; NEP2, neprilysin homolog membrane metalloendopeptidase-like 1. *pH 6.5;
†
pH 5.5.

FIGURE 1 | Sites of cleavage of bradykinin by different enzymes. ACE,

angiotensin converting enzyme; ECE-1, endothelin converting enzyme-1;

ECE-2, endothelin converting enzyme-2; NEP2, neprilysin homolog membrane

metalloendopeptidase-like 1. (2–5, 7, 25–28, 30, 32–38).

(NK1) receptor antagonist, and the bradykinin B2 receptor
antagonist icatibant. The increased basal vascular permeability
of neprilysin gene knock out was reproduced by administration
of the neprilysin inhibitors thiorphan and phosphoramidon
(Table 1) to wild-type C57BL/6 mice. These observations
indicate an important role for neprilysin in the control of
bradykinin- and substance P-mediated regulation of vascular
permeability and blood pressure in the mouse. Bradykinin
stimulates substance P release from sensory neurons (53),
and neprilysin degrades both peptides (54), thereby providing
an explanation why neprilysin gene knockout or neprilysin
inhibition could increase both bradykinin and substance P

levels, and why either a substance P receptor or bradykinin B2
receptor antagonist was able to prevent the increased vascular
permeability.

Other consequences of neprilysin gene knockout in the
mouse include hyperalgesia and increased susceptibility to
inflammation (55, 56), enhanced lethality in response to
endotoxin-induced shock (57), shortened ventilatory expiratory
time in response to a hypoxic stimulus (58), and improved
learning and memory (59). However, apart from hyperalgesia,
which was reduced by icatibant (55), the relevance of these
consequences of neprilysin gene knockout to bradykinin is
unknown.

Neprilysin Gene Deletion and Neprilysin
Gene Mutation in Humans
In contrast to the effects of neprilysin gene knockout in the
mouse, five women with total neprilysin deficiency due to
homozygous truncating mutations of the neprilysin gene had no
reported phenotype, although the absence of neprilysin induced
an alloimmunization process against neprilysin present in fetal
cells, leading to membranous glomerulopathy in their infants
(60).

Loss–of-function and missense mutations in the neprilysin
gene are associated with polyneuropathy, and also with decreased
tissue availability of neprilysin and reduced neprilysin enzymatic
activity (61–63), although the relevance of the polyneuropathy to
bradykinin is unknown. However, the association of the rs989692
variant of the neprilysin gene with ACE inhibitor-associated
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FIGURE 2 | Formation of bradykinin and kallidin peptides. In humans, plasma kallikrein cleaves high molecular weight kininogen to produce bradykinin, whereas

tissue kallikrein cleaves both high and low molecular weight kininogens to produce kallidin (Lys0-bradykinin). Bradykinin can also be generated by

aminopeptidase-mediated cleavage of kallidin. A proportion of high molecular weight kininogen is hydroxylated on the third proline (Hyp3) of the bradykinin sequence,

leading to the formation of both hydroxylated and non-hydroxylated bradykinin and kallidin peptides. In the rat, both plasma and tissue kallikrein produce bradykinin,

which is not hydroxylated (44–47).

FIGURE 3 | Illustration of how the effect of inhibition of an enzyme on bradykinin levels depends not only on the specific enzyme’s contribution to bradykinin

metabolism, relative to other enzymes, but also the baseline degradation rate for bradykinin. Pulmonary inactivation of bradykinin is approximately 99% (51). Thus, 1%

inhibition of pulmonary inactivation will double the amount of bradykinin surviving pulmonary degradation, and may therefore double the level of bradykinin in arterial

blood.

angioedema (64) is evidence for a role for neprilysin in the
regulation of bradykinin levels in humans.

Effect of Neprilysin Inhibition on
Physiological Bradykinin Levels
We examined the effect of the neprilysin inhibitor ecadotril
(acetorphan, an orally active prodrug of (S)-thiorphan) on
bradykinin levels in Sprague Dawley rats (65). Ecadotril
administration produced dose-related occupancy of renal

neprilysin, as determined by binding of the neprilysin radioligand
125I-RB104 to kidney sections, and increased total neprilysin
levels in plasma, similar to the induction of plasma ACE levels
by ACE inhibitor therapy (66, 67). Ecadotril administration
produced diuresis, natriuresis and increased urinary excretion
of cyclic GMP and bradykinin, indicating a role for neprilysin
in bradykinin degradation in renal tubules and/or in urine.
However, ecadotril administration did not increase bradykinin
levels in blood or renal tissue, although the ACE inhibitor
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perindopril increased bradykinin levels in both blood and
kidney. Ecadotril did, however, increase cardiac bradykinin
levels by approximately 2-fold; although the increase in cardiac
bradykinin levels did not achieve statistical significance, ecadotril
produced a statistically significant reduction in the bradykinin-
(1-7)/bradykinin-(1-9) ratio in the heart, consistent with reduced
formation of bradykinin-(1-7) by neprilysin-mediated cleavage
of bradykinin (Figure 1), and indicating a role for neprilysin in
bradykinin metabolism in the heart.

Neprilysin inhibition also increased urinary bradykinin
excretion in deoxycorticosterone acetate (DOCA)-salt
hypertensive rats, spontaneously hypertensive rats and
renovascular hypertensive rats (68). Together, these studies
indicate a role for neprilysin in bradykinin metabolism in renal
tubules and/or urine, and also in the heart.

Role of Neprilysin in the Metabolism of
Supra-Physiological Bradykinin Levels
There is need for caution in the interpretation of studies of
the degradation of exogenously administered bradykinin where
bradykinin levels may be considerably higher than physiological
levels. An enzyme’s contribution to bradykinin degradation, and
the effect of inhibition of that enzyme on bradykinin degradation,
depends not only on the concentration of the enzyme but
also on the bradykinin concentration and the Km (Michaelis
constant) of the enzyme for bradykinin degradation (Figure 4).
Thus, depending on an enzyme’s abundance and kcat (turnover
number), an enzyme with a low Km, such as angiotensin
converting enzyme (ACE) (Table 2), may have a predominant
role in bradykinin metabolism when bradykinin levels are low,
whereas an enzyme with a higher Km, such as carboxypeptidase
M or N, may play a more dominant role when bradykinin levels
are high (35).

Two approaches have been used to investigate the metabolism
of exogenously administered bradykinin, either examination of
the metabolites of bradykinin, or comparison of the effects
of different peptidase inhibitors on bradykinin metabolism.
Bradykinin-(1-5) was the predominant bradykinin metabolite
when bradykinin was infused into human subjects (69),
indicative of cleavage by ACE. Moreover, ACE played a
predominant role in bradykinin metabolism by human and
rat plasma and serum (35, 70–75), with a lesser contribution
by carboxypeptidase (kininase I) and aminopeptidase activities.
However, carboxypeptidase, a peptidase with higher Km than
ACE (Table 2) played a greater role than ACE in bradykinin
metabolism when human or rat serum was incubated with
≥µmol/L bradykinin concentrations (76, 77), thereby illustrating
how higher bradykinin concentrations can lead to a greater
contribution by an enzyme with higher Km to bradykinin
metabolism (35).

Another example where a higher concentration of bradykinin
led to a greater contribution to bradykinin metabolism by
a peptidase with higher Km is the study of bradykinin
metabolism by the isolated perfused rat mesenteric arterial
bed (78). When bradykinin metabolism was assessed by
recovery of bradykinin in the perfusate after injection of ∼100

FIGURE 4 | Relative contributions of low Km (Michaelis constant) enzyme and

high Km enzyme to bradykinin degradation by a mixture of low and high Km

enzymes. An enzyme’s contribution to bradykinin degradation, and the effect

of inhibition of that enzyme on bradykinin degradation, depends not only on

the concentration of the enzyme but also on the bradykinin concentration and

the Km of the enzyme for bradykinin degradation. Thus, depending on an

enzyme’s abundance and kcat (turnover number), an enzyme with a low Km,

such as ACE, may have a predominant role in bradykinin metabolism when

bradykinin levels are low, whereas an enzyme with a higher Km, such as

carboxypeptidase M or N, may play a more dominant role when bradykinin

levels are high. Based on data reported by Kuoppala et al. (35).

nmol bradykinin, carboxypeptidase inhibition, and to a lesser
extent neprilysin inhibition, but not ACE inhibition, reduced
bradykinin metabolism (78). These findings were supported by
the greater role played by carboxypeptidase B than ACE in
the degradation of µmol/L concentrations of bradykinin by
mesenteric arterial perfusate (79). However, the opposite result
was obtained when bradykinin metabolism was assessed by the
vasodilator response of the isolated perfused rat mesenteric
arterial bed to ∼100 pmol bradykinin, whereby the vasodilator
response was potentiated by ACE inhibition, but not by either
carboxypeptidase or neprilysin inhibition (78).

ACE played a greater role than neprilysin in bradykinin
metabolism by isolated human small resistance vessels (80).
Additionally, ACE played a dominant role, with a lesser role
for aminopeptidase P, carboxypeptidase, and neprilysin, in
bradykinin metabolism by the rat pulmonary vascular bed (10,
51, 77, 81), the isolated perfused rat heart (82–86), and isolated
porcine coronary arteries (87), and was the predominant kininase
in coronary perfusate, with a lesser role for neprilysin and
carboxypeptidase (79). ACE was also the dominant peptidase
contributing to bradykinin metabolism by the isolated perfused
rat kidney, without evidence for contribution by neprilysin,
carboxypeptidase, or aminopeptidase P (88).

A key limitation of the studies of the role of neprilysin in
bradykinin metabolism so far described is the failure to address
how different peptidases may make different contributions to
bradykinin metabolism in different tissue compartments. In
support of a tissue compartment-specific role for neprilysin in
bradykinin metabolism, studies of lung, cardiac and renal bush
border membranes, and urine, demonstrated a contribution by
neprilysin that was equal to (89), or greater than (89–91), the
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contribution of ACE. Further evidence for a tissue compartment-
specific role for neprilysin in bradykinin degradation was the
metabolism of a bolus of 3H-bradykinin by the isolated perfused
rat heart, which showed a delayed release of 3H-bradykinin-
(1-7) into the perfusate, consistent with 3H-bradykinin-(1-
7) formation in the interstitial compartment of the heart by
neprilysin-mediated cleavage of 3H-bradykinin (84).

ROLE OF KININS IN MEDIATING THE
EFFECTS OF NEPRILYSIN INHIBITION

Many studies have used either bradykinin receptor antagonists,
anti-bradykinin antibodies, or serine protease (kallikrein)
inhibitors to demonstrate a role for bradykinin in mediating
the effects of neprilysin inhibitors. Two different mechanisms
may account for the potentiation of bradykinin receptor-
mediated actions by neprilysin inhibitors (Figure 5). Firstly,
neprilysin inhibitors may potentiate bradykinin receptor-
mediated actions by inhibiting bradykinin degradation and
increasing bradykinin levels in the vicinity of the receptor.
Secondly, neprilysin inhibitors may potentiate bradykinin
receptor-mediated actions by promoting cross-talk between the
neprilysin-inhibitor complex and the bradykinin receptor (92),
similar to the cross-talk between the ACE-inhibitor complex
and the B2 receptor proposed to mediate ACE inhibitor-induced
potentiation of bradykinin receptor-mediated effects (93).
Bradykinin receptor antagonists, anti-bradykinin antibodies,

and kallikrein inhibitors have different effects on these two
mechanisms of neprilysin inhibitor-induced potentiation of
bradykinin receptor-mediated actions. A bradykinin receptor
antagonist that occupies the bradykinin receptor can prevent
both mechanisms of neprilysin inhibitor-induced potentiation
of bradykinin receptor-mediated actions. However, bradykinin
antibodies that prevent bradykinin binding to its receptor by
sequestering bradykinin, and kallikrein inhibitors that prevent
bradykinin binding to its receptor by preventing its formation,
do not impact on cross-talk between the neprilysin-inhibitor
complex and the bradykinin receptor. Therefore, prevention of
the effects of neprilysin inhibition by bradykinin antibodies or
kallikrein inhibitors indicates that these effects are mediated
by increased bradykinin levels consequent to inhibition of
neprilysin-mediated bradykinin degradation, and not by cross-
talk between the neprilysin-inhibitor complex and the bradykinin
receptor.

Role of Kinins in Mediating the Renal
Effects of Neprilysin Inhibition
Icatibant prevented the diuretic and natriuretic effects of
neprilysin inhibition in normal Sprague Dawley rats (94–96).
Bradykinin receptor antagonism also prevented the neprilysin
inhibitor-induced potentiation of atrial natriuretic peptide-
induced diuresis and natriuresis in rats (97) and in chronic
caval dogs (98). Moreover, anti-bradykinin antibodies prevented
neprilysin inhibitor-induced potentiation of diuresis, natriuresis

FIGURE 5 | Illustration of two different mechanisms by which neprilysin inhibitors may potentiate bradykinin receptor-mediated actions. Firstly, neprilysin inhibitors may

increase bradykinin receptor occupancy by inhibiting bradykinin degradation and increasing bradykinin levels in the vicinity of the receptor. Secondly, neprilysin

inhibitors may promote cross-talk between the neprilysin-inhibitor complex and the bradykinin receptor. Bradykinin receptor antagonists, anti-bradykinin antibodies,

and kallikrein inhibitors have different effects on these two mechanisms of neprilysin inhibitor-induced potentiation of bradykinin receptor-mediated actions. A

bradykinin receptor antagonist that occupies the bradykinin receptor can prevent both mechanisms of neprilysin inhibitor-induced potentiation of bradykinin

receptor-mediated actions. However, bradykinin antibodies that prevent bradykinin binding to its receptor by sequestering bradykinin, and kallikrein inhibitors that

prevent bradykinin binding to its receptor by preventing its formation, do not impact on cross-talk between the neprilysin-inhibitor complex and the bradykinin receptor.

Frontiers in Medicine | www.frontiersin.org 6 September 2018 | Volume 5 | Article 257

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Campbell Neprilysin Inhibitors and Bradykinin

and increase in urinary cyclic GMP excretion in volume-
expanded rats (99). However, in contrast to studies in normal
Sprague Dawley rats, icatibant did not prevent the natriuretic
effects of neprilysin inhibition in DOCA-salt hypertensive rats
(96, 100), which suggests that the effects of neprilysin inhibition
in DOCA-salt hypertensive rats are primarily mediated by
increased natriuretic peptide levels consequent to inhibition of
natriuretic peptide metabolism.

Role of Kinins in Mediating the Cardiac
Effects of Neprilysin Inhibition
Icatibant prevented neprilysin inhibitor-induced reduction
in ischemia-reperfusion injury in the rat heart (101), and
neprilysin inhibitor-induced potentiation of pre-conditioning-
induced reduction in infarct size in the rabbit heart (102).
In addition, icatibant prevented neprilysin inhibitor-induced
reversal of isoproterenol-induced myocardial hypoperfusion in
the rat (103), and neprilysin inhibitor-induced nitric oxide
production by isolated canine coronary microvessels (104).
Neprilysin inhibitor-induced nitric oxide production by isolated
canine coronary microvessels was also prevented by the serine
protease (kallikrein) inhibitor dichloroisocoumarin (104).

OMAPATRILAT AND BRADYKININ

Despite the potential therapeutic benefits of increased natriuretic
peptide and bradykinin levels, neprilysin inhibitor therapy has
only modest efficacy in essential hypertension and heart failure,
which might be due in part to the inhibition of neprilysin
metabolism of the vasoconstrictors angiotensin II and endothelin
1, and the increased plasma angiotensin II, endothelin 1 and
noradrenaline levels that accompany neprilysin inhibitor therapy
(17). Therefore, to prevent the renin angiotensin system from
countering the therapeutic benefits of neprilysin inhibition,
neprilysin inhibitor therapy was combined with inhibition of
the renin angiotensin system, leading to the development of
omapatrilat. Omapatrilat is a single molecule that inhibits

both neprilysin and ACE (Table 1). Additionally, omapatrilat
inhibits aminopeptidase P, NEP2, and ECE-1 (Table 1). There
is currently no information on the effects of omapatrilat on
bradykinin levels. However, given that both neprilysin and
ACE degrade bradykinin, one would predict higher bradykinin
levels with omapatrilat than ACE inhibitor therapy, which no
doubt accounts for the higher incidence of angioedema with
omapatrilat therapy. The incidence of angioedema was higher
for omapatrilat therapy (2.17%) than for enalapril therapy
(0.68%) in hypertensive patients (105), and omapatrilat failed
to achieve regulatory approval because of the angioedema
incidence. However, the incidence of angioedema was lower in
patients with HFrEF, without statistically significant difference
between omapatrilat therapy (0.8%) and enalapril therapy (0.5%)
(106).

The potential consequences of combined neprilysin and ACE
inhibition were examined in the rat tracheal plasma extravasation
assay (Table 3). Whereas neither ecadotril, sufficient to produce
>90% inhibition of renal neprilysin, nor lisinopril, sufficient
to produce 83% inhibition of lung ACE, produced plasma
extravasation, their combination produced plasma extravasation,
suggesting that their combination increased bradykinin (and
substance P) levels sufficient to cause extravasation. It is also
possible that omapatrilat-induced inhibition of aminopeptidase
P, NEP2, and ECE-1 (Table 1) contributed to increased
bradykinin (and substance P) levels and the plasma extravasation
observed in rats, and angioedema in patients administered this
therapy.

LCZ696 AND BRADYKININ

There is currently no information on the effects of LCZ696,
sacubitril or LBQ657 on bradykinin levels. However, several lines
of evidence indicate a role for bradykinin in the therapeutic
benefits of LCZ696 therapy, and also the angioedema associated
with this therapy. Whereas ARBs produce angioedema with
an incidence approximately half that of ACE inhibitor therapy

TABLE 3 | Effects of combined renin angiotensin system and neprilysin inhibition on tracheal plasma extravasation in the rat.

Compound Tracheal plasma

extravasation

APP inhibition Ki or

IC50 (nmol/L)

References

ACE AND NEPRILYSIN INHIBITION

Ecadotril (99% neprilysin & 23% ACE inhibition) No No (5, 107)

Lisinopril (83% ACE inhibition) No No (10, 11, 107, 108)

Ecadotril & Lisinopril Yes No (5, 107)

Omapatrilat (>90% ACE & 53% neprilysin

inhibition)

Yes 194, 250, 260 (10, 11, 13)

ARB AND NEPRILYSIN INHIBITION

Valsartan (100 mg/kg) No No (11)

Candoxatril (100 mg/kg) No No (11)

Valsartan & candoxatril No No (11)

Omapatrilat (0.3 mg/kg) Yes* 194, 250, 260 (10, 11, 13)

*Plasma extravasation caused by omapatrilat was prevented by prior icatibant administration (11). ACE, angiotensin converting enzyme; APP, aminopeptidase P; ARB, type 1 angiotensin

II receptor blocker.
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in patients without heart failure (109, 110), LCZ696 produces
angioedema with an incidence at least equal to that of ACE
inhibitor therapy (111). In the Prospective comparison of
Angiotensin Receptor-neprilysin inhibitor with Angiotensin
converting enzyme inhibitor to Determine Impact on Global
Mortality and morbidity in Heart Failure (PARADIGM-HF)
study of patients with HFrEF, angioedema was confirmed in
0.45% of patients receiving LCZ696 therapy and 0.24% of patients
receiving enalapril therapy (111), a numerical difference that was
not statistically significant (P = 0.13). However, the protocol
of the PARADIGM–HF study might have resulted in a lower
incidence of angioedema in the trial population thanmight occur
in patients naive to LCZ696 therapy. The exclusion criteria for
the PARADIGM-HF study included a history of angioedema
during treatment with an ACE inhibitor or ARB, and 78 and
22% of participants, respectively, were previously treated with an
ACE inhibitor or ARB. Additionally, the study involved a run-in
period before randomization during which participants received
at least 2 weeks of enalapril therapy, followed by 4–6 weeks of
LCZ696 therapy.

ARBs Increase Bradykinin Levels
Losartan increases bradykinin levels approximately 2-fold in
arterial blood of patients with hypertension (50), similar to
the increase seen with ACE inhibition (112, 113). Eprosartan
produced a similar increase in bradykinin levels in the same
patients, although the increase did not achieve statistical

significance (50). By contrast, neither losartan nor valsartan
increased bradykinin levels in rats (114, 115). There are
conflicting data on the role of bradykinin in mediating the
effects of ARBs. Both animal and human studies implicate
kinin peptides and/or the B2 receptor in the actions of ARBs,
possibly mediated by AT2 receptor stimulation by the increased
angiotensin II levels that accompany ARB therapy (116–124).
However, in contrast to the attenuation of the hypotensive effects
of ACE inhibition by concomitant icatibant administration
(100 µg/kg/h iv for 1 h) in sodium-deplete normotensive and
hypertensive subjects (125), and at a higher dose (10mg infused
iv over 15min) in sodium replete normotensive subjects (126), a
lower dose of icatibant (18 µg/kg/h iv for 6 h) did not attenuate
the hypotensive effects of either acute or chronic administration
of valsartan in sodium-deplete normotensive and hypertensive
subjects (127).

LBQ657 Inhibits not Only Neprilysin but
Also ACE, NEP2, and ECE-2
In contrast to the plasma transudation seen with combined
neprilysin and ACE inhibition in the rat tracheal plasma
transudation model (Table 3), no transudation occurred when
candoxatril was combined with valsartan (11), suggesting that
combined neprilysin inhibitor and ARB therapy may cause
less increase in bradykinin levels than combined neprilysin
and ACE inhibition. However, LBQ657 may inhibit enzymes
other than neprilysin that degrade bradykinin (Table 1). Ksander

FIGURE 6 | Potential mechanisms by which LCZ696 may potentiate bradykinin receptor-mediated actions. Valsartan may increase bradykinin levels, and LBQ657

may also increase bradykinin levels by inhibiting bradykinin degradation by neprilysin, and possibly angiotensin converting enzyme (ACE) and neprilysin homolog

membrane metalloendopeptidase-like 1 (NEP2). In addition, LBQ657 may potentiate bradykinin receptor-mediated actions by cross-talk between the

LBQ657-inhibitor complex and the bradykinin receptor.
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et al. reported that 10 µmol/L LBQ657 produced <50%
inhibition of ACE (14). Moreover, based on information
provided by Novartis Europharm Ltd, the Committee for
Medicinal Products for Human Use (CHMP) of the European
Medicines Agency reports that LBQ657 inhibits not only
ACE but also NEP2 and ECE-2 (15). It is notable that
peak LBQ657 concentrations approximated 37 µmol/L in
healthy subjects following 400 mg/day LCZ696, and trough
concentrations of LBQ657 (24 h post 400mg LCZ696) were
4.8 µmol/L. The trough LBQ657 concentration (4.8 µmol/L)
is ∼2,000 times the Ki of 2.3 nmol/L for neprilysin inhibition
by LBQ657 (16), and the peak LBQ657 concentration is
correspondingly higher. Thus, recommended doses of LCZ696
(400 mg/day) may produce LBQ657 concentrations sufficient
to inhibit ACE and contribute to increased bradykinin levels,
given that, as discussed earlier, as little as 1% inhibition of
pulmonary inactivation of bradykinin can double bradykinin
levels (Figure 3). Furthermore, NEP2 has a much lower Km for
bradykinin than NEP (Table 2) and NEP2 inhibition by LBQ657
may also increase bradykinin levels. LBQ657-mediated inhibition
of ECE-2 is unlikely to contribute to increased bradykinin levels
because ECE-2 is relatively inactive at physiological pH (7,
34).

LCZ696 therapy may therefore potentiate bradykinin-
mediated actions by several mechanisms (Figure 6). These
include the increase in bradykinin levels with ARB therapy
(50), the increase in bradykinin levels consequent to LBQ657-
mediated inhibition of neprilysin and possibly ACE and NEP2,
and cross-talk between the neprilysin-LBQ657 complex and the
bradykinin receptor. Bradykinin-mediated actions will likely
contribute to not only the renal and cardioprotective effects but
also the angioedema associated with LCZ696 therapy. Given that
heart failure is associated with suppression of the kallikrein kinin
system (48, 128), and resistance to kinin-mediated cutaneous
transudation (129), there is concern that LCZ696 therapy for

conditions such as hypertension may be associated with a higher

angioedema incidence than observed in patients with HFrEF.

SUMMARY

Tissue levels of bradykinin are higher than circulating
levels and the contribution of neprilysin to bradykinin
degradation is specific to the tissue and the tissue compartment.
Bradykinin is a likely contributor to the therapeutic benefits
of neprilysin inhibitor therapy, particularly the renal and
cardioprotective effects. However, bradykinin is also an
important contributor to angioedema that may result
from peptidase inhibitor therapy, including neprilysin
inhibitor therapy, particularly when neprilysin inhibition is
combined with ACE inhibitor therapy. LBQ657 inhibits not
only neprilysin but also ACE, NEP2, and ECE-2. Although
angioedema incidence was acceptable, and similar for LCZ696
and enalapril therapy in HFrEF patients, it remains to be
seen whether LCZ696 therapy for other conditions such as
hypertension is also accompanied by an acceptable incidence of
angioedema.
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