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Abstract: This study aims to provide a system to recycle vanadium resources and recover membranes
from waste proton-exchange membranes. This research is divided into two parts. To begin, ion
exchange batch and column experiments were applied to adsorb vanadium in a membrane. In this
process, the waste membrane was initially dissolved in a 50% ethanol solution, and the suspension
obtained by dispersing the membrane had 74 mg/L of vanadium. Then, Dowex G26 resin was used
to adsorb vanadium from the membrane dispersion in the ion-exchange process. The adsorptive
behavior and optimal parameters were explored in this study. The vanadium ions were then eluted
by HCl to obtain an enrichment solution, and the V2O5 was received through precipitation and
calcination methods. After obtaining the vanadium-free dispersion, the recycled membrane was
prepared by recasting it in the second part. The characteristics of the recycled membrane, such as
the moisture, FTIR spectra, ion-exchange capacity, and ion conductivity, are discussed. The results
revealed that the adsorption capacity of vanadium through Dowex G26 was 81.86 mg/g. The eluting
efficiency of HCl was 97.5%, and the optimal parameters of the precipitation and calcination processes
were set as pH 5, NH4Cl:V = 2:1, and 350 ◦C. The moisture of the recycled membrane was 25.98%,
and the IEC was 0.565 meq/g. The consequences of FTIR and ion conductivity demonstrated that
the vanadium in the recycled membrane was eliminated by the ion-exchange method; however, the
microstructure of the recycled membrane was influenced during ion exchange and recasting.

Keywords: vanadium flow battery; proton-exchange membrane; vanadium; ion exchange; Dowex
G26; recovery; recast

1. Introduction

The vanadium flow battery (VFB) has attracted considerable attention as a future
energy storage system that can offer a megawatt/h storage of the electric energy from
renewable energies, including solar energy and wind energy [1–3]. According to the report
of the U.S. Department of Energy, there are 66 vanadium flow battery energy storage
systems in the world [4]. The VFB consists of a stack and two electrolyte tanks. The positive
(VO2

+/VO2+) and negative (V3+/V2+) electrolytes are stored in the tank, respectively, and
can be pumped into the stack to drive the redox reaction [5] (Figure 1). The positive
and negative electrolytes operate between VO2

+/VO2+ and V3+/V2+ in the strong H2SO4
aqueous solution during the charge and discharge cycle. The electrochemical reactions of
positive and negative equations are shown in Equations (1) and (2) [6,7].

Positive: VO2
+ + 2H+ + e−
 VO2+ + H2O (1)

Negative: V3+ + e−
 V2+ (2)
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Figure 1. Model of a vanadium redox battery. 
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is the primary type discussed in this study. Nafion is a polymer material perfluorinated 
membrane with strong acid resistance and high proton conductivity [8]. The proton can 
transfer from side to side through the hydrophilic ion cluster [9]. The high proton conduc-
tivity gives the Nafion a great advantage as a VFB proton-exchange membrane but leads 
to a crucial problem, vanadium fouling.  

The literature reported that the proton conductivity will be reduced with continuous 
VO2+ ion penetration [10]. The VO2+ ion is observed to bond with the sulfonic acid sites 
through water protons in the vanadyl ion hydration shell [11]. The mechanism of the re-
action between vanadium and sulfonic groups is presented in Figure 2. The sulfonic ion 
dominated by the vanadium ion was unable to transport protons. The continuous de-
crease of conductivity will deteriorate the battery capacity and finally make the membrane 
dysfunctional [12]. This scenario will cause considerable costs and vanadium losses when 
replacing new membranes during the daily operation of VFB. Therefore, it is necessary to 
recover the waste membrane and recycle the vanadium resources in the membrane to 
reach the goal of resource circulation. 
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There is no research yet reporting the method of recovering the waste membrane 
from VFB; however, experiments on recovering the proton-exchange membrane of fuel 
cell batteries have been conducted, and their information is demonstrated in Table 1 [13–
16]. This study aims to provide a simple system to recycle vanadium resources and re-
cover membranes from waste Nafion.  

Figure 1. Model of a vanadium redox battery.

In the stack, electrolytes are separated by a proton-exchange membrane that makes
the proton maintain the electrical balance during the charge and discharge cycle. There
are various types of proton-exchange membranes, and the most common is Nafion, which
is the primary type discussed in this study. Nafion is a polymer material perfluorinated
membrane with strong acid resistance and high proton conductivity [8]. The proton
can transfer from side to side through the hydrophilic ion cluster [9]. The high proton
conductivity gives the Nafion a great advantage as a VFB proton-exchange membrane but
leads to a crucial problem, vanadium fouling.

The literature reported that the proton conductivity will be reduced with continuous
VO2+ ion penetration [10]. The VO2+ ion is observed to bond with the sulfonic acid sites
through water protons in the vanadyl ion hydration shell [11]. The mechanism of the
reaction between vanadium and sulfonic groups is presented in Figure 2. The sulfonic ion
dominated by the vanadium ion was unable to transport protons. The continuous decrease
of conductivity will deteriorate the battery capacity and finally make the membrane dys-
functional [12]. This scenario will cause considerable costs and vanadium losses when
replacing new membranes during the daily operation of VFB. Therefore, it is necessary to
recover the waste membrane and recycle the vanadium resources in the membrane to reach
the goal of resource circulation.

Materials 2022, 15, x FOR PEER REVIEW 2 of 17 
 

 

Positive: VO2+ + 2H+ + e− ⇌ VO2+ + H2O (1)

Negative: V3+ + e− ⇌ V2+ (2)

 
Figure 1. Model of a vanadium redox battery. 

In the stack, electrolytes are separated by a proton-exchange membrane that makes 
the proton maintain the electrical balance during the charge and discharge cycle. There 
are various types of proton-exchange membranes, and the most common is Nafion, which 
is the primary type discussed in this study. Nafion is a polymer material perfluorinated 
membrane with strong acid resistance and high proton conductivity [8]. The proton can 
transfer from side to side through the hydrophilic ion cluster [9]. The high proton conduc-
tivity gives the Nafion a great advantage as a VFB proton-exchange membrane but leads 
to a crucial problem, vanadium fouling.  

The literature reported that the proton conductivity will be reduced with continuous 
VO2+ ion penetration [10]. The VO2+ ion is observed to bond with the sulfonic acid sites 
through water protons in the vanadyl ion hydration shell [11]. The mechanism of the re-
action between vanadium and sulfonic groups is presented in Figure 2. The sulfonic ion 
dominated by the vanadium ion was unable to transport protons. The continuous de-
crease of conductivity will deteriorate the battery capacity and finally make the membrane 
dysfunctional [12]. This scenario will cause considerable costs and vanadium losses when 
replacing new membranes during the daily operation of VFB. Therefore, it is necessary to 
recover the waste membrane and recycle the vanadium resources in the membrane to 
reach the goal of resource circulation. 

 
Figure 2. The mechanism of the reaction between vanadium and sulfonic groups. 

There is no research yet reporting the method of recovering the waste membrane 
from VFB; however, experiments on recovering the proton-exchange membrane of fuel 
cell batteries have been conducted, and their information is demonstrated in Table 1 [13–
16]. This study aims to provide a simple system to recycle vanadium resources and re-
cover membranes from waste Nafion.  

Figure 2. The mechanism of the reaction between vanadium and sulfonic groups.

There is no research yet reporting the method of recovering the waste membrane
from VFB; however, experiments on recovering the proton-exchange membrane of fuel cell
batteries have been conducted, and their information is demonstrated in Table 1 [13–16].
This study aims to provide a simple system to recycle vanadium resources and recover
membranes from waste Nafion.
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Table 1. The information of recovering the proton-exchange membrane from fuel cell batteries.

Author Description

Xu F. et al.
[13]

The catalyst-coated membrane was dipped into sulfuric acid until the formation of transparent
solution composed of Pt and perfluorosulfonic acid resin. The membrane was dissolved, and the

amorphous carbon nanoparticles as catalyst supports in catalyst layers were oxidized. Subsequently,
both metal Pt and perfluorosulfonic acid resin were separated by centrifugal separation. Then, the

resin was recast into a membrane, and the single fuel cell performance was tested.

Moghaddam J. A. et al.
[14]

The three different dissolution methods were used to resolve the Nafion membranes, and then the
obtained solutions were cast. The prepared different recast Nafion membranes were evaluated by

water uptake measurement, swelling behaviors, ion-exchange capacity, and proton conductivity at
different temperatures. The results showed the different recast Nafion membranes had more
appropriate water uptake, proton conductivity, and chemical and mechanical stability levels

compared with the commercial Nafion membrane.

Silva R. et al.
[15]

Perfluorosulfonate ionomer dispersions in three different solvents (ethylene glycol, dimethyl
sulfoxide, and dimethylformamide) were used to prepare solution-cast membranes. The dispersions
were obtained by dissolution of Nafion® 112 membranes in a reactor using a water–ethanol solution.

The results show that all cast samples had lower chemical stability compared with commercial
membranes. Moreover, only membranes cast from dimethylformamide-based dispersions gave

conductivity performance comparable to those of Nafion® 112 and 115.

Laporta M. et al. [16]

In the present study, some procedures for preparing a Nafion water dispersion, starting from a
Nafion-117 membrane, are described. The morphological characteristics of the prepared dispersions
were compared with Nafion commercial dispersion (NCD). Moreover, membranes with a thickness
of 5–20 µm were prepared and characterized, using both the obtained and the NCD dispersions. The

obtained data showed that Nafion water dispersion, which can be used to prepare the
membrane/electrode system, resulted in thin membranes that absorb more water than NCD

membranes and have equal and/or higher proton conduction compared with the NCD.

In order to separate vanadium from the waste membrane solution without changing
the composition of the membrane ionomer, an ion-exchange method was used in this
study to recover vanadium ion from the solution. The ion-exchange process is a reaction
conducted by the ion-exchange resin where functional groups can absorb cations and
anions from the solution. Through the adsorption and eluting steps, the target ion can be
separated. The reaction of ion exchange is shown in Equations (3) and (4). The different
techniques of adsorbing vanadium through resins are revealed in Table 2 [17–21].

In this study, the vanadium ion was released from the waste membrane by dissolving
the membrane in a 50% alcohol solution. The vanadium was formed as VO2+ in the waste
membrane solution. Therefore, this study used a strong acid cation-exchange resin, Dowex
G26, which had high vanadium adsorption capacity, to absorb vanadium. The study of
the adsorptive behavior and optimal parameters were explored in the batch and column
experiments.

Then, VO2+ was eluted by HCl to obtain an enrichment solution, and the V2O5 was
obtained through precipitation and calcination methods. The recycled membrane was
prepared after the ion-exchange process by recasting vanadium-free membrane dispersion.
The characteristics of the recycled membrane, such as the moisture, FTIR spectra, ion-
exchange capacity, and ion conductivity, are discussed. The distinctions between the
recycled membrane, commercial membrane, and waste membrane are investigated as well.
According to the results, we investigate whether the ion-exchange method can recover
vanadium without affecting the composition of the membrane solution.

M+
1 + Rc·M2 → M+

2 + Rc·M1 (for a cation-exchange resin) (3)

M−3 + Ra·M4 → M−4 + Ra·M3 (for an anion-exchange resin) (4)

where M+
1 and M+

2 are two different cations; M−3 and M−4 are two different anions; and Rc
and Re are the cation and anion-exchange resin, respectively.
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Table 2. Different techniques of recovering vanadium through resins.

Author Resin Description

Zeng L. et al.
[17] D314

The loading of V on weak base resin D314 from sulfuric acid leach solutions of stone coal
containing 2.06 g/L V (V2O5) was found to be 260 mg/mL with a contact time of 60 min at pH =

4, giving a recovery of 99%.

Li W. et al.
[18]

ZGA414
D202
D453

D301FC
ZGA351

Anion-exchange resin ZGA414 was tested as its optimum adsorption capacity compared with
D202, D453, D301FC, and ZGA351 resins. Ion exchange tests indicated that only V(V) was loaded
from the synthetic solution at pH > 1.5, while it was difficult to separate V(V) from Fe(III), which

also made the resin toxic.

Fan Y. et al.
[19] D314

To recover vanadium from vanadium-containing chromate solution, the separation of vanadium
from chromium using the weak base resin D314 both in batch and column test was studied.

Experimental results showed that, in the pH range of 2.5–6.5, by double-adsorption with the
resin, vanadium and chromium can

be completely separated and recovered from vanadium-containing chromate solution.

Fritz J. S. et al.
[20]

Dowex
50W-x8

Vanadium is quantitatively removed as a vanadium(V)− hydrogen peroxide complex; the other
metal ions are eluted later with stronger acids. Varying ratios of vanadium(V) to iron(lll) up to

1:100 are separated.

Drużyński S.
et al. [21] Dowex 1-x8

Three types of polymer strongly acidic ion exchangers were used. The ion-exchange resins
differed in terms of granularity and their ion-exchange capacity. As a result, breakthrough curves

were made for three main components of the test extract, i.e., ions of vanadium, iron, and
potassium. On this basis, the optimum conditions for the removal of iron ions from the solution

were defined, and the technological concept of the process in the semitechnical scale was
proposed.

2. Materials and Methods
2.1. Materials

A waste Nafion 117 membrane, which underwent a VFB lifespan test, was used as
the material for this research. The membrane was dissolved in a 50% ethanol (C2H5OH,
>99.5%, ECHO Chemical, Miaoli, Taiwan) solution to obtain a membrane dispersion where
the concentration of vanadium detected by ICP-OES was 74 mg/L (2.96 mg/g in the solid
membrane). The detailed characterization information of membrane dispersion is shown
in Table 3.

Table 3. Characterization information of the waste Nafion 117 membrane dispersion.

Characterization Data

Concentration of membrane 2.5%
Concentration of vanadium 74 mg/L

pH value 2.01
ORP value 300 mV

Oxovanadium sulfate (VOSO4, 99.9%, Alfa Aesar Haverhill, MA, USA) and a commer-
cial 5% Nafion dispersion were used to make the stimulated waste membrane dispersion
for the ion exchange experiment. Other chemicals, such as Dowex G26 resin (Lenntech,
Delfgauw, Netherlands), hydrochloric acid (HCl, ≥36.5%, Sigma-Aldrich, St. Louis, MO,
USA), ammonium hydroxide (NH4OH, 30–33%, Sigma-Aldrich, St. Louis, MO, USA), am-
monium chloride (NH4Cl, 99.5%, SHOWA, Osaka, Japan), and dimethyl sulfoxide (DMSO,
99%, Sigma-Aldrich, St. Louis, MO, USA), were utilized without further purification.

2.2. Equipment

Inductively coupled plasma optical emission spectrometry (ICP-OES 2100DV, PerkinElmer
optima 2100 DV; Varian, Vista-MPX, PerkinElmer, Waltham, MA, USA) was applied to
detect the concentration of vanadium in the solution. X-ray diffraction (XRD; DX-2700,
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CEPHAS, Taipei City, Taiwan) was used to analyze the structure of crystalline material.
The chemical bonds of the materials were revealed by Fourier Transformation Infrared
Spectrometer (FTIR; EQUINOX 55 Bruker-AXS, BRUKER, Billerica, MA, USA). The TG
analysis was used to detect the calcination temperature of vanadium product by Thermo-
gravimetry/Differential Thermal Analysis Thermoanalyzer (TG-DTA, NETZSCH-409PC,
Netzsh, Selb, Germany). The electrochemical impedance spectroscopy was operated by
Solartron Analytical-SI 1260 (SI 1260, Solartron Analytical, Shanghai, China).

2.3. Metal Separation and Purification

In this study, the vanadium ion was released from the waste membrane by dissolving
the membrane in a 50% alcohol solution. Then, the ion exchange batch and column experi-
ments were conducted using Dowex G26 resin. Dowex G26 is a strong acid exchange resin
that can adsorb cations efficiently [22,23]. The adsorptive behavior of vanadium through
resin and the optimal parameters of the flow rates and bed volumes were investigated in
this research. After that, the vanadium was eluted by HCl to obtain an eluting solution. Fi-
nally, the vanadium product was received by ammonium salt precipitation and calcination
methods to recover the V2O5.

2.3.1. Ion Exchange Batch Experiment

The pH value of the membrane dispersion was 2, which made the vanadium ion in the
dispersion convert to cation complexion. Dowex G26 was then used to adsorb vanadium
from the membrane solution in this research. In the adsorption step, 0.1 g resin was added
into the six solutions with the different initial concentrations of VO2+ (10, 20, 50, 100, 200,
and 400 ppm) and adsorbed VO2+ for 24 h. The adsorption isotherms described by means
of the Langmuir and Freundlich isotherms were used to investigate the adsorptive behavior
of vanadium. In the eluting step, HCl was used to desorb vanadium from resin. The
parameters of the eluent molarities (0.1–2 M) in the eluting experiment were set up.

2.3.2. Ion Exchange Column Experiment

In the ion exchange column experiment, the Dowex G26 resin was filled in a column of
4 mL with a diameter of 1.12 cm. The membrane dispersion was pumped into the column
with a specific flow rate. The ion exchange was operated through the contact of resin and
liquid in the column. The tail liquid was collected by the automatic collector, and the
concentrations of vanadium were analyzed by ICP-OES. The breakthrough curve was plot-
ted by the results of the experiment. The breakpoint was defined when the concentration
was equal to 5% Ce (concentration of adsorbate in the liquid when the adsorption is in
equilibrium). In the eluting part, HCl was an eluting solution to obtain vanadium. In the
column experiment, the parameters of the flow rate (0.7, 1, and 1.4 mL/min) and total bed
volume (170 BV) were set to obtain the optimal adsorption efficiency.

2.3.3. Precipitation and Calcination

The eluting solution was the solution with a high vanadium concentration obtained
after the ion-exchange process. The vanadium ion could be precipitated by controlling the
pH value and adding ammonium chloride to gain ammonium metavanadate (NH4VO3).
In the precipitation step, the parameters of pH value (2–7) and nNH4Cl:nV (1–5:1) were
set to find the optimal precipitation rate. After the precipitation procedure, the vanadium
oxide (V2O5) could be received through calcination, and the operating temperature was
determined by the result of TG/DTA.

2.4. Membrane Recast

The vanadium-free membrane dispersion could be received after the ion-exchange
process. In this study, the dispersion was recast to obtain the recycled membrane, and the
characteristics were analyzed as well.
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2.4.1. Preparation of the Recycled Membrane

The dimethyl sulfoxide (DMSO) was a low toxicity organic solvent used to replace
the solvent of membrane dispersion to obtain a higher mechanical strength of the mem-
brane [24]. The membrane dispersion was placed on a clean Petri dish and heated by oven
at 160 ◦C for 1 h to obtain a recycled membrane. The recycled membrane was boiled in
deionized water (DI water) before peeling from the Petri dish and was then stored in DI
water.

2.4.2. Characterizations

The characteristics, including the moisture, FTIR, ion-exchange capacity, and ion
conductivity, were established. The results were compared with the waste membrane and
commercial membrane, which were made by using the same casting process of preparing
the recycled membrane.

Membrane Moisture

The membrane moisture was measured through the difference between the dry and
wet weight. The dry weight (Wdry) of the membrane was measured after drying the mem-
brane at 50 ◦C for 24 h in the oven. The wet weight (Wwet) was measured after immersing
the dried membrane in DI water for 24 h. The membrane moisture was calculated by
Equation (5).

A(%) =
Wwet −Wdry

Wwet
× 100 (5)

Fourier Transform Infrared (FTIR)

To investigate the chemical bond change of the membrane, which occurred during
the ion exchange and recast process, the FTIR analyses were conducted in the range of
500–4000 cm−1.

Ion-Exchange Capacity (IEC)

The ion-exchange capacity was measured by the titration method. The 1 cm2 dry
membrane was immersed in 10 mL 0.01 M NaCl for 24 h. After removing the membrane,
the remaining solution was titrated by 0.01 M NaOH, and phenolphthalein was used as the
indicator. The IEC was calculated using Equation (6)

I =
0.01×VolNaOH

Wdry
(6)

where I is the ion-exchange capacity (meq/g); Wdry is the dry sample weight; and VolNaOH
is the titrant volume at endpoint (mL).

Ion Conductivity

Electrochemical impedance spectroscopy was performed to measure the ion conduc-
tivity. The membrane was held between two electrode probes connected to an AC power
generator with a contacting area of 1.767 cm2. The Nyquist plot was recorded between 0.01–
106 Hz, and the amplitude was 10 mV. The resistance of the membrane was obtained from
the plot. The proton conductivities of the membranes were calculated using Equation (7).

σ =
L

R× A
(7)

where the σ is proton conductivity (Scm−1); L and A are the thickness (cm) and contacting
area of the membrane (cm2), respectively; and R is the impedance of membrane (Ω), and
this was obtained through the Precision Impedance Analyzer.
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3. Results and Discussion
3.1. Circulation of Vanadium
3.1.1. Ion Exchange Batch Equipment

In this study, 0.1 g resin was added to the six solutions with different initial concen-
trations of VO2+ (10, 20, 50, 100, 200, and 400 ppm) and adsorbed VO2+ for 24 h. The
relationship between the Ce (concentration of adsorbate in the liquid when adsorption is in
equilibrium) and qe (equilibrium adsorption capacity of the adsorbent) was used to create
an isothermal adsorption curve (Figure 3). The result demonstrates that the maximum
adsorption capacity was 86.9 mg/g.
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To obtain high accuracy of the maximum adsorption capacity and adsorptive behavior,
Langmuir and Freundlich equations were used to create the figures [25,26]. Equation (8)
and Figure 4 illustrate the Langmuir equation and linear regression between Ce and Ce/qe.
The maximum adsorption capacity qm and adsorption equilibrium constant KL were gained
by calculating with Equation (9) and linear regression equation (Table 4). Equation (9) and
Figure 5 reveal the Freundlich equations and linear regression between lnCe and lnqe, and
the empirical constant n and the adsorption equilibrium constant KF could be obtained
(Table 4). According to the correlation coefficient R2 of two equations, the adsorptive
behavior of Dowex G26 fits with the Langmuir model. It presents that the resin had a
uniform adsorption position on the surface and that the theoretical maximum adsorption
capacity was 94.34 mg/g.

Ce

qe
=

Ce

qm
+

1
qmKL

(8)

lnqe = lnKF +
1
n

lnCe (9)Materials 2022, 15, x FOR PEER REVIEW 8 of 17 
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Table 4. The data of the Langmuir model and Freundlich model.

Langmuir Model (R2 = 0.9954) Freundlich Model (R2 = 0.9329)

qm = 1/slope
1/0.0106 = 94.34 mg

n = 1/slope
1/0.4851 = 2.06

KL = 1/(qm × intercept)
1/(94.34 × 0.3221) = 0.0329

KF = eintercept

e1.8987 = 6.68
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Figure 5. Freundlich isothermal model of VO2+ through Dowex G26 resin.

At the eluted step, different molarities of HCl (0.1, 0.5, 1, 1.5, and 2) were used to
desorb vanadium from the saturated resin. Table 5 demonstrates that the elution efficiency
reached 99.5% by choosing 1 M HCl to desorb vanadium. The elution efficiencies decreased
when using higher concentrations of acid because the strong acid may damage the resin.
Under this condition, the optimal parameter of eluent molarity was chosen as 1 M HCl.

Table 5. Elution efficiencies of different molarities of HCl.

Eluent Molarity of HCl (M) Elution Efficiency (%)

0.1 76.9
0.5 98.5
1 99.5

1.5 95.3
2 79.3

3.1.2. Ion Exchange Column Equipment

The column experiment was conducted under the optimal conditions in which Dowex
G26 and 1 M HCl were used as the resin and eluent, separately, at room temperature. The
results of the flow rate are illustrated in Figure 6. The breakthrough curves at flow rates
of 0.7 and 1.0 mL/min demonstrated similar results in which the breakpoint (5% Ce) was
at 70 BV; however, the breakpoint at a flow rate of 1.4 mL/min was at 100 BV. The result
represents that the increase in flow rate reduced the contact time between the resin surface
and solution and caused a decrease in the adsorption capacity of the resins. Setting the
flow rate at 1.0 mL/min had the optimal adsorption performance and economic benefit.
Under this circumstance, the adsorption capacity was 81.86 mg/g.
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Figure 6. Adsorption breakthrough curve of VO2+ through Dowex G26 resin.

In the column eluting experiment, 1 M HCl was used to elute vanadium from resin,
and the eluting solution was then obtained after the process. The result of the eluting
breakthrough curve is illustrated in Figure 7. The total BV was 5 BV, and the concentration
of vanadium was 1596.72 ppm in the eluting solution. The eluting efficiency in this
procedure was 97.5%, and the concentration ratio was 21.29. After the eluting process, H+

from HCl was adsorbed by the resin, and VO2+ was desorbed to the HCl solution. Through
this procedure, the Dowex G26 resin could be regenerated and reused.
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Figure 7. Eluting breakthrough curve of VO2+ through 1 M HCl.

3.1.3. Precipitation and Calcination

In this part, ammonium chloride was added to precipitate the NH4VO3. The pH value
was adjusted by NH4OH and HCl, and the amount of ammonium chloride was controlled
to receive the best precipitation rate. The results are demonstrated in Figures 8 and 9.
As a result, the optimal parameters were set as pH 5 and nNH4Cl:nV = 2:1. Under these
conditions, the precipitation rate was 97.8%.

The NH4VO3 was achieved after precipitation, and the TG analysis was used to detect
the calcination temperature. Based on the TG diagram (Figure 10), the temperature was
set at 350 ◦C to make NH4VO3 ultimately become vanadium oxide (V2O5), and the V2O5
product could then be applied in many different areas [27,28]. The XRD analysis and purity
of V2O5 are shown in Figure 11 and Table 6. The purity was higher than 99%, and the total
recovery rate was 95.04%.
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Figure 11. XRD analysis of V2O5.

Table 6. Composition of V2O5.

Compounds Content (%)

V2O5 99.09
Na2O 0.41
MgO 0.19
K2O 0.31

Fe2O3 <0.01

3.2. Recast Membrane Characterization

The vanadium-free membrane dispersion was recast into the solid recycled membrane.
The various characteristic analyses were done to verify the reusability of the recycled
membrane. The same analyses were conducted on the commercial membrane and waste
membrane for comparison. The results are shown below.

3.2.1. Membrane Moisture

Membrane moisture is one of the critical parameters affecting the proton conduction
and mechanical stability of the membrane. The moisture of different membranes is pre-
sented in Table 7. As shown in Table 7, the moisture of the recycled membrane was familiar
to the commercial membrane. The waste membrane has higher moisture than the recycled
membrane because the vanadium ion fouling in the waste membrane could be formed
with water molecules. Therefore, the vanadium penetration would not lead to a moisture
decrease.

Table 7. The moisture of different membranes.

Wdry Wwet Moisture (%)

Recycled membrane 0.0364 0.051 25.98
Commercial
membrane 0.0384 0.054 28.89

Waste membrane 0.0341 0.043 26.55

3.2.2. FTIR Spectra

FTIR was used in this study to analyze the chemical bonding of the membrane to verify
if the microstructure of the recycled membrane was affected. The results are presented in
Figures 12 and 13, in which Figure 12a–c shows the spectra in the range of wavenumbers
1000–3000 cm−1

, and Figure 13a–c illustrates the identical spectra but focuses on the range
of wavenumbers 700–1800 cm−1.
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(b) recycled membrane, and (c) waste membrane.

The absorption peaks and corresponding bonds of Nafion spectra are listed in Table 8.
As shown in Figure 12, the prominent characteristic peaks of the commercial membrane
meet the Nafion spectra. The characteristic peaks of the recycled membrane matched
Nafion spectra as well; however, the absorption intensity appeared weaker. The reason may
be caused by the microstructure change during the ion-exchange process and membrane
recast. The absorption spectra of the waste membrane were familiar to the commercial
membrane; however, the characteristic peak at wavenumber 1056 cm−1 was not evident in
Figure 13 because the vanadium occupied the sulfonic acid groups.

Table 8. The absorptions peaks and corresponding bonds of the Nafion spectra.

Wavenumber (cm−1) Chemical Bonds

969 C-O-C
1056 -SO3H
1143 CF2
1202 CF2SO3
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Figure 13. FTIR spectra in the range of wavenumbers 700–1800 cm−1 of (a) commercial membrane,
(b) recycled membrane, and (c) waste membrane.

3.2.3. Ion-Exchange Capacity

The ion-exchange capacity (IEC) was used to evaluate the ion exchangeability of
sulfonic acid groups in the proton-exchange membrane. The IEC may be affected by the
total amount of sulfonic acid groups and the degree of exposure. Typically, the higher IEC
represented the higher ion conductivity. The results are shown in Table 9, and the IEC of the
waste membrane was only 80% of the commercial membrane, which means the acid groups
were occupied by vanadium ion; therefore, the ion exchange could not be performed. The
IEC of the recycled membrane reached 90% of the commercial membrane, which means
the IEC increased because the acid groups were released after adsorbing vanadium ions
through the ion-exchange process.

Table 9. Ion-exchange capacity of the three membranes.

Weight (g) IEC (meq/g)

Recycled membrane 0.0248 0.565
Commercial
membrane 0.0231 0.628

Waste membrane 0.0256 0.508
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3.2.4. Ion Conductivity

The ion conductivity was one of the indicators to evaluate whether the membrane
could be used as the proton-exchange membrane of the vanadium flow battery. The
ion conductivity was calculated by Equation (7) after measuring the impendence of the
membrane. The impendence was obtained by electrochemical impedance spectroscopy.

The Nyquist plots of three membranes are presented in Figure 14, and the results of
the ion conductivity are presented in Figure 15. As shown in Figure 15, the ion conductivity
of the recycled membrane was half of the commercial membrane, which was 6.6-times
larger than the waste membrane. The ion conductivity of the recycled membrane increased
because the vanadium ion was removed through Dowex G26 resin; however, it could not
reach the same level as the commercial membrane. This behavior could be explained as the
microstructure change occurring during the ion exchange or recast process, decreasing the
ability of proton transport in the membrane.
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4. Conclusions

This study is divided into two parts: the recovery of vanadium by ion exchange and
the recast of the proton-exchange membrane.

1. In the ion-exchange batch experiment, according to the results of the adsorption
isotherms, the adsorptive behavior of Dowex G26 fit with the Langmuir model. This
indicates that the resin had a uniform adsorption position on the surface and that the
theoretical maximum adsorption capacity was 94.34 mg/g.

2. In the ion-exchange column experiment, the optimal parameters were set at the flow
rate of 1 mL/min, in which the adsorption capacity was 81.86 mg/g. During the
eluting process, 1 M HCl was chosen as the eluent, and the eluting efficiency was
97.5%. The concentration of the enrichment solution was 1596.72 ppm.

3. In the precipitation process, the optimal parameters were set as pH = 5 and NH4Cl:V = 2:1.
In this case, the precipitation rate was 97.8%. The calcination temperature was set at
350 ◦C, and the purity of the V2O5 was over 99%.

4. The recycled membrane was obtained by recasting the vanadium-free membrane
dispersion, and the characteristics of the membranes were studied. The membrane
moisture of the recycled membrane was 25.98%, and the IEC was 0.565 meq/g. The
results of FTIR and ion conductivity revealed that the vanadium in the recycled
membrane was eliminated by the ion-exchange method; however, the microstructure
of the recycled membrane was influenced during ion exchange or recasting.

By using the ion-exchange method, vanadium could be removed efficiently, and
high purity of the vanadium product was obtained after enrichment, precipitation, and
calcination, and this could be reused as a raw material in industry. The ion-exchange
capacity and ion conductivity of the recycled membrane were significantly ameliorated;
however, there is still room for improvement to reach the same level as the commercial
membrane. In summary, the vanadium and membrane were recovered simultaneously
from the waste vanadium flow battery. This research has great potential toward the goal of
waste reduction and resource circulation.
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